一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

前列腺癌靶向磁共振造影剂及应用的制作方法

2022-03-16 04:55:34 来源:中国专利 TAG:


1.本发明属于放射医学、分子影像学以及纳米医学领域,具体地,涉及一种前列腺癌靶向磁共振造影剂、该磁共振造影剂的应用、有效成分为磁共振造影剂的前列腺癌靶向分子探针,以及包含磁共振造影剂或分子探针的试剂盒。


背景技术:

2.与新兴磁共振成像(mri)技术相比,磁共振造影剂的更新发展较慢,这是由于传统磁共振造影敏感性较低,大量使用造影剂产生毒性作用的风险比较大。常用的磁共振造影剂主要以顺磁性物质和超顺磁性物质为主,其中临床广泛应用的gd-dtpa被认为易产生肾纤维化等副作用,渐渐显露其弊端,且gd-dtpa并不具备靶向性,肿瘤特异性较差。超顺磁性氧化铁纳米颗粒(spions)作为新兴的t2加权阴性造影剂被应用于肝癌等肿瘤的mri造影中,但是spions作为金属纳米粒子也存在难以降解等安全问题,这大大影响了其临床转化效率。分子影像的研究多集中于融合多种技术的优势,构建造影效率更高、安全性更好以及应用更广泛的分子探针。在肿瘤靶向造影领域以及前列腺癌诊疗方面,以前列腺特异性膜抗原(psma)为靶点的特异性小分子探针在前列腺癌的诊断、分期、预后及复发监测方面取得重大突破。通过构建基于黑色素纳米粒子的肿瘤靶向磁共振造影剂(mri造影剂),进行前列腺癌特异性mri增强显像,可用于提高mri造影的应用范围和诊断准确率。肿瘤靶向药物与纳米技术的结合将是今后发展新型诊疗药物的研究热点。


技术实现要素:

3.本发明的目的是提供一种前列腺癌靶向磁共振造影剂及应用。该造影剂能够与前列腺癌细胞表面的psma膜抗原特异性结合,利用纳米探针的t1加权增强造影功能进行mri成像,由于大量钆离子被限制在纳米粒子内,促进了质子由高能态恢复到低能态转化的速度,缩短了弛豫时间,明显提高了该造影剂的增强效率。本发明的造影剂可用于实现肿瘤的靶向磁共振增强造影目的。
4.本发明的第一方面提供一种前列腺癌靶向磁共振造影剂,在生物提取黑色素聚合成为纳米粒子过程中,融合gd
3
、表面活性剂双氨基聚乙二醇,一步法获得表面带有氨基的顺磁性纳米粒peg-gmnps,具体地,所述前列腺癌靶向磁共振造影剂的制备方法包括:先将生物提取黑色素聚合成为mnps,在此过程中添加钆盐、双氨基聚乙二醇,一步法获得表面带有氨基的顺磁性纳米粒peg-gmnps,然后使用交联剂sulfo-smcc(4-(n-马来酰亚胺甲基)环己烷-1-羧酸磺酸基琥珀酰亚胺酯钠盐)对peg-gmnps表面上的氨基进行修饰,得到smcc-peg-gmnps,最后将smcc-peg-gmnps与巯基化的psma靶向基团psma-sh偶联,制得前列腺癌靶向磁共振造影剂psma-gmnps;
