一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

光学成像透镜组的制作方法

2022-05-06 09:41:10 来源:中国专利 TAG:

光学成像透镜组
1.分案申请声明
2.本技术是2020年5月20日递交的发明名称为“光学成像透镜组”、申请号为202010429832.0的中国发明专利申请的分案申请。
技术领域
3.本技术涉及光学元件领域,具体地,涉及一种光学成像透镜组。


背景技术:

4.随着科技的进步,手机、平板电脑等便携式电子设备的快速发展,人们对光学成像透镜组的成像要求也越来越高。伴随着手机、平板电脑等便携式电子设备逐渐向轻薄化、小型化方向发展的趋势,更薄的机身、更小的空间对承担摄像任务的镜头提出了巨大的挑战。
5.如何使光学成像透镜组同时兼顾轻薄化、小型化和高分辨率,是当前诸多摄像镜头设计者需要重点关注和解决的问题之一。


技术实现要素:

6.本技术一方面提供了这样一种光学成像透镜组,该光学成像透镜组沿着光轴由物侧至像侧依序包括:具有负光焦度的第一透镜;具有光焦度的第二透镜,其像侧面为凸面;具有光焦度的第三透镜,其物侧面为凸面;具有负光焦度的第四透镜;具有光焦度的第五透镜;以及具有光焦度的第六透镜,其物侧面为凸面。光学成像透镜组的最大视场角fov与第一透镜的物侧面至光学成像透镜组的成像面在光轴上的距离ttl可满足:2.5mm-1
<10
×
tan(fov/2)/ttl<4mm-1
;以及第一透镜的物侧面的最大有效半径dt11与第六透镜的物侧面的最大有效半径dt61可满足:0.5<dt11/dt61<1。
7.在一个实施方式中,第一透镜的物侧面至第六透镜的像侧面中至少有一个非球面镜面。
8.在一个实施方式中,第六透镜的物侧面的曲率半径r11与光学成像透镜组的总有效焦距f可满足:0<r11/f<1。
9.在一个实施方式中,第一透镜的物侧面至光学成像透镜组的成像面在光轴上的距离ttl与光学成像透镜组的有效像素区域的对角线长的一半imgh可满足:ttl/imgh<1.8。
10.在一个实施方式中,第一透镜的有效焦距f1与第四透镜的有效焦距f4可满足:0<f1/f4<1。
11.在一个实施方式中,第三透镜的有效焦距f3与第四透镜的有效焦距f4可满足:f3/f4>0。
12.在一个实施方式中,第一透镜和第二透镜在光轴上的间隔距离t12、第二透镜和第三透镜在光轴上的间隔距离t23、第三透镜和第四透镜在光轴上的间隔距离t34、第四透镜和第五透镜在光轴上的间隔距离t45以及第五透镜和第六透镜在光轴上的间隔距离t56可满足:0<t12/(t23 t34 t45 t56)<1.5。
13.在一个实施方式中,第三透镜在光轴上的中心厚度ct3与第三透镜和第四透镜在光轴上的间隔距离t34可满足:ct3/t34<1.5。
14.在一个实施方式中,第一透镜的物侧面和光轴的交点至第一透镜的物侧面的有效半径顶点在光轴上的距离sag11与第一透镜的中心厚度ct1可满足:0<sag11/ct1<1。
15.在一个实施方式中,第三透镜的物侧面的曲率半径r5与第二透镜的像侧面的曲率半径r4可满足:-5<r5/r4<0。
16.在一个实施方式中,第三透镜的物侧面和光轴的交点至第三透镜的物侧面的有效半径顶点在光轴上的距离sag31与第三透镜的中心厚度ct3可满足:-0.5<sag31/ct3<0。
17.在一个实施方式中,第三透镜的边缘厚度et3与第三透镜的中心厚度ct3可满足:1.5<et3/ct3<2.5。
18.在一个实施方式中,第五透镜的物侧面和光轴的交点至第五透镜的物侧面的有效半径顶点在光轴上的距离sag51与第五透镜的中心厚度ct5可满足:-0.5<sag51/ct5<0。
19.在一个实施方式中,第四透镜的像侧面具有至少一反曲点,并且从反曲点至光轴的垂直距离yc42与第四透镜的像侧面的最大有效半径dt42可满足:0<yc42/dt42<0.5。
20.在一个实施方式中,第二透镜和第三透镜在光轴上的间隔距离t23与第三透镜和第四透镜在光轴上的间隔距离t34可满足:0<t23/t34<0.5。
21.在一个实施方式中,第一透镜的像侧面的曲率半径r2与第二透镜的物侧面的曲率半径r3可满足:0.8<r2/r3<1.2。
22.在一个实施方式中,第一透镜的物侧面为凹面。
23.在一个实施方式中,第三透镜具有负光焦度。
24.在一个实施方式中,第五透镜的物侧面为凸面。
25.本技术另一方面提供了一种光学成像透镜组,该光学成像透镜组沿着光轴由物侧至像侧依序包括:具有光焦度的第一透镜;具有光焦度的第二透镜,其像侧面为凸面;具有负光焦度的第三透镜,其物侧面为凸面;具有光焦度的第四透镜;具有光焦度的第五透镜;以及具有光焦度的第六透镜,其物侧面为凸面。第六透镜的物侧面的曲率半径r11与光学成像透镜组的总有效焦距f满足:0<r11/f<1;以及第一透镜的物侧面的最大有效半径dt11与第六透镜的物侧面的最大有效半径dt61满足:0.5<dt11/dt61<1。
26.本技术通过合理的分配光焦度以及优化光学参数,提供了一种可适用于轻便型电子产品,具有轻薄化、小型化、高分辨率以及良好的成像质量的光学成像透镜组。
附图说明
27.通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本技术的其它特征、目的和优点将会变得更明显:
28.图1示出了根据本技术实施例1的光学成像透镜组的结构示意图;
29.图2a至图2d分别示出了实施例1的光学成像透镜组的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
30.图3示出了根据本技术实施例2的光学成像透镜组的结构示意图;
31.图4a至图4d分别示出了实施例2的光学成像透镜组的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
