一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种动力总成及车辆的制作方法

2022-04-27 02:05:55 来源:中国专利 TAG:


1.本技术涉及双驱车技术领域,特别涉及一种动力总成及车辆。


背景技术:

2.随着高端车型对极致性能与极致运动体验的追求,一些企业推出了双驱动车型,而双驱动对于动力性能提出了更高的挑战,电机峰值转速与峰值扭矩需要有很大的提升。其中,扭矩的提升意味着电流增大,线圈铜损增加,而电机在高速段的效率随转速有明显下降,发热功率增加,电机温度升高,冷却需求增大。双驱动力总成包含双电机和双减速器,由于零部件数量翻倍,对于冷却油量的需求翻倍,与此同时冷却油路的设置也更加复杂,加工制造困难。


技术实现要素:

3.本技术提供了一种动力总成及车辆,能够简化壳体内的油路设计,实现良好的冷却润滑效果。
4.第一方面,本技术提供了一种动力总成,包括壳体,壳体设有储存润滑油的油底壳,壳体内设有第一驱动电机、第一减速器、第一油路、第二驱动电机、第二减速器、第二油路、第三油路,动力总成还包括第一油泵和第二油泵,其中,第一驱动电机包括第一定子和第一转子,第一减速器与第一转子连接,第二驱动电机包括第二定子和第二转子,第二减速器与第二转子连接,第一油泵的入油口与油底壳连通,其出油口与第一油路连通,以使得第一油泵可将油底壳内的润滑油通过第一油路泵入第一定子和第二定子内,第二油泵的入油口与油底壳连通,出油口与第二油路连通,以使得第二油泵可将油底壳内的润滑油通过第二油路泵入第一转子和第二转子内,第三油路与第一油路和第二油路中的至少一个连通,从而将润滑油提供给第一减速器和第二减速器进行润滑。
5.相较于传统的动力总成,本技术提供的动力总成通过设置第一油泵和第二油泵,分别对双驱动电机的定子和转子泵油,并将第三油路与第一油路连通,或者将第三油路与第二油路连通,或者将第三油路与第一油路和第二油路均连通,也即使得至少一个油泵能够分油给双侧的减速器润滑。上述动力总成,通过设置第一油泵和第二油泵,实现了对双侧驱动电机的定子、转子以及减速器的润滑,并且油路的集成度提高,从而使得壳体内的油路得到了简化。
6.在一些可能的实现方案中,上述动力总成还包括换热器,第一油泵和第二油泵均与换热器连通,以使得第一油泵将润滑油送入换热器冷却后再经过第一油路进入第一定子和第二定子,且第二油泵将润滑油送入换热器冷却后再经过第二油路进入第一转子和第二转子,通过换热器对润滑油的冷却,系统兼顾了双侧定子、转子和减速器的冷却与润滑作用,确保双驱电机与减速器的温度保持在正常范围,从而保障总成性能良好。
7.在一些实施例中,换热器内设有相互独立的第一换热支路和第二换热支路,第一换热支路与第一油泵对应,以对进入双侧定子的润滑油进行冷却,第二换热支路与第二油
泵对应,以对进入双侧转子的润滑油进行冷却。通过仅设置一个换热器,提高了壳体内的集成度,使得壳体内部结构更加简单。
8.在一些实施例中,换热器中也可设置换热总管,第一油泵的出油口以及第二油泵的出油口均与换热总管的入油口连通,第一油路和第二油路分别与换热总管的出油口连通。该结构也可通过仅设置一个换热器,提高了壳体内的集成度。
9.在一些可能的实现方案中,用于对双侧减速器进行润滑的第三油路可仅与第一油路连通,或者也可仅与第二油路连通,或者既可与第一油路连通,也可与第二油路连通。当第三油路与第一油路和第二油路连通时,可在第一油路中设置第一支路,第一支路与第三油路连通,使得第一油路中的部分润滑油经过第一支路进入第三油路,同时也可在第二油路中设置第二支路,第二支路与第三油路连通,使得第二油路中的部分润滑油经过第二支路进入第三油路。
10.上述第三油路的结构在具体设计时,可根据双侧的驱动电机和减速器的润滑需求进行设计,也可根据壳体内部的结构进行设计,从而便于实现多种应用场景的使用。在一些可能的实现方案中,第一油路设有第一流量调节装置,用于调节对第一定子和第二定子进行润滑的流量,具体实施时,第一油路可包括对第一定子供油的第一管路和对第二定子供油的第二管路,第一流量调节装置可设置于第一管路或第二管路,从而实现对双侧定子的流量的按需分配。