5.其中,mnps为有机黑色素纳米粒子;纳米粒子的平均粒径大小为11-20nm;
6.所述钆盐为六水合氯化钆;
7.所述双氨基聚乙二醇为nh
2-peg
n-nh2,pegn的分子量为200-20000da。
gmnps,该造影剂具有较高的弛豫率,能够与前列腺癌表面特异性膜抗原psma特异性结合,通过mri增强造影显像精准定位psma高表达肿瘤组织及转移灶,实现前列腺癌的靶向分子影像诊断目的,以达到肿瘤早发现、早诊断、早治疗的目标。
23.本发明的其它特征和优点将在随后具体实施方式部分予以详细说明。
附图说明
24.通过结合附图对本发明示例性实施方式进行更详细的描述,本发明的上述以及其它目的、特征和优势将变得更加明显。
25.图1为本发明前列腺癌靶向mri造影剂的合成流程示意图。
26.图2为本发明测试例1中前列腺癌靶向mri造影剂的药物代谢-动力学实验。
27.图3为本发明实施例1中peg-gmnps的高分辨率透射电镜扫描图。
28.图4为本发明测试例2中细胞摄取和竞争实验,左侧为本发明前列腺癌靶向mri造影剂在阳性细胞lncap和阴性细胞pc-3中的摄取实验对比,右侧图为前列腺癌靶向mri造影剂在阳性细胞lncap的竞争抑制实验。
29.图5为本发明测试例3中不同金属结合后前列腺癌靶向mri造影剂体外mri增强造影显像。
30.图6为本发明测试例3中不同金属结合后前列腺癌靶向mri造影剂体外mri增强弛豫率检测。
31.图7为本发明测试例4中前列腺癌靶向mri造影剂psma-gmnps在psma阳性模型lncap荷瘤鼠中的mri增强造影示意图,白色圆圈勾勒肿瘤轮廓。
32.图8为本发明测试例4中前列腺癌靶向mri造影剂psma-gmnps在psma阳性模型lncap荷瘤鼠成像中,肿瘤部位mri信号变化曲线图。
具体实施方式
33.下面将更详细地描述本发明的优选实施方式。虽然以下描述了本发明的优选实施方式,然而应该理解,可以以各种形式实现本发明而不应被这里阐述的实施方式所限制。
34.实施例1前列腺癌靶向mri造影剂的制备方法
35.前列腺癌靶向mri造影剂psma-gmnps的制备包括以下步骤:
36.1、peg-gmnps的制备
37.采用从植物细胞中提取的黑色素、钆盐及peg作为原材料,一步法制备顺磁性纳米粒子peg-gmnps;具体地,取10-50mg天然黑色素,剧烈搅拌下溶于15ml的0.2m naoh溶液中;在超声细胞粉碎机作用下,于1分钟内加入12-12.5ml的0.2m hcl溶液,调体系ph至9.0-9.5;按mnps与nh
2-peg
5000-nh2摩尔比1:20-30的比例继续将两者混合,同时加入过量钆盐,室温下搅拌反应12-24h;再次通过超声破碎法加入1-1.5ml的0.2mhcl溶液,调体系ph至7.0-7.5,得到黑亮的纳米粒子分散液;使用截留分子量为30kda的超滤离心管去除溶液中游离的na