32.图5示出了根据本技术实施例3的光学成像透镜组的结构示意图;
33.图6a至图6d分别示出了实施例3的光学成像透镜组的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
34.图7示出了根据本技术实施例4的光学成像透镜组的结构示意图;
35.图8a至图8d分别示出了实施例4的光学成像透镜组的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
36.图9示出了根据本技术实施例5的光学成像透镜组的结构示意图;
37.图10a至图10d分别示出了实施例5的光学成像透镜组的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线;
38.图11示出了根据本技术实施例6的光学成像透镜组的结构示意图;以及
39.图12a至图12d分别示出了实施例6的光学成像透镜组的轴上色差曲线、象散曲线、畸变曲线以及倍率色差曲线。
具体实施方式
40.为了更好地理解本技术,将参考附图对本技术的各个方面做出更详细的说明。应理解,这些详细说明只是对本技术的示例性实施方式的描述,而非以任何方式限制本技术的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
41.应注意,在本说明书中,第一、第二、第三等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本技术的教导的情况下,下文中讨论的第一透镜也可被称作第二透镜或第三透镜。
42.在附图中,为了便于说明,已稍微夸大了透镜的厚度、尺寸和形状。具体来讲,附图中所示的球面或非球面的形状通过示例的方式示出。即,球面或非球面的形状不限于附图中示出的球面或非球面的形状。附图仅为示例而并非严格按比例绘制。
43.在本文中,近轴区域是指光轴附近的区域。若透镜表面为凸面且未界定该凸面位置时,则表示该透镜表面至少于近轴区域为凸面;若透镜表面为凹面且未界定该凹面位置时,则表示该透镜表面至少于近轴区域为凹面。每个透镜最靠近被摄物体的表面称为该透镜的物侧面,每个透镜最靠近成像面的表面称为该透镜的像侧面。
44.还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、元件和/或部件,但不排除存在或附加有一个或多个其它特征、元件、部件和/或它们的组合。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,修饰整个所列特征,而不是修饰列表中的单独元件。此外,当描述本技术的实施方式时,使用“可”表示“本技术的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
45.除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本技术所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度正式意义解释,除非本文中明确如此限定。
46.需要说明的是,在不冲突的情况下,本技术中的实施例及实施例中的特征可以相
互组合。下面将参考附图并结合实施例来详细说明本技术。
47.以下对本技术的特征、原理和其他方面进行详细描述。
48.根据本技术示例性实施方式的光学成像透镜组可包括六片具有光焦度的透镜,分别是第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜。这六片透镜沿着光轴从物侧至像侧依序排列。第一透镜至第六透镜中的任意相邻两透镜之间均可具有间隔距离。
49.在示例性实施方式中,第一透镜可具有负光焦度;第二透镜可具有正光焦度或负光焦度,其像侧面可为凸面;第三透镜可具有正光焦度或负光焦度,其物侧面可为凸面;第四透镜可具有负光焦度;第五透镜可具有正光焦度或负光焦度;以及第六透镜可具有正光焦度或负光焦度,其物侧面可为凸面。
50.在示例性实施方式中,根据本技术的光学成像透镜组可满足:2.5mm-1
<10
×
tan(fov/2)/ttl<4mm-1
,其中,fov是光学成像透镜组的最大视场角,ttl是第一透镜的物侧面至光学成像透镜组的成像面在光轴上的距离。更具体地,fov和ttl进一步可满足:2.8mm-1
<10
×
tan(fov/2)/ttl<3.2mm-1
。满足2.5mm-1
<10
×
tan(fov/2)/ttl<4mm-1
,既可以实现超广角和超薄的特性,又可以兼顾高分辨率,使光学成像透镜组具有更好的成像质量。
51.在示例性实施方式中,根据本技术的光学成像透镜组可满足:0<r11/f<1,其中,r11是第六透镜的物侧面的曲率半径,f是光学成像透镜组的总有效焦距。更具体地,r11和f进一步可满足:0.4<r11/f<0.8。满足0<r11/f<1,可以较好地平衡光焦度的分配,同时有利于矫正系统轴外像差。
52.在示例性实施方式中,根据本技术的光学成像透镜组可满足:ttl/imgh<1.8,其中,ttl是第一透镜的物侧面至光学成像透镜组的成像面在光轴上的距离,imgh是光学成像透镜组的有效像素区域的对角线长的一半。满足ttl/imgh<1.8,有利于在保证系统的成像质量的同时,可以很好地实现系统的超薄特性。
53.在示例性实施方式中,根据本技术的光学成像透镜组可满足:0<f1/f4<1,其中,f1是第一透镜的有效焦距,f4是第四透镜的有效焦距。更具体地,f1和f4进一步可满足:0<f1/f4<0.6。满足0<f1/f4<1,可以很好地矫正系统的轴向及轴外像差。
54.在示例性实施方式中,根据本技术的光学成像透镜组可满足:f3/f4>0,其中,f3是第三透镜的有效焦距,f4是第四透镜的有效焦距。满足f3/f4>0,可以很好地矫正系统的轴向及轴外像差。