11.本实施方案中,第一流量调节装置可以是设置于第一管路上的第一节流器件或者是设置于第二管路上的第一节流器件,第一节流器件可降低第一油路或第二油路的流量,从而实现对流量的调节。
12.在一些可能的实现方案中,第二油路也可设有第二流量调节装置,用于调节对第一转子和第二转子进行润滑的流量,具体实施时,第二油路可包括对第一转子供油的第三管路和对第四转子供油的第四管路,第二流量调节装置可设置于第三管路或第四管路,从而实现对双侧转子的流量的按需分配。
13.本实施方案中,第二流量调节装置可以是设置于第三管路上的第二节流器件或者是设置于第四管路上的第二节流器件,第二节流器件可降低第三油路或第四油路的流量,从而实现对油量的调节。
14.在一些可能的实现方案中,第三油路也可设有第三流量调节装置,用于调节对第一减速器和第二减速器进行润滑的流量,具体实施时,第三油路可包括对第一减速器供油的第五管路和对第二减速器供油的第六管路,第三流量调节装置可设置于第五管路或第六管路,从而实现对双侧减速器的流量的按需分配。
15.本实施方案中,第三流量调节装置可以是设置于第五管路的第三节流器件或者是设置于第六管路上的第三节流器件,第三节流器件可降低第五油路或第六油路的流量,从而实现对流量的调节。
16.在一些可能的实现方案中,上述第一减速器包括有第一腔体,第二减速器包括第二腔体,可使得第一腔体和第二腔体连通,从而使得第一腔体和第二腔体内的润滑油面高度一致,避免运行过程中出现两侧腔体油量不同的情况,同时防止第一油泵或第二油泵出现空吸的现象。
17.第二方面,本技术提供了一种车辆,包括驱动车轮如上述任一可能的实现方案中
的动力总成,其中,动力总成与驱动车轮传动连接,以使得动力总成对车辆提供驱动力,从而保证车辆能够运行。由于该动力总成简化了壳体内的油路设计,实现良好的润滑效果,从而提升了车辆的运行性能。
附图说明
18.图1为现有技术中双驱动力总成的一种结构示意图;
19.图2为本技术实施例中车辆的一种结构示意图;
20.图3为图2中动力总成的一种整体结构示意图;
21.图4为图2中动力总成的一种总体油路结构示意图;
22.图5为图2中动力总成的一种部分油路结构示意图;
23.图6为图4中第一减速器处的一种结构放大示意图;
24.图7为图4中第二减速器处的一种结构放大示意图;
25.图8为图4中的部分油路结构示意图;
26.图9为图4中的另一部分油路结构示意图;
27.图10为图2中动力总成的又一种总体油路示意图;
28.图11为图10中的部分油路结构示意图;
29.图12为图10中的另一部分油路结构示意图;
30.图13为图2中动力总成的又一种总体油路示意图;
31.图14为图13中的部分油路结构示意图;
32.图15为图2中动力总成的部分油路结构示意图;
33.图16为图2中动力总成的另一部分油路结构示意图。
34.附图标记:
35.01-壳体;011-油底壳;012-隔板;02-第一油泵;03-第一换热器;04-第一驱动电机;041-第一定子;042-第一转子;05-第一减速器;06-第二油泵;07-第二换热器;08-第二驱动电机;081-第二定子;082-第二转子;09-第二减速器;1-动力总成;10-壳体;101-油底壳;102-侧壁;20-第一驱动电机;201-第一定子;202-第一转子;30-第一减速器;301-第一腔体;302-第一输入齿轮;303-第一中间齿轮;304-第二中间齿轮;305-第一输出齿轮;306-第一输入轴;307-第一中间轴;308-第一输出轴;40-第一油泵;50-第一油路;501-第一管路;502-第二管路;60-第二驱动电机;601-第二定子;602-第二转子;70-第二减速器;701-第二腔体;702-第二输入齿轮;703-第三中间齿轮;704-第四中间齿轮;705-第二输出齿轮;706-第二输入轴;707-第二中间轴;708-第二输出轴;80-第二油泵;90-第二油路;901-第三管路;904-第四管路;100-第三油路;1001-第五管路;1002-第六管路;110-换热器;1101-第一换热支路;1102-第二换热支路;1103-换热总管;1104-第一分路;1105-第二分路;120-第一支路;130-第二支路;140-第一流量调节装置;1401-第一节流管;150-第二流量调节装置;1501-第二节流管;160-第三流量调节装置;1601-第三节流管;200-车辆;201-驱动车轮。