、cl-、gd
3
及未反应的nh
2-peg
5000-nh2,并用去离子水清洗三次,得到纯净的表面带有氨基的顺磁性纳米粒子peg-gmnps,每个peg-gmnps表面结合20-30个peg,纳米粒子的平均粒径大小为15nm。peg-gmnps的高分辨率透射电镜扫描图如图3所示。
38.2、psma-gmnps的制备
39.1)按peg-gmnps表面上的氨基与sulfo-smcc摩尔比1:20-30的比例,将peg-gmnps(5mg)与sulfo-smcc(0.48-0.72mg)混合,室温下搅拌反应2h,反应结束后用pd-10柱纯化,得到smcc-peg-gmnps;
40.2)按smcc-peg-gmnps与巯基修饰的psma靶向基团摩尔比1:20-30的比例,将smcc-peg-gmnps(5.5mg)与巯基修饰的psma(1.8-2.7mg)混合,室温下搅拌反应12-24h,反应结束后用pd-10柱纯化,得到纯净的前列腺癌靶向mri造影剂psma-gmnps。
41.前列腺癌靶向mri造影剂psma-gmnps的合成流程示意图见图1。
42.实施例2前列腺癌靶向mri造影剂的制备方法
43.制备方法同实施例1,仅将步骤1中所用分子量为5000da双氨基聚乙二醇替换为分子量200-20000da双氨基聚乙二醇,其余反应条件相同。
44.结果显示,使用不同分子量peg修饰纳米粒子会轻度影响探针的药代动力学结果,但差异性并不明显。
45.对比例1对比前列腺癌靶向mri造影剂的制备方法
46.制备方法同实施例1,仅将步骤1中钆盐gdcl3·
6h2o换成铁盐fecl3·
6h2o或锰盐mncl2·
4h2o,金属盐的摩尔量较黑色素仍为过量,其余反应条件相同。合成所得psma-fe-mnps、psma-mn-mnps。
47.测试例1前列腺癌靶向mri造影剂药代动力学检测
48.取5只正常balb/c小鼠(均为雄性,4周龄,16-18g),将一定量psma-gmnps经生理盐水稀释(30μm),每只小鼠经尾静脉注射200μl造影剂,并严格记录注射时间。小鼠经尾静脉注射药物后,分别于1min、3min、5min、10min、15min、30min、60min、2h、8h、24h、48h使用毛细取血针经眼底静脉取血,并分别置于添加柠檬酸钠的试管中。称量试管中血液质量,使用icp-ms检测样品gd
3
含量,同时取每只小鼠注射药物量的1%作为测定参考标记品。结果使用单位组织的钆离子含量占注射总剂量的百分比(%id/g)显示,使用分析软件经衰减校正后计算药物生物半衰期。结果显示(图2):psma-gmnps的药物代谢-时间曲线符合二室模型,其分布相和清除相的半衰期分别为0.13h和6.71h。
49.测试例2前列腺癌靶向磁共振造影剂细胞摄取及竞争抑制实验
50.细胞摄取实验:将生长至对数期的人源前列腺癌lncap细胞和pc-3细胞分别以2
×
105个/孔均匀铺到24孔板中,向每孔加入500μl不含胎牛血清的prim 1640培养基,培养箱孵育24h。将一定量psma-gmnps使用pbs缓冲液稀释(30μm),每孔均匀加入10μl psma-gmnps溶液,放入培养箱孵育一段时间,分别于1h、2h、4h、24h将孔板取出,使用1m naoh裂解细胞(n=6)并收集,icp-ms检测gd
3
含量。实验结果如图4左图显示,探针在psma高表达细胞lncap中的摄取量高于psma低表达pc-3细胞。
51.细胞竞争抑制实验:使用lncap细胞,实验步骤与细胞摄取实验大致相同,仅在加入造影剂之前30min向部分孔内(n=6)加入1μg/孔psma-sh溶液,然后每孔加入10μl psma-gmnps(30μm)溶液,分别于2h、4h收集裂解后的细胞溶液,icp-ms检测gd
3
含量。实验结果如图4右图所示,探针在lncap细胞的摄取可被psma-sh抑制,证明其对psma受体特异靶向性。
52.测试例3前列腺癌靶向mri造影剂体外mri增强造影检测
53.使用3.0t mr成像设备检测前列腺癌靶向mri造影剂的磁共振增强功能及t1加权弛豫率,并对对比例1所述不同浓度psma-fe-mnps、psma-mn-mnps以及常用磁共振造影剂
gd-dtpa的体外t1加权磁共振造影以及弛豫效率进行对比。图5中不同浓度mri造影剂t1加权体外成像结果显示,相同浓度下,psma-gmnps的t1加权信号强度最高,其后依次是psma-mn-mnps、psma-3
fe-mnps、psma-2
fe-mnps、gd-dtpa。t1加权弛豫效率折线图(图6)显示psma-gmnps的t1加权弛豫率明显高于常用磁共振造影剂gd-dtpa,大约是其5倍。
54.测试例4前列腺癌靶向mri造影剂在荷瘤鼠体内的mri增强造影
55.取瘤径0.8-1cm的lncap荷瘤鼠,每只鼠经尾静脉注射一定量psma-gmnps(实施例1制备)生理盐水稀释液(30μm,200μl),使用3.0t mr成像仪搭配小动物线圈,分别于药物注射前、药物注射后2h、24h、72h、168h进行mri t1加权成像采集,mr序列信息为:tr(重复时间):531ms,te(回波时间):9.1ms;翻转角(flip angle):30
°
;fov(扫描视野):160
×
100mm2;扫描矩阵(matrix):256
×
256;扫描层厚(slice thickness):3mm,成像结果见图7,该结果显示psma-gmnps经尾静脉注射2h后,lncap荷瘤鼠全身mr信号均有所增强,其中,肝脏、胆囊mri信号增高最为明显,肿瘤部位未见明显mri增强信号。结合肿瘤、非肿瘤mri信号比曲线图(图8),肿瘤部位的t1加权mri信号在24h时明显增强,72h时mri增强造影可清晰定位肿瘤位置,内部强化信号明显。最后,给药7天后再次进行mri增强扫描,肿瘤部位仍显示清晰的mri增强信号,证明探针的强滞留功能。实验证明psma-gmnps探针可用于psma高表达前列腺癌特异性mri增强造影。
56.以上已经描述了本发明的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献