一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

直流多普勒雷达校准装置及其校准方法与流程

2022-02-25 22:43:40 来源:中国专利 TAG:


1.本发明属于,具体涉及一种直流多普勒雷达校准方法和一种直流多普勒雷达校准装置。


背景技术:

2.多普勒雷达由于收发隔离特性,在中频输出会产生直流输出,其输出为直流与多普勒频移的叠加。雷达中频处理需要对多普勒频率进行放大,送入adc采样处理。通常采用交流耦合方式对多普勒频移进行放大处理,同时隔离雷达输出直流的影响。但交流放大同样会抑制靠近直流部分的多普勒信号。根据多普勒信号特征,目标移动速度越大,频率越高。但如果需要侦测超低速的移动目标,则需要雷达不能抑制超低频的多普勒频移,需要采用直流耦合放大电路。但直流耦合放大电路同时也会将直流放大,输出电压会远远超出adc的输入范围。
3.因此,针对上述问题,予以进一步改进。


技术实现要素:

4.本发明的主要目的在于提供直流多普勒雷达校准装置及其校准方法,相比交流放大电路,直流放大电路能测量更低频的信号,通过直流校准,将放大后的中频限制在adc输入范围内。
5.本发明的另一目的在于提供直流多普勒雷达校准装置及其校准方法,处理器也会周期采集adc2的信号,若adc2的平均值超出设定的偏置电压范围,就会调整dac的输出,以达到维持中频直流的目的。
6.为达到以上目的,本发明提供一种直流多普勒雷达校准方法,通过直流多普勒雷达校准装置将多普勒中频信号限制在输入范围之内,包括以下步骤:
7.步骤s1:多普勒中频信号经过第一处理后被处理器采样,以获得多普勒中频信号的频率;
8.步骤s2:雷达上电后,处理器的采样端adc1采集电压跟随电路输出的电压并且经过平均处理,以获得多普勒中频信号的直流电压;
9.步骤s3:通过处理器的传输端dac将获得的多普勒中频信号的直流电压传输到放大电路的输入端(由于跟随放大电路会产生电压误差,此时放大电路输出并不能保证直流偏置在vref附近,但此时电路处于正常工作状态,因此需要进一步校准);
10.步骤s4:开启处理器的采样端adc2并且将经过放大电路放大处理后的直流电压进行采样,以经过平均计算处理后获得放大电路输出的直流偏置电压,从而获得传输端dac的调整电压值,从而进行偏置校准;
11.步骤s5:处理器周期采集采样端adc2的直流电压,并且判断采样端adc2的平均值是否超出预设的偏置电压范围,从而进行选择性校准(由于多普勒中频的直流偏置随着温度及环境的变化,会产生微小的变化。即使此微小的变化,也会导致放大电路进入饱和状
态,mcu也会周期采集adc2的信号,若adc2的平均值超出设定的偏置电压范围,就会调整dac的输出,以达到维持中频直流的目的)。
12.作为上述技术方案的进一步优选的技术方案,步骤s1具体实施为以下步骤:
13.步骤s1.1:多普勒中频信号通过滤波电路进行滤波处理,以获得第一信号;
14.步骤s1.2:第一信号通过电压跟随电路输入放大电路进行放大处理,以获得第二信号;
15.步骤s1.3:第二信号输入到处理器的采样端adc2进行采样,以获得多普勒中频信号的频率。
16.作为上述技术方案的进一步优选的技术方案,步骤s4中通过以下公式进行调整电压:
17.vdacnew=2*(vadc2-vref)/a vdacold;
18.其中,a为放大电路的增益,vadc2为当前多普勒中频信号的直流电压,vref为目标偏置电压,vdacold为当前传输端dac的电压(平均处理后),vdacnew为调整电压值。
19.为达到以上目的,本发明还提供一种直流多普勒雷达校准装置,包括处理器,其中:
20.多普勒中频信号经过第一处理后被处理器采样,以获得多普勒中频信号的频率;
21.雷达上电后,处理器的采样端adc1采集电压跟随电路输出的电压并且经过平均处理,以获得多普勒中频信号的直流电压;
22.通过处理器的传输端dac将获得的多普勒中频信号的直流电压传输到放大电路的输入端(由于跟随放大电路会产生电压误差,此时放大电路输出并不能保证直流偏置在vref附近,但此时电路处于正常工作状态,因此需要进一步校准);
23.开启处理器的采样端adc2并且将经过放大电路放大处理后的直流电压进行采样,以经过平均计算处理后获得放大电路输出的直流偏置电压,从而获得传输端dac的调整电压值,从而进行偏置校准;
24.处理器周期采集采样端adc2的直流电压,并且判断采样端adc2的平均值是否超出预设的偏置电压范围,从而进行选择性校准(以达到维持中频直流的目的)。