具体实施方式
36.下面将结合本技术实施方式中的附图,对本技术实施方式中的技术方案进行清
楚、完整地描述。
37.随着双驱车的发展,对车内的双驱动力总成的要求有了进一步的提高,主要体现在以下几个方面:1、双驱动力总成包含双电机和双减速器,其中,驱动电机定转子、齿轮和轴承的数量翻倍,因此,冷却油量的需求翻倍,需要加大油泵能力或者增加油泵数量以适配该需求;2、双驱动力总成中,两侧的驱动电机与减速器需要保证工作温度接近,从而保障寿命一致性,因此,需对两侧的驱动电机和减速器的冷却润滑油量做均匀分配设计;3、由于需要润滑的零部件数量增加,导致润滑油路增多,因此需要对双驱动力总成壳体内的油路尽可能简化,从而降低油阻和加工制造步骤。
38.为了解决现有的双驱油量增大需求,同时提升油泵控制策略的灵活性,可采用双油泵方案进行冷却润滑。参考图1,图1为现有的一种双驱动力总成的总体油路结构示意图,该双驱动力总成包括壳体01,壳体01内设有用于存储润滑油的油底壳011,壳体01内设有一隔板012,隔板012可将壳体01内部分隔成两个独立的空间,并且将油底壳011分隔成了两个独立的部分,其中一个空间内部设有第一驱动电机04以及第一减速器05,以及对应于该空间的第一油泵02和第一换热器03,第一驱动电机04包括第一定子041和第一转子042,另外一个空间内设有第二驱动电机08以及第二减速器09,以及对应设于该空间的第二油泵06和第二换热器07,第二驱动电机08包括第二定子081和第二转子082。在该双驱动力总成中,第一油泵02将润滑油从油底壳011经由第一换热器03泵入第一驱动电机04和第一减速器05中,从而对第一驱动电机04和第一减速器05进行冷却润滑,第二油泵06将润滑油从油底壳011经由第二换热器07泵入第二驱动电机08和第二减速器09中,从而对第二驱动电机08和第二减速器09进行冷却润滑。
39.上述双驱动力总成的结构中,由于利用隔板012将壳体01内部空间隔开,需要针对每个油泵分别设置换热器,并且由于壳体内油路复杂,集成度低,导致在设计时较为不便,同时由于两侧的驱动电机相互独立,不便于控制两侧的驱动电机的散热条件。
40.基于此,本实施例可提供一种动力总成1,以简化壳体内的油路,提高集成度。本技术实施例还提供一种车辆200,如图2所示,图2为本技术实施例中车辆的一种示意图,该车辆200包括驱动车轮201以及动力总成1,动力总成1可与驱动车轮201传动连接,用于为车辆提供驱动力,从而使得车辆能够正常运行。
41.请参考图3和图4,图3为图2中动力总成的一种整体结构示意图,图4为图2中动力总成的一种总体油路结构示意图,本实施例中的动力总成可包括壳体10,壳体10的底部设有用于储存润滑油的油底壳101,壳体10内部设置有第一驱动电机20、第一减速器30、第一油路50、第二驱动电机60、第二减速器70、第二油路90以及第三油路100,动力总成还包括第一油泵40和第二油泵80,其中,第一驱动电机20可包括第一定子201和第一转子202,第一转子202转动装配于第一定子201内,第一减速器30与第一转子202传动连接,第二驱动电机60可包括第二定子601和第二转子602,第二转子602转动装配于第二定子601内,第二减速器70与第二转子602传动连接。第一油泵40的入油口与油底壳101连通,第一油泵40的出油口与第一油路50连通,第一油泵40可用于将油底壳101内的润滑油泵入第一油路50,并通过第一油路50对第一定子201和第二定子601供油。第二油泵80的入油口与油底壳101连通,第二油泵80的出油口与第二油路90连通,第二油泵80可用于将油底壳101内的润滑油泵入第二油路90,并通过第二油路90对第一转子202和第二转子602供油。第三油路100可与第一油路
50或者第二油路90中的至少一个油路连通,并用于向第一减速器30和第二减速器70供油。
42.示例性地,第三油路100可连通于第一油路50,使得第一油路50内的部分润滑油能够进入第三油路100中,或者第三油路100也可与第二油路90连通,使得第二油路90内的部分润滑油能够进入第三油路100中,或者第三油路100还可与第一油路50以及第二油路90均连通,这时第一油路50和第二油路90中的部分润滑油均能够进入第三油路100中,从而通过第三油路100对第一减速器30和第二减速器70供油。