55.在示例性实施方式中,根据本技术的光学成像透镜组可满足:0<t12/(t23 t34 t45 t56)<1.5,其中,t12是第一透镜和第二透镜在光轴上的间隔距离,t23是第二透镜和第三透镜在光轴上的间隔距离,t34是第三透镜和第四透镜在光轴上的间隔距离,t45是第四透镜和第五透镜在光轴上的间隔距离,t56是第五透镜和第六透镜在光轴上的间隔距离。更具体地,t12、t23、t34、t45和t56进一步可满足:0.4<t12/(t23 t34 t45 t56)<1.1。满足0<t12/(t23 t34 t45 t56)<1.5,有利于实现系统的光焦度分配,同时有利于矫正系统的轴向像差。
56.在示例性实施方式中,根据本技术的光学成像透镜组可满足:ct3/t34<1.5,其中,ct3是第三透镜在光轴上的中心厚度,t34是第三透镜和第四透镜在光轴上的间隔距离。更具体地,ct3和t34进一步可满足:ct3/t34<1.0。满足ct3/t34<1.5,有利于矫正系统的
轴向色差,同时有助于提高轴外视场的成像特性。
57.在示例性实施方式中,根据本技术的光学成像透镜组可满足:0.5<dt11/dt61<1,其中,dt11是第一透镜的物侧面的最大有效半径,dt61是第六透镜的物侧面的最大有效半径。更具体地,dt11和dt61进一步可满足:0.5<dt11/dt61<0.8。满足0.5<dt11/dt61<1,可以更好地实现系统的超薄特性。
58.在示例性实施方式中,根据本技术的光学成像透镜组可满足:0<sag11/ct1<1,其中,sag11是第一透镜的物侧面和光轴的交点至第一透镜的物侧面的有效半径顶点在光轴上的距离,ct1是第一透镜的中心厚度。更具体地,sag11和ct1进一步可满足:0.2<sag11/ct1<0.7。满足0<sag11/ct1<1,可以更好地分担超广角视场,更好地体现了超广角系统中第一透镜的特性。
59.在示例性实施方式中,根据本技术的光学成像透镜组可满足:-5<r5/r4<0,其中,r5是第三透镜的物侧面的曲率半径,r4是第二透镜的像侧面的曲率半径。更具体地,r5和r4进一步可满足:-4.2<r5/r4<-2.6。满足-5<r5/r4<0,可以更好地平衡第二透镜像侧面和第三透镜物侧面的光焦度,更好地实现聚焦功能。
60.在示例性实施方式中,根据本技术的光学成像透镜组可满足:-0.5<sag31/ct3<0,其中,sag31是第三透镜的物侧面和光轴的交点至第三透镜的物侧面的有效半径顶点在光轴上的距离,ct3是第三透镜的中心厚度。更具体地,sag31和ct3进一步可满足:-0.3<sag31/ct3<-0.1。满足-0.5<sag31/ct3<0,可以有效地矫正系统的彗差、场曲、以及垂轴色差等。
61.在示例性实施方式中,根据本技术的光学成像透镜组可满足:1.5<et3/ct3<2.5,其中,et3是第三透镜的边缘厚度,ct3是第三透镜的中心厚度。更具体地,et3和ct3进一步可满足:1.8<et3/ct3<2.2。满足1.5<et3/ct3<2.5,可以在保证加工可行性的同时,能够很好地矫正轴向色差和色球差。
62.在示例性实施方式中,根据本技术的光学成像透镜组可满足:-0.5<sag51/ct5<0,其中,sag51是第五透镜的物侧面和光轴的交点至第五透镜的物侧面的有效半径顶点在光轴上的距离,ct5是第五透镜的中心厚度。更具体地,sag51和ct5进一步可满足:-0.3<sag51/ct5<0。满足-0.5<sag51/ct5<0,可以很好地矫正系统的轴外像差,如场曲、畸变、垂轴色差等,以使系统获得更好的成像质量。
63.在示例性实施方式中,根据本技术的光学成像透镜组可满足:0<yc42/dt42<0.5,其中,yc42是第四透镜的像侧面的反曲点至光轴的垂直距离,dt42是第四透镜的像侧面的最大有效半径。更具体地,yc42和dt42进一步可满足:0.3<yc42/dt42<0.5。满足0<yc42/dt42<0.5,可以更好地矫正系统的畸变和场曲,在保证系统性能的条件下,获得较小的畸变。
64.在示例性实施方式中,根据本技术的光学成像透镜组可满足:0<t23/t34<0.5,其中,t23是第二透镜和第三透镜在光轴上的间隔距离,t34是第三透镜和第四透镜在光轴上的间隔距离。更具体地,t23和t34进一步可满足:0.2<t23/t34<0.5。
65.在示例性实施方式中,根据本技术的光学成像透镜组可满足:0.8<r2/r3<1.2,其中,r2是第一透镜的像侧面的曲率半径,r3是第二透镜的物侧面的曲率半径。更具体地,r2和r3进一步可满足:0.8<r2/r3<1.1。
66.在示例性实施方式中,第一透镜的物侧面可为凹面。
67.在示例性实施方式中,第三透镜可具有负光焦度。
68.在示例性实施方式中,第五透镜的物侧面可为凸面。
69.在示例性实施方式中,根据本技术的光学成像透镜组还包括设置在第一透镜与第二透镜之间的光阑。可选地,上述光学成像透镜组还可包括用于校正色彩偏差的滤光片和/或用于保护位于成像面上的感光元件的保护玻璃。本技术提出了一种具有小型化、超广角、轻薄化、高分辨率以及高成像质量等特性的光学成像透镜组。根据本技术的上述实施方式的光学成像透镜组可采用多片镜片,例如上文的六片。通过合理分配各透镜的光焦度、面型、各透镜的中心厚度以及各透镜之间的轴上间距等,可有效地汇聚入射光线、降低成像镜头的光学总长并提高成像镜头的可加工性,使得光学成像透镜组更有利于生产加工。
70.在本技术的实施方式中,各透镜的镜面中的至少一个为非球面镜面,即,第一透镜的物侧面至第六透镜的像侧面中的至少一个镜面为非球面镜面。非球面透镜的特点是:从透镜中心到透镜周边,曲率是连续变化的。与从透镜中心到透镜周边具有恒定曲率的球面透镜不同,非球面透镜具有更佳的曲率半径特性,具有改善歪曲像差及改善像散像差的优点。采用非球面透镜后,能够尽可能地消除在成像的时候出现的像差,从而改善成像质量。可选地,第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜中的每个透镜的物侧面和像侧面中的至少一个为非球面镜面。可选地,第一透镜、第二透镜、第三透镜、第四透镜、第五透镜和第六透镜中的每个透镜的物侧面和像侧面均为非球面镜面。