25.作为上述技术方案的进一步优选的技术方案,多普勒中频信号通过滤波电路进行滤波处理,以获得第一信号;
26.第一信号通过电压跟随电路输入放大电路进行放大处理,以获得第二信号;
27.第二信号输入到处理器的采样端adc2进行采样,以获得多普勒中频信号的频率。
28.作为上述技术方案的进一步优选的技术方案,包括滤波电路、电压跟随电路、放大电路和处理器,其中:
29.所述滤波电路包括电阻r10和电容c5,所述电压跟随电路包括电压跟随器u1a,其中:
30.所述电阻r10的一端连接多普勒中频信号并且所述电阻r10的另一端与所述电压跟随器u1a的正极输入端电性连接并且所述电压跟随器u1a的正极输入端还通过电容c5接地;
31.所述电压跟随器u1a的负极输入端和输出端之间连接有电阻r8,并且所述电压跟随器u1a的输出端通过电阻r5连接处理器的采样端adc1。
32.作为上述技术方案的进一步优选的技术方案,所述放大电路包括运放器u1b,其中:
33.所述电压跟随器u1a的输出端依次通过电阻r11和电阻r12与所述运放器u1b的正极输入端电性连接;
34.所述运放器u1b的负极输入端和输出端之间连接有电容c2并且所述电容c2的两端并接有电阻r7,所述运放器u1b的输出端通过电阻r31连接处理器的采样端adc2;
35.所述运放器u1b的负极输入端依次通过电阻r9和电阻r6与所述处理器的传输端dac电性连接,所述电阻r6和所述电阻r9的共接端分别通过电容c1接地和通过电阻r34接地,电阻r6和电阻r34组成分压电路,对传输端dac输出电压进行分压。
36.作为上述技术方案的进一步优选的技术方案,所述运放器u1b的正极输入端通过电阻r13连接直流偏置,直流偏置由电阻r14和电阻r15组成分压电路。
附图说明
37.图1是本发明的直流多普勒雷达校准装置及其校准方法的结构示意图。
38.图2是本发明的直流多普勒雷达校准装置及其校准方法的电路图。
具体实施方式
39.以下描述用于揭露本发明以使本领域技术人员能够实现本发明。以下描述中的优选实施例只作为举例,本领域技术人员可以想到其他显而易见的变型。在以下描述中界定的本发明的基本原理可以应用于其他实施方案、变形方案、改进方案、等同方案以及没有背离本发明的精神和范围的其他技术方案。
40.参见附图的图1,
41.在本发明的优选实施例中,本领域技术人员应注意,本发明所涉及的多普勒中频信号和雷达等可被视为现有技术。
42.优选实施例。
43.本发明公开了一种直流多普勒雷达校准方法,通过直流多普勒雷达校准装置将多普勒中频信号限制在输入范围之内,包括以下步骤:
44.步骤s1:多普勒中频信号经过第一处理后被处理器采样,以获得多普勒中频信号的频率;
45.步骤s2:雷达上电后,处理器的采样端adc1采集电压跟随电路输出的电压并且经过平均处理,以获得多普勒中频信号的直流电压;
46.步骤s3:通过处理器的传输端dac将获得的多普勒中频信号的直流电压传输到放大电路的输入端(由于跟随放大电路会产生电压误差,此时放大电路输出并不能保证直流偏置在vref附近,但此时电路处于正常工作状态,因此需要进一步校准);
47.步骤s4:开启处理器的采样端adc2并且将经过放大电路放大处理后的直流电压进行采样,以经过平均计算处理后获得放大电路输出的直流偏置电压,从而获得传输端dac的调整电压值,从而进行偏置校准;
48.步骤s5:处理器周期采集采样端adc2的直流电压,并且判断采样端adc2的平均值是否超出预设的偏置电压范围,从而进行选择性校准(由于多普勒中频的直流偏置随着温
度及环境的变化,会产生微小的变化。即使此微小的变化,也会导致放大电路进入饱和状态,mcu也会周期采集adc2的信号,若adc2的平均值超出设定的偏置电压范围,就会调整dac的输出,以达到维持中频直流的目的)。
49.具体的是,步骤s1具体实施为以下步骤:
50.步骤s1.1:多普勒中频信号通过滤波电路进行滤波处理,以获得第一信号;
51.步骤s1.2:第一信号通过电压跟随电路输入放大电路进行放大处理,以获得第二信号;
52.步骤s1.3:第二信号输入到处理器的采样端adc2进行采样,以获得多普勒中频信号的频率。
53.更具体的是,步骤s4中通过以下公式进行调整电压:
54.vdacnew=2*(vadc2-vref)/a vdacold;
55.其中,a为放大电路的增益,vadc2为当前多普勒中频信号的直流电压,vref为目标偏置电压,vdacold为当前传输端dac的电压(平均处理后),vdacnew为调整电压值。