43.需要说明的是,上述第一油泵40和第二油泵80既可以是机械油泵,也可以是电子油泵,本技术对此不作限制。此外,第一油泵40和第二油泵80的位置不做限定,示例性地,第一油泵40和第二油泵80可安装于壳体10的外表面,或者可安装于壳体10的内表面,也或者可位于壳体10外部,通过壳体10外接的管路与壳体10内的油路连通。
44.在一些实施例中,继续参考图3和图4,动力总成还包括换热器110,并且换热器110内可设有两条相互独立的第一换热支路1101和第二换热支路1102,第一换热支路1101与第一油泵40连通,第二换热支路1102与第二油泵80连通,使得由第一油泵40和第二油泵80流出的润滑油相互独立,互不影响。润滑油在第一油泵40和第二油泵80的驱动作用下先进入换热器110进行冷却,然后再进入两侧的驱动电机和减速器,在达到润滑的效果的同时,还可对驱动电机以及减速器有冷却作用,确保双驱电机与减速器的温度保持在正常范围,从而保障动力总成性能良好。
45.在一些实施例中,可参考图5,换热器110内可设有换热总管1103,换热总管1103的入油口与油底壳101连通。壳体10内还可设置有第一分路1104和第二分路1105,第一分路1104的一端与换热总管1103连通,另一端与第一油路50连通,第二分路1105的一端与换热总管1103连通,另一端与第二油路90连通。也就是说,上述换热器110内部通过设置一条换热总管1103,也可对进入第一油路50以及第二油路90内的润滑油进行冷却,并且还可提高系统的集成度。
46.值得注意的是,换热器110的位置也不做限定,示例性地,换热器110可安装于壳体10的外表面,或者可安装于壳体10的内表面,也或者可位于壳体10外部,通过壳体10外接的管路与壳体10内的油路连通。
47.需要说明的是,上述动力总成,采用双油路分别对定子和转子进行冷却润滑,将对减速器进行冷却润滑的第三油路100与第一油路50或者第二油路90中的至少一个连通,并通过仅设置一个换热器110,在达到冷却润滑的效果的同时,还可以简化壳体10内的油路,提高动力总成的集成度。此外,第三油路100的结构还可根据所需的油量进行分配设计,从而实现多种应用场景的使用。
48.在一些可能的实施例中,一并参考图3至图4、以及图6,第一减速器30可包括第一腔体301,以及位于第一腔体301内的第一输入齿轮302、第一中间齿轮303、第二中间齿轮304和第一输出齿轮305,其中,第一输入齿轮302与第一转子202传动连接,第一中间齿轮303与第一输入齿轮302啮合,第二中间齿轮304与第一中间齿轮303同轴设置,第一输出齿轮305与第二中间齿轮304啮合,以此形成一个用于传递扭矩的二级减速器,将第一减速器30输出的驱动力进行减速增矩后输出至驱动车轮。应当理解的是,第一减速器30还可包括第一输入轴306、第一中间轴307以及第一输出轴308。第一输入齿轮302可装配于第一输入轴306,该第一输入轴306可与第一转子201的转轴为一体式设计,或者也可与第一转子201
的转轴通过联轴器传动连接。第一中间齿轮303与第二中间齿轮304可装配于第一中间轴307,第一输出齿轮305则装配于第一输出轴308。
49.同样地,一并参考图3、图4、和图7,第二减速器70也可包括第二腔体701,还包括位于第二腔体701内的第二输入齿轮702、第三中间齿轮703、第四中间齿轮704和第二输出齿轮705,其中,第二输入齿轮702与第二转子602传动连接,第三中间齿轮703与第二输入齿轮702啮合,第四中间齿轮704与第三中间齿轮703同轴设置,第二输出齿轮705与第四中间齿轮704啮合,以此形成一个用于传递扭矩的二级减速器,将第二减速器70输出的驱动力进行减速增矩后输出至驱动车轮。类似地,第二减速器70还可包括第二输入轴706、第二中间轴707以及第二输出轴708。第二输入齿轮702连接于第二输入轴706,该第二输入轴706还可与第二转子601的转轴为一体式设计,或者也可与第二转子601的转轴通过联轴器传动连接。第三中间齿轮703与第四中间齿轮704可装配于第二中间轴707,第二输出齿轮705则装配于第二输出轴708。