71.然而,本领域的技术人员应当理解,在未背离本技术要求保护的技术方案的情况下,可改变构成光学成像透镜组的透镜数量,来获得本说明书中描述的各个结果和优点。例如,虽然在实施方式中以六个透镜为例进行了描述,但是该光学成像透镜组不限于包括六个透镜。如果需要,该光学成像透镜组还可包括其它数量的透镜。
72.下面参照附图进一步描述可适用于上述实施方式的光学成像透镜组的具体实施例。
73.实施例1
74.以下参照图1至图2d描述根据本技术实施例1的光学成像透镜组。图1示出了根据本技术实施例1的光学成像透镜组的结构示意图。
75.如图1所示,光学成像透镜组由物侧至像侧依序包括:第一透镜e1、光阑sto、第二透镜e2、第三透镜e3、第四透镜e4、第五透镜e5、第六透镜e6、滤光片e7和成像面s15。
76.第一透镜e1具有负光焦度,其物侧面s1为凹面,像侧面s2为凹面。第二透镜e2具有正光焦度,其物侧面s3为凸面,像侧面s4为凸面。第三透镜e3具有负光焦度,其物侧面s5为凸面,像侧面s6为凹面。第四透镜e4具有负光焦度,其物侧面s7为凸面,像侧面s8为凹面。第五透镜e5具有正光焦度,其物侧面s9为凸面,像侧面s10为凸面。第六透镜e6具有负光焦度,其物侧面s11为凸面,像侧面s12为凹面。滤光片e7具有物侧面s13和像侧面s14。来自物体的光依序穿过各表面s1至s14并最终成像在成像面s15上。
77.表1示出了实施例1的光学成像透镜组的基本参数表,其中,曲率半径、厚度/距离和焦距的单位均为毫米(mm)。
[0078][0079][0080]
表1
[0081]
在本示例中,光学成像透镜组的总有效焦距f为2.42mm,光学成像透镜组的总长度ttl(即,从第一透镜e1的物侧面s1至光学成像透镜组的成像面s15在光轴上的距离)为5.88mm,光学成像透镜组的成像面s15上有效像素区域的对角线长的一半imgh为3.38mm,光学成像透镜组的最大视场角fov为119.5
°

[0082]
在实施例1中,第一透镜e1至第六透镜e6中的任意一个透镜的物侧面和像侧面均为非球面,各非球面透镜的面型x可利用但不限于以下非球面公式进行限定:
[0083][0084]
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/r(即,近轴曲率c为上表1中曲率半径r的倒数);k为圆锥系数;ai是非球面第i-th阶的修正系数。下表2-1和2-2给出了可用于实施例1中各非球面镜面s1-s12的高次项系数a4、a6、a8、a
10
、a
12
、a
14
、a
16
、a
18
、a
20
、a
22
、a
24
、a
26
、a
28
和a
30

[0085][0086][0087]
表2-1
[0088]
面号a18a20a22a24a26a28a30s17.1447e-04-1.1673e-040.0000e 000.0000e 000.0000e 000.0000e 000.0000e 00s22.0401e 01-5.6494e 000.0000e 000.0000e 000.0000e 000.0000e 000.0000e 00s32.7828e 03-1.3015e 030.0000e 000.0000e 000.0000e 000.0000e 000.0000e 00s4-1.8876e 014.8754e 000.0000e 000.0000e 000.0000e 000.0000e 000.0000e 00s5-9.2493e 002.0676e 000.0000e 000.0000e 000.0000e 000.0000e 000.0000e 00s6-7.5483e-011.2335e-010.0000e 000.0000e 000.0000e 000.0000e 000.0000e 00s78.8655e-02-1.7824e-020.0000e 000.0000e 000.0000e 000.0000e 000.0000e 00s8-3.5605e-013.8417e-020.0000e 000.0000e 000.0000e 000.0000e 000.0000e 00s91.4941e 01-1.1027e 015.7353e 00-2.0537e 004.8091e-01-6.6202e-024.0578e-03s10-5.1025e 003.2996e 00-1.3813e 003.8080e-01-6.7003e-026.8387e-03-3.0866e-04s11-1.2031e 016.1210e 00-2.1915e 005.3955e-01-8.6937e-028.2543e-03-3.5013e-04s121.1750e-02-2.5253e-033.9043e-04-4.2235e-053.0336e-06-1.3000e-072.5165e-09
[0089]
表2-2
[0090]
图2a示出了实施例1的光学成像透镜组的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图2b示出了实施例1的光学成像透镜组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图2c示出了实施例1的光学成像透镜组的畸变曲线,其表示不同视场角对应的畸变大小值。图2d示出了实施例1的光学成像透镜组的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图2a至图2d可知,实施例1所给出的光学成像透镜组能够实现良好的成像品质。
[0091]
实施例2
[0092]