56.本发明还公开了一种直流多普勒雷达校准装置,包括处理器,其中:
57.多普勒中频信号经过第一处理后被处理器采样,以获得多普勒中频信号的频率;
58.雷达上电后,处理器的采样端adc1采集电压跟随电路输出的电压并且经过平均处理,以获得多普勒中频信号的直流电压;
59.通过处理器的传输端dac将获得的多普勒中频信号的直流电压传输到放大电路的输入端(由于跟随放大电路会产生电压误差,此时放大电路输出并不能保证直流偏置在vref附近,但此时电路处于正常工作状态,因此需要进一步校准);
60.开启处理器的采样端adc2并且将经过放大电路放大处理后的直流电压进行采样,以经过平均计算处理后获得放大电路输出的直流偏置电压,从而获得传输端dac的调整电压值,从而进行偏置校准;
61.处理器周期采集采样端adc2的直流电压,并且判断采样端adc2的平均值是否超出预设的偏置电压范围,从而进行选择性校准(以达到维持中频直流的目的)。
62.具体的是,多普勒中频信号通过滤波电路进行滤波处理,以获得第一信号;
63.第一信号通过电压跟随电路输入放大电路进行放大处理,以获得第二信号;
64.第二信号输入到处理器的采样端adc2进行采样,以获得多普勒中频信号的频率。
65.更具体的是,包括滤波电路、电压跟随电路、放大电路和处理器,其中:
66.所述滤波电路包括电阻r10和电容c5,所述电压跟随电路包括电压跟随器u1a,其中:
67.所述电阻r10的一端连接多普勒中频信号并且所述电阻r10的另一端与所述电压跟随器u1a的正极输入端电性连接并且所述电压跟随器u1a的正极输入端还通过电容c5接地;
68.所述电压跟随器u1a的负极输入端和输出端之间连接有电阻r8,并且所述电压跟随器u1a的输出端通过电阻r5连接处理器的采样端adc1。
69.更具体的是,所述放大电路包括运放器u1b,其中:
70.所述电压跟随器u1a的输出端依次通过电阻r11和电阻r12与所述运放器u1b的正极输入端电性连接;
71.所述运放器u1b的负极输入端和输出端之间连接有电容c2并且所述电容c2的两端并接有电阻r7,所述运放器u1b的输出端通过电阻r31连接处理器的采样端adc2;
72.所述运放器u1b的负极输入端依次通过电阻r9和电阻r6与所述处理器的传输端dac电性连接,所述电阻r6和所述电阻r9的共接端分别通过电容c1接地和通过电阻r34接地,电阻r6和电阻r34组成分压电路,对输出端dac输出电压进行分压,提升dac输出电压精度。
73.进一步的是,所述运放器u1b的正极输入端通过电阻r13连接直流偏置(vref),直流偏置(vref)由电阻r14和电阻r15组成分压电路,设置为供电电压(输出端vcc33_out)的一半。
74.优选地,本发明的原理为:
75.电路包含4个部分,雷达多普勒输出经过滤波电路,进入电压跟随电路,电压跟随输出经过直流放大电路后,经过mcu(处理器)上的adc2采样,计算得出多普勒中频的频率。
76.雷达上电后,mcu的adc1首先采样跟随电路上的电压,经过平均后,得出多普勒中频的直流电压,通过mcu上的dac将此电压输出至放大电路。由于跟随放大器会产生电压误差,此时放大电路输出并不能保证直流偏置在vref附近,但此时电路处于正常工作状态。因此我们需要进一步校准。此时开启adc2,通过平均计算出放大电路输出的直流偏置电压,计算得出dac的调整电压值,以达到偏置校准的目的。
77.dac调整公式:
78.vdacnew=2*(vadc2-vref)/a vdacold;
79.其中,a为放大电路增益,vadc2为当前中频直流电压,vref为目标偏置电压,vdacold为当前dac电压,vdacnew为调整电压。
80.由于多普勒中频的直流偏置随着温度及环境的变化,会产生微小的变化。即使此微小的变化,也会导致放大电路进入饱和状态。mcu也会周期采集adc2的信号,若adc2的平均值超出设定的偏置电压范围,就会调整dac的输出,以达到维持中频直流的目的。
81.值得一提的是,本发明专利申请涉及的多普勒中频信号和雷达等技术特征应被视为现有技术,这些技术特征的具体结构、工作原理以及可能涉及到的控制方式、空间布置方式采用本领域的常规选择即可,不应被视为本发明专利的发明点所在,本发明专利不做进一步具体展开详述。
82.对于本领域的技术人员而言,依然可以对前述各实施例所记载的技术方案进行修改,或对其中部分技术特征进行等同替换,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献