50.需要说明的是,第三油路100在对第一减速器30以及第二减速器70供油时,不仅可对双侧减速器内的上述传动装置进行冷却润滑,还可对减速器内的其它运动部件进行冷却润滑,例如,在将双侧的输出轴、中间轴以及输入轴装配于壳体时,各轴与壳体之间还可设置轴承,则第三油路100内的润滑油也可对轴承进行冷却润滑。
51.在本实施例中,如图3所示,第一腔体301与第二腔体701可共用一侧壁102,使得第一减速器30和第二减速器70能够分开独立工作的同时,还可使得结构更加紧凑。
52.另外,第一腔体301与第二腔体701之间可以连通,使得润滑油进入第一腔体301和第二腔体701后,两个腔体内的润滑油能够相互贯通,从而保证两个腔体内油面高度一致,避免运行过程中出现两侧腔体油量不同的情况,同时防止两侧油泵空吸的情况发生。
53.具体实施时,侧壁102上可设置分别于两个腔体连通的通孔,两个腔体内的润滑油可通过通孔实现来回流动,通孔的形状不限,示例性地,通孔可以是圆孔或方孔或多边形孔。通孔的数量可以为一个或多个,当通孔的数量为一个时,通孔的尺寸可稍大一点,以便于两个腔体内的润滑油能够实现快速流通;当通孔的数量为多个时,多个通孔可以呈阵列排布。示例性地,通孔的位置可位于靠近侧壁102底部的位置,防止当两个腔体内的润滑油量较少、且通孔位置靠上时无法实现两个腔体内的润滑油流通。
54.当然,上述用于使得第一腔体301和第二腔体701贯通的方案仅作为举例说明,在具体实施时,也可采用其它方式实现两个腔体内润滑油的流通,本技术在此不做赘述。
55.在一些可能的实施例中,一并参考图4、图8和图9,可将第三油路100集成于第一油路50,具体实施时,可在第一油路50增设第一支路120,第一支路120与第三油路100连通,也即第一油泵40将润滑油泵入第一定子201、第二定子601、第一减速器30和第二减速器70,第二油泵80将润滑油泵入第一转子202和第二转子602。在本实施例中,第一油泵40将润滑油从油底壳101送至换热器110进行冷却后,一部分润滑油通过第一油路50按需进入第一定子201和第二定子601,并且沿每一个定子的铁芯表面冷却后经喷油结构喷出对线圈绕组冷却,另一部分润滑油通过第一支路120进入第三油路100,按需进入第一减速器30和第二减速器70,对两侧减速器以及轴承进行润滑。第二油泵80将润滑油从油底壳101送至换热器110进行冷却后,润滑油通过第二油路90按需进入第一转子202和第二转子602的转轴内对两侧转子进行冷却,并随转子高速甩出对线圈绕组冷却。
56.在一些可能的实施例中,参考图10至图12,可将第三油路100集成于第二油路90,具体实施时,可在第二油路90增设第二支路130,第二支路130与第三油路100连通,也即第一油泵40将润滑油泵入第一定子201和第二定子601,第二油泵80将润滑油泵入第一转子202、第二转子602、第一减速器30和第二减速器70。在本实施例中,第一油泵40将润滑油从油底壳101送至换热器110进行冷却后,润滑油通过第一油路50按需进入第一定子201和第二定子601,并且沿每一个定子的铁芯表面冷却后经喷油结构喷出对线圈绕组冷却。第二油泵80将润滑油从油底壳101送至换热器110进行冷却后,一部分润滑油通过第二油路90按需进入第一转子202和第二转子602的转轴内对两侧转子进行冷却,并随转子高速甩出对线圈绕组进行冷却,另一部分润滑油通过第二支路130进入第三油路100,通过第三油路100按需进入第一减速器30和第二减速器70,对两侧减速器和轴承进行润滑。