以下参照图3至图4d描述根据本技术实施例2的光学成像透镜组。在本实施例及以下实施例中,为简洁起见,将省略部分与实施例1相似的描述。图3示出了根据本技术实施例2的光学成像透镜组的结构示意图。
[0093]
如图3所示,光学成像透镜组由物侧至像侧依序包括:第一透镜e1、光阑sto、第二透镜e2、第三透镜e3、第四透镜e4、第五透镜e5、第六透镜e6、滤光片e7和成像面s15。
[0094]
第一透镜e1具有负光焦度,其物侧面s1为凹面,像侧面s2为凹面。第二透镜e2具有正光焦度,其物侧面s3为凸面,像侧面s4为凸面。第三透镜e3具有负光焦度,其物侧面s5为凸面,像侧面s6为凹面。第四透镜e4具有负光焦度,其物侧面s7为凸面,像侧面s8为凹面。第五透镜e5具有正光焦度,其物侧面s9为凸面,像侧面s10为凸面。第六透镜e6具有负光焦度,其物侧面s11为凸面,像侧面s12为凹面。滤光片e7具有物侧面s13和像侧面s14。来自物体的光依序穿过各表面s1至s14并最终成像在成像面s15上。
[0095]
在本示例中,光学成像透镜组的总有效焦距f为2.48mm,光学成像透镜组的总长度ttl为5.50mm,光学成像透镜组的成像面s15上有效像素区域的对角线长的一半imgh为3.38mm,光学成像透镜组的最大视场角fov为118.7
°

[0096]
表3示出了实施例2的光学成像透镜组的基本参数表,其中,曲率半径、厚度/距离和焦距的单位均为毫米(mm)。表4-1、4-2示出了可用于实施例2中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
[0097][0098]
表3
[0099]
[0100][0101]
表4-1
[0102]
面号a18a20a22a24a26a28a30s1-2.5311e-013.9467e-020.0000e 000.0000e 000.0000e 000.0000e 000.0000e 00s2-3.6658e 021.3913e 020.0000e 000.0000e 000.0000e 000.0000e 000.0000e 00s31.7167e 02-4.5365e 010.0000e 000.0000e 000.0000e 000.0000e 000.0000e 00s42.3874e 01-7.0999e 000.0000e 000.0000e 000.0000e 000.0000e 000.0000e 00s5-1.8830e 005.0478e-010.0000e 000.0000e 000.0000e 000.0000e 000.0000e 00s6-1.2056e 002.2251e-010.0000e 000.0000e 000.0000e 000.0000e 000.0000e 00s73.2204e-01-4.7854e-020.0000e 000.0000e 000.0000e 000.0000e 000.0000e 00s8-5.4126e-015.7231e-020.0000e 000.0000e 000.0000e 000.0000e 000.0000e 00s95.2247e 00-4.2834e 002.3137e 00-8.2934e-011.8956e-01-2.4956e-021.4366e-03s107.4923e 00-2.8439e 007.7412e-01-1.4907e-011.9539e-02-1.5856e-036.0815e-05s11-7.8329e 003.8523e 00-1.3349e 003.1769e-01-4.9413e-024.5254e-03-1.8518e-04s12-3.5095e-028.7506e-03-1.5318e-031.8491e-04-1.4669e-056.8847e-07-1.4483e-08
[0103]
表4-2
[0104]
图4a示出了实施例2的光学成像透镜组的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图4b示出了实施例2的光学成像透镜组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图4c示出了实施例2的光学成像透镜组的畸变曲线,其表示不同视场角对应的畸变大小值。图4d示出了实施例2的光学成像透镜组的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图4a至图4d可知,实施例2所给出的光学成像透镜组能够实现良好的成像品质。
[0105]
实施例3
[0106]
以下参照图5至图6d描述了根据本技术实施例3的光学成像透镜组。图5示出了根据本技术实施例3的光学成像透镜组的结构示意图。
[0107]
如图5所示,光学成像透镜组由物侧至像侧依序包括:第一透镜e1、光阑sto、第二透镜e2、第三透镜e3、第四透镜e4、第五透镜e5、第六透镜e6、滤光片e7和成像面s15。
[0108]
第一透镜e1具有负光焦度,其物侧面s1为凹面,像侧面s2为凹面。第二透镜e2具有正光焦度,其物侧面s3为凸面,像侧面s4为凸面。第三透镜e3具有负光焦度,其物侧面s5为凸面,像侧面s6为凹面。第四透镜e4具有负光焦度,其物侧面s7为凹面,像侧面s8为凹面。第五透镜e5具有正光焦度,其物侧面s9为凸面,像侧面s10为凸面。第六透镜e6具有负光焦度,其物侧面s11为凸面,像侧面s12为凹面。滤光片e7具有物侧面s13和像侧面s14。来自物体的光依序穿过各表面s1至s14并最终成像在成像面s15上。
[0109]
在本示例中,光学成像透镜组的总有效焦距f为2.48mm,光学成像透镜组的总长度ttl为5.51mm,光学成像透镜组的成像面s15上有效像素区域的对角线长的一半imgh为3.38mm,光学成像透镜组的最大视场角fov为119.1
°

[0110]