57.在一些可能的实施例中,参考图13和图14,第一油路50和第二油路90可均与第三油路100连通,具体实施时,可在第一油路50增设第一支路120,并在第二油路90增设第二支路130,第一支路120和第二支路130汇合后与第三油路100连通,也即第一油泵40将润滑油泵入第一定子201、第二定子601、第一减速器30和第二减速器70,第二油泵80将润滑油泵入第一转子202、第二转子602、第一减速器30和第二减速器70。在本实施例中,第一油泵40将润滑油从油底壳101送至换热器110冷却后,第一油路50中一部分润滑油按需进入第一定子201和第二定子601,沿每一个定子的铁芯表面冷却后经喷油结构喷出对线圈绕组冷却,第二油泵80将润滑油从油底壳101送至换热器110冷却后,第二油路90中一部分润滑油按需进入第一转子202和第二转子602的转轴内,对两侧转子进行冷却,并随转子高速甩出对线圈绕组冷却。第一油路50中另一部分润滑油可通过第一支路120进入第三油路100,第二油路90中另一部分润滑油可通过第二支路130进入第三油路100,在第三油路100中,润滑油可按需进入第一减速器30和第二减速器70,对两侧减速器和轴承进行润滑。
58.在一些可能的实施例中,参考图15,第一油路50包括用于对第一定子201供油的第一管路501和用于对第二定子601供油的第二管路502,第一管路501或者第二管路502上可设置第一流量调节装置140,通过第一流量调节装置140来调节进入第一定子201和第二定子601的油量,从而能够实现双侧定子的流量按需分配。需要说明的是,该第一流量调节装置140可用于调节流量变大,也可用于调节流量变小。
59.以图15为例,当需要对第一定子201和第二定子601均匀分配油量时,润滑油经过换热器110冷却后分别进入第一管路501和第二管路502,由于壳体10内部空间结构的限制,第一油路50连接换热器110时,第一油路50未能位于第一定子201与第二定子601的中部,导致第一管路501的长度与第二管路502的长度不一致。例如,当第一油路50偏向靠近第一定子201的一侧设置时,第二管路502的长度就会大于第一管路501的长度,这就导致进入第二管路502内的润滑油量大于进入第一管路501内的润滑油量,进而会导致进入第二定子601的润滑油量大于进入第一定子201的润滑油量。此时,第一流量调节装置140可以是设置于第二管路502的第一节流器件,具体实施时,该第一节流器件可以是第一节流管1401,第一节流管1401可以增大第二管路502内的流阻,使得进入第二定子601的润滑油量可以在一定程度上减少,从而与第一管路501内的润滑油量达成平衡,保证了两侧的润滑油量均匀分配。当然,在其它一些实施例中,第一节流器件也可以是其它可用于降低第二管路502内流量的结构,例如节流阀。或者,也可通过对第一管路501的结构做改进,使得进入第一管路
501的润滑油量增多,例如,使第一管路501的部分管段或全部管段的直径大于第二管路502的直径,也可达到均匀分配油量的效果。
60.需要说明的是,本实施例中仅仅是对流量均匀分配的需要做说明,在实际应用时,两侧的定子所需求的润滑油量也可有所不同,此时,也可根据两侧的定子的需求量对第一节流管1401进行设计,例如,可控制第一节流管1401的直径或者长度来达到按需分配油量的要求,本技术在此不做赘述。
61.在一些可能的实施例中,参考图16,第二油路90包括用于对第一转子供油的第三管路901和用于对第二转子供油的第四管路902,第三管路901或者第四管路902上可设置第二流量调节装置150,通过第二流量调节装置150来调节进入第一转子和第二转子的油量,从而能够实现双侧转子的流量按需分配。需要说明的是,该第二流量调节装置150可用于调节流量变大,也可用于调节流量变小。
62.以图16为例,当需要对第一转子和第二转子均匀分配油量时,润滑油经过换热器110冷却后进入分别进入第三管路901和第四管路902,由于壳体10内部空间结构的限制,第二油路90连接换热器110时,第二油路90未能位于第一转子202与第二转子602的中部,导致第三管路901的长度与第四管路902的长度不一致。例如,当第二油路90偏向靠近第一转子202的一侧设置时,第四管路902的长度大于就会第三管路901的长度,这就导致第四管路902内的润滑油量大于第三管路901内的润滑油量,进而会导致进入第二转子的润滑油量大于进入第一转子的润滑油量。此时,第二流量调节装置150可以是设置于第四管路902的第二节流器件,具体实施时,该第二节流器件可以是第二节流管1501,第二节流管1501可以增大第四管路902的流阻,使得进入第一转子的润滑油量可以在一定程度上减少,从而与第三管路901内的润滑油量达成平衡,保证了两侧的润滑油量均匀分配。当然,在其它一些实施例中,第二节流器件也可以是其它用于降低第四管路902内流量的结构,例如节流阀。或者,也可通过对第三管路901的结构做改进,使得进入第三管路901的润滑油量增多,例如,使第三管路901的部分管段或全部管段的直径大于第四管路902的直径,也可达到均匀分配油量的效果。