表5示出了实施例3的光学成像透镜组的基本参数表,其中,曲率半径、厚度/距离和焦距的单位均为毫米(mm)。表6-1、6-2示出了可用于实施例3中各非球面镜面的高次项系
数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
[0111][0112]
表5
[0113][0114][0115]
表6-1
[0116]
面号a18a20a22a24a26a28a30s1-3.2128e-015.1290e-020.0000e 000.0000e 000.0000e 000.0000e 000.0000e 00s2-3.2612e 021.2360e 020.0000e 000.0000e 000.0000e 000.0000e 000.0000e 00s31.4973e 03-7.3075e 020.0000e 000.0000e 000.0000e 000.0000e 000.0000e 00s43.2693e 01-9.7675e 000.0000e 000.0000e 000.0000e 000.0000e 000.0000e 00s5-6.1728e 001.5530e 000.0000e 000.0000e 000.0000e 000.0000e 000.0000e 00s6-1.3590e 002.4967e-010.0000e 000.0000e 000.0000e 000.0000e 000.0000e 00s73.5801e-01-5.2834e-020.0000e 000.0000e 000.0000e 000.0000e 000.0000e 00s8-4.6388e-014.8083e-020.0000e 000.0000e 000.0000e 000.0000e 000.0000e 00
s9-1.1029e 00-4.9931e-017.0313e-01-3.5460e-019.7773e-02-1.4536e-029.1291e-04s105.7642e 00-2.0434e 005.0976e-01-8.8007e-021.0109e-02-7.0595e-042.3141e-05s11-7.3225e 003.5329e 00-1.2012e 002.8072e-01-4.2944e-023.8771e-03-1.5688e-04s12-2.7823e-027.1431e-03-1.2754e-031.5614e-04-1.2517e-055.9198e-07-1.2525e-08
[0117]
表6-2
[0118]
图6a示出了实施例3的光学成像透镜组的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图6b示出了实施例3的光学成像透镜组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图6c示出了实施例3的光学成像透镜组的畸变曲线,其表示不同视场角对应的畸变大小值。图6d示出了实施例3的光学成像透镜组的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图6a至图6d可知,实施例3所给出的光学成像透镜组能够实现良好的成像品质。
[0119]
实施例4
[0120]
以下参照图7至图8d描述了根据本技术实施例4的光学成像透镜组。图7示出了根据本技术实施例4的光学成像透镜组的结构示意图。
[0121]
如图7所示,光学成像透镜组由物侧至像侧依序包括:第一透镜e1、光阑sto、第二透镜e2、第三透镜e3、第四透镜e4、第五透镜e5、第六透镜e6、滤光片e7和成像面s15。
[0122]
第一透镜e1具有负光焦度,其物侧面s1为凸面,像侧面s2为凹面。第二透镜e2具有正光焦度,其物侧面s3为凸面,像侧面s4为凸面。第三透镜e3具有负光焦度,其物侧面s5为凸面,像侧面s6为凹面。第四透镜e4具有负光焦度,其物侧面s7为凹面,像侧面s8为凹面。第五透镜e5具有正光焦度,其物侧面s9为凸面,像侧面s10为凸面。第六透镜e6具有负光焦度,其物侧面s11为凸面,像侧面s12为凹面。滤光片e7具有物侧面s13和像侧面s14。来自物体的光依序穿过各表面s1至s14并最终成像在成像面s15上。
[0123]
在本示例中,光学成像透镜组的总有效焦距f为2.48mm,光学成像透镜组的总长度ttl为5.35mm,光学成像透镜组的成像面s15上有效像素区域的对角线长的一半imgh为3.38mm,光学成像透镜组的最大视场角fov为117.1
°

[0124]
表7示出了实施例4的光学成像透镜组的基本参数表,其中,曲率半径、厚度/距离和焦距的单位均为毫米(mm)。表8-1、8-2示出了可用于实施例4中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
[0125][0126]
表7
[0127][0128][0129]
表8-1
[0130]
面号a18a20a22a24a26a28a30s16.2583e-01-1.0782e-010.0000e 000.0000e 000.0000e 000.0000e 000.0000e 00s2-1.9511e 037.5620e 020.0000e 000.0000e 000.0000e 000.0000e 000.0000e 00s34.2648e 03-2.0618e 030.0000e 000.0000e 000.0000e 000.0000e 000.0000e 00s4-1.4674e 011.7354e 000.0000e 000.0000e 000.0000e 000.0000e 000.0000e 00s5-1.7866e 014.1319e 000.0000e 000.0000e 000.0000e 000.0000e 000.0000e 00s6-2.2007e 003.9493e-010.0000e 000.0000e 000.0000e 000.0000e 000.0000e 00s75.4272e-01-9.1918e-020.0000e 000.0000e 000.0000e 000.0000e 000.0000e 00s8-2.6738e-011.6852e-020.0000e 000.0000e 000.0000e 000.0000e 000.0000e 00s92.9464e 01-1.8986e 018.7701e 00-2.8299e 006.0483e-01-7.6815e-024.3821e-03s102.1142e 01-9.3301e 002.9993e 00-6.8451e-011.0517e-01-9.7519e-034.1198e-04