63.需要说明的是,本实施例中仅仅是对流量均匀分配的需要做说明,在实际应用时,两侧的转子所需求的润滑油量也可有所不同,此时,也可根据两侧的转子的需求量对第二节流管1501进行设计,例如,可控制第二节流管1501的直径或者长度来达到按需分配油量的要求,本技术在此不做赘述。
64.在一些可能的实施例中,继续参考图16,第三油路100包括用于对第一减速器供油的第五管路1001和用于对第二减速器供油的第六管路1002,第五管路1001或者第六管路1002上可设置第三流量调节装置160,通过第三流量调节装置160来调节进入第一减速器和第二减速器的油量,从而能够实现双侧减速器的流量按需分配。需要说明的是,该第二流量调节装置150可用于调节流量变大,也可用于调节流量变小。
65.以图16为例,当需要对第一减速器和第二减速器均匀分配油量时,润滑油经过换热器110冷却后进入第三油路100,由于壳体10内部空间结构的限制,第三管路100在对第五管路1001和第六管路1002分流时,其分流口位于第一减速器内,第六管路1002的长度就会大于第五管路1001的长度,导致了第六管路1002内的润滑油量大于第五管路1001内的润滑油量,从而导致了进入第二减速器70的润滑油量大于进入第一减速器30的润滑油量。此时,
第三流量调节装置160可以是设置于第六管路1002的第三节流器件,具体实施时,该第三节流器件可以是第三节流管1601,第三节流管1601可以增大第六管路1002的流阻,使得进入第二减速器70的润滑油量一定程度上减少,从而与第五管路1001内的润滑油量达成平衡,保证的两侧的润滑油量均匀分配。当然,在其它一些实施例中,第三节流器件也可以是其它用于降低第六管路1002内流量的结构,例如节流阀。或者,也可通过对第五管路1001的结构做改进,使得进入第五管路1001的润滑油量增多,例如,使第五管路1001的部分管段或全部管段的直径大于第六管路1002的直径,也可达到均匀分配油量的效果。
66.需要说明的是,本实施例中仅仅是对流量均匀分配的需要做说明,在实际应用时,两侧的减速器所需求的润滑油量也可有所不同,此时,也可根据两侧的减速器的需求量对第三节流管1601进行设计,例如,可控制第三节流管1601的直径或者长度来达到按需分配油量的要求,本技术在此不做赘述。
67.值得注意的是,在具体实施时,本技术中的动力总成可包括第一流量调节装置140、第二流量调节装置150以及第三流量调节装置160中的一个或多个,具体结构可根据双侧驱动电机和减速器的流量需求进行设计,从而实现在整车不同的运行工况下,第一油泵40和第二油泵80根据双侧定子与转子损耗分布调整运行策略,最大程度降低功率,达到节能作用。
68.还需要说明的是,在不冲突的情况下,本技术中的实施例及实施例中的特征可以相互组合,不同实施例中的特征任意组合也在本技术的保护范围内,也就是说,上述描述的多个实施例还可根据实际需要任意组合。
69.相较于传统的双驱动力总成,本实施例中的动力总成通过利用第一油路对双侧定子润滑,利用第二油路对双侧转子润滑,将用于对双侧减速器润滑的第三油路集成于第一油路和/或第二油路,并设置一个换热器对油路进行冷却,能够简化壳体内的油路,提高动力总成的集成度,并且可以保证两侧驱动电机保持相近的散热条件。另外,通过对油路尺寸的调整,可以实现双侧驱动电机和减速器流量的按需分配,进而有助于提升动力总成的整体性能。
70.以上,仅为本技术的具体实施方式,但本技术的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本技术揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本技术的保护范围之内。因此,本技术的保护范围应以权利要求的保护范围为准。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献