s11-1.2843e 016.2840e 00-2.1426e 004.9911e-01-7.5749e-026.7512e-03-2.6811e-04s123.1473e-02-6.3187e-038.8366e-04-8.2951e-054.8652e-06-1.5355e-071.7491e-09
[0131]
表8-2
[0132]
图8a示出了实施例4的光学成像透镜组的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图8b示出了实施例4的光学成像透镜组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图8c示出了实施例4的光学成像透镜组的畸变曲线,其表示不同视场角对应的畸变大小值。图8d示出了实施例4的光学成像透镜组的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图8a至图8d可知,实施例4所给出的光学成像透镜组能够实现良好的成像品质。
[0133]
实施例5
[0134]
以下参照图9至图10d描述了根据本技术实施例5的光学成像透镜组。图9示出了根据本技术实施例5的光学成像透镜组的结构示意图。
[0135]
如图9所示,光学成像透镜组由物侧至像侧依序包括:第一透镜e1、光阑sto、第二透镜e2、第三透镜e3、第四透镜e4、第五透镜e5、第六透镜e6、滤光片e7和成像面s15。
[0136]
第一透镜e1具有负光焦度,其物侧面s1为凹面,像侧面s2为凹面。第二透镜e2具有正光焦度,其物侧面s3为凸面,像侧面s4为凸面。第三透镜e3具有负光焦度,其物侧面s5为凸面,像侧面s6为凹面。第四透镜e4具有负光焦度,其物侧面s7为凹面,像侧面s8为凸面。第五透镜e5具有正光焦度,其物侧面s9为凸面,像侧面s10为凸面。第六透镜e6具有负光焦度,其物侧面s11为凸面,像侧面s12为凹面。滤光片e7具有物侧面s13和像侧面s14。来自物体的光依序穿过各表面s1至s14并最终成像在成像面s15上。
[0137]
在本示例中,光学成像透镜组的总有效焦距f为2.49mm,光学成像透镜组的总长度ttl为5.52mm,光学成像透镜组的成像面s15上有效像素区域的对角线长的一半imgh为3.38mm,光学成像透镜组的最大视场角fov为119.3
°

[0138]
表9示出了实施例5的光学成像透镜组的基本参数表,其中,曲率半径、厚度/距离和焦距的单位均为毫米(mm)。表10-1、10-2示出了可用于实施例5中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
[0139]
[0140]
表9
[0141][0142][0143]
表10-1
[0144]
面号a18a20a22a24a26a28a30s1-3.0532e-014.9157e-020.0000e 000.0000e 000.0000e 000.0000e 000.0000e 00s2-2.7843e 021.0401e 020.0000e 000.0000e 000.0000e 000.0000e 000.0000e 00s31.3845e 03-6.7632e 020.0000e 000.0000e 000.0000e 000.0000e 000.0000e 00s42.9748e 01-9.0112e 000.0000e 000.0000e 000.0000e 000.0000e 000.0000e 00s5-4.4378e 001.1008e 000.0000e 000.0000e 000.0000e 000.0000e 000.0000e 00s6-9.7689e-011.6757e-010.0000e 000.0000e 000.0000e 000.0000e 000.0000e 00s78.9733e-01-1.3012e-010.0000e 000.0000e 000.0000e 000.0000e 000.0000e 00s82.4150e-01-3.8132e-020.0000e 000.0000e 000.0000e 000.0000e 000.0000e 00s9-2.2336e 006.2245e-018.8450e-02-1.4481e-015.4071e-02-9.5554e-036.8468e-04s101.2943e 01-6.0977e 002.1097e 00-5.1941e-018.5856e-02-8.5120e-033.8141e-04s11-5.8616e 002.5166e 00-7.4223e-011.4540e-01-1.7706e-021.1676e-03-2.9066e-05s12-8.1847e-041.1756e-03-3.3345e-045.2449e-05-4.9484e-062.6278e-07-6.0633e-09
[0145]
表10-2
[0146]
图10a示出了实施例5的光学成像透镜组的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图10b示出了实施例5的光学成像透镜组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图10c示出了实施例5的光学成像透镜组的畸变曲线,其表示不同视场角对应的畸变大小值。图10d示出了实施例5的光学成像透镜组的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图10a至图10d可知,实施例5所给出的光学成像透镜组能够实现良好的成像品质。
[0147]
实施例6
[0148]
以下参照图11至图12d描述了根据本技术实施例6的光学成像透镜组。图11示出了根据本技术实施例6的光学成像透镜组的结构示意图。
[0149]
如图11所示,光学成像透镜组由物侧至像侧依序包括:第一透镜e1、光阑sto、第二透镜e2、第三透镜e3、第四透镜e4、第五透镜e5、第六透镜e6、滤光片e7和成像面s15。
[0150]
第一透镜e1具有负光焦度,其物侧面s1为凹面,像侧面s2为凹面。第二透镜e2具有正光焦度,其物侧面s3为凸面,像侧面s4为凸面。第三透镜e3具有负光焦度,其物侧面s5为凸面,像侧面s6为凹面。第四透镜e4具有负光焦度,其物侧面s7为凹面,像侧面s8为凸面。第五透镜e5具有正光焦度,其物侧面s9为凹面,像侧面s10为凸面。第六透镜e6具有负光焦度,其物侧面s11为凸面,像侧面s12为凹面。滤光片e7具有物侧面s13和像侧面s14。来自物体的光依序穿过各表面s1至s14并最终成像在成像面s15上。
[0151]
在本示例中,光学成像透镜组的总有效焦距f为2.48mm,光学成像透镜组的总长度ttl为5.51mm,光学成像透镜组的成像面s15上有效像素区域的对角线长的一半imgh为3.38mm,光学成像透镜组的最大视场角fov为119.4
°

[0152]
表11示出了实施例6的光学成像透镜组的基本参数表,其中,曲率半径、厚度/距离和焦距的单位均为毫米(mm)。表12-1、12-2示出了可用于实施例6中各非球面镜面的高次项系数,其中,各非球面面型可由上述实施例1中给出的公式(1)限定。
[0153][0154]
表11
[0155]
[0156][0157]
表12-1
[0158]
面号a18a20a22a24a26a28a30s1-1.7259e-013.1695e-020.0000e 000.0000e 000.0000e 000.0000e 000.0000e 00s2-2.3613e 029.5189e 010.0000e 000.0000e 000.0000e 000.0000e 000.0000e 00s33.4062e 03-1.7284e 030.0000e 000.0000e 000.0000e 000.0000e 000.0000e 00s41.5960e 01-4.8197e 000.0000e 000.0000e 000.0000e 000.0000e 000.0000e 00s57.1901e-01-1.2479e-010.0000e 000.0000e 000.0000e 000.0000e 000.0000e 00s6-1.4646e 002.5091e-010.0000e 000.0000e 000.0000e 000.0000e 000.0000e 00s71.0336e 00-1.4363e-010.0000e 000.0000e 000.0000e 000.0000e 000.0000e 00s83.1484e-01-4.2313e-020.0000e 000.0000e 000.0000e 000.0000e 000.0000e 00s91.3785e 01-8.1831e 003.0981e 00-6.3648e-012.3307e-021.6280e-02-2.3312e-03s103.6583e 01-1.9171e 017.2892e 00-1.9529e 003.4874e-01-3.7176e-021.7865e-03s11-6.6678e 003.0190e 00-9.7072e-012.1533e-01-3.1295e-022.6826e-03-1.0292e-04s12-9.7563e-041.7793e-03-5.0065e-047.7469e-05-7.1924e-063.7665e-07-8.5929e-09
[0159]
表12-2
[0160]
图12a示出了实施例6的光学成像透镜组的轴上色差曲线,其表示不同波长的光线经由镜头后的会聚焦点偏离。图12b示出了实施例6的光学成像透镜组的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图12c示出了实施例6的光学成像透镜组的畸变曲线,其表示不同视场角对应的畸变大小值。图12d示出了实施例6的光学成像透镜组的倍率色差曲线,其表示光线经由镜头后在成像面上的不同的像高的偏差。根据图12a至图12d可知,实施例6所给出的光学成像透镜组能够实现良好的成像品质。
[0161]
综上,实施例1至实施例6分别满足表13中所示的关系。
[0162]
[0163][0164]
表13
[0165]
本技术还提供一种成像装置,其电子感光元件可以是感光耦合元件(ccd)或互补性氧化金属半导体元件(cmos)。成像装置可以是诸如数码相机的独立成像设备,也可以是集成在诸如手机等移动电子设备上的成像模块。该成像装置装配有以上描述的光学成像透镜组。
[0166]
以上描述仅为本技术的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本技术中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本技术中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献