一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

Hf-Si-O-N-M五元系统反应热压烧结制备HfN基复合陶瓷的方法与流程

2022-02-22 09:00:00 来源:中国专利 TAG:

hf-si-o-n-m五元系统反应热压烧结制备hfn基复合陶瓷的方法
技术领域
1.本发明涉及陶瓷制备技术领域,具体地,涉及一种hf-si-o-n-m五元系统反应热压烧结制备hfn基复合陶瓷的方法。


背景技术:

2.hfn作为ivb族金属氮化物,熔点为3310℃、显微硬度为16.4gpa,化学稳定性好,在0~150gpa压强下晶体结构不会发生改变,主要应用于高温防护涂层、陶瓷烧结添加剂、电子器件薄膜等领域。hfn与同族氮化物(tin,zrn)在性能上类似,但熔点更高,由于其制备条件更复杂、成本更高,故国内外hfn的相关研究较少。研究发现,直接由n2氮化hfo2制备hfn的方法实现起来非常困难,故hfn目前主要以氮化金属铪粉的方式生产。
3.但是,国内外对氮化铪陶瓷块体的制备研究同样很少,hfn陶瓷作为一种过渡金属氮化物陶瓷,具有高熔点、高硬度、高耐磨性和良好的耐腐蚀性等特点,但由于其具有的强共价键、高熔点和低扩散系数使其难以烧结致密。且现有技术多使用先制备hfn粉末,再进行烧结的“两步法”技术路线,增加了复杂性、提高了成本。因此,降低成本是hfn陶瓷生产中亟需解决的难题。
4.目前,我国碳化硅、氮化硅的应用主要集中于块状及磨料级微粉等初级产品,能耗高、产能及产品附加值低,因此,研发高附加值的产品是大力推行的新兴产业发展战略。利用成本较低si3n4和的hfo2可在高温下生成hfn和大量挥发气体(sio和n2),但是由于氮化铪具有很强的共价键,高温下结构非常稳定,因此hfo
2-si3n4二元系统在高温下生成hfn,此反应具有很大的烧失率且无法烧结致密。
5.因此,需要研发hfn基陶瓷的制备新工艺,以低成本的si3n4和的hfo2作为原料,在降低hfn基陶瓷的生产成本的同时,制备出高致密度、低烧失率且具有优异的力学性能的hfn基陶瓷。


技术实现要素:

6.本发明要解决的技术问题在于,提供一种hf-si-o-n-m五元系统反应热压烧结制备hfn基复合陶瓷的方法,以低成本的si3n4和的hfo2作为原料,通过引入强碱性氧化物结合热压烧结工艺,有效固定hfo
2-si3n4系统中挥发性的si、n元素,促进hfo
2-si3n4取代反应生成hfn,生成相应的共存相,以达到降低反应温度和体系烧失率的目的,且反应生成的硅酸盐、含氮硅酸盐、铪酸盐物质可促进陶瓷的致密化,提高hfn基陶瓷材料致密度,提升陶瓷力学性能。
7.本发明提供了一种hf-si-o-n-m五元系统反应热压烧结制备hfn基复合陶瓷的方法,包括以下步骤:
8.(1)物料混合:以一定的摩尔配比称取hfo2、si3n4及m
x
oy粉料,并将物料混合均匀得到混合物料;其中,m
x
oy为bao、sro及la2o3中的一种;
9.(2)热压烧结:将混合物料放入石墨模具内,并将石墨模具置于烧结炉内,在n2保护下,以15~25℃/min的升温速率加热至保温温度1500~1600℃,并保温1~3h,然后随炉冷却,加热过程中,在炉温为1000~1400℃时开始向模具逐步加压,直至炉温达到保温温度时加压至保压压力15~25mpa,并保压1~2h。
10.优选的,所述步骤(1)中hfo2、si3n4及m
x
oy的摩尔比为:
11.hfo2:si3n4:m
x
oy=3:(1~4):(3~6)。
12.优选的,所述步骤(1)中hfo2、si3n4及m
x
oy的摩尔比为:
13.hfo2:si3n4:m
x
oy=3:2:4。
14.优选的,所述步骤(2)中升温速率为20℃/min,保温温度为1550℃,保温时间为2h。
15.优选的,所述步骤(2)中加压起始温度为1200℃,保压压力为20mpa,保压时间为1.5h。
16.本发明的工作原理:本发明的hf-si-o-n-m五元系统反应热压烧结制备hfn基复合陶瓷的方法,以hfo
2-si3n4为基本反应系统,引入强碱性氧化物,在n2保护下通过热压烧结工艺合成,制备出具有hf-si-o-n-m五元系统的hfn基复合陶瓷,主反应为:hfo2 si3n4 m
x
oy→mx
sioy hfn n2(g),其中:
17.(1)引入强碱性氧化物的作用:本发明在体系中引入强碱性氧化物(bao、sro、la2o3)以固定hfo
2-si3n4系统中挥发性的si、n元素,促进hfo
2-si3n4取代反应生成hfn,生成相应的共存相,以达到降低反应温度和体系烧失率,且反应生成的硅酸盐、含氮硅酸盐、铪酸盐等共存相组分可促进陶瓷的致密化,达到制备致密陶瓷的目的,hf-si-o-n-m(ba,sr,la)五元系统相关系如下:
18.hf-si-o-n-ba五元系统在1500℃下存在hfn与bahfo3、ba2sio4、ba3si6o9n4、basi2o2n2以及ba2si3o5n2的五种共存相;
19.hf-si-o-n-sr五元系统在1500℃存在hfn与sr2sio4、hfn-srsi2o2n2和hfn-srhfo3的三种共存相;
20.hf-si-o-n-la五元系统在1500℃下,生成的hfn与la
4.67
si3o
13
、la5si3no
12
、la4si2n2o7、lasino2以及la2hf2o7的五种镧盐相共存。
21.(2)采用热压烧结工艺的目的:系统在高温条件下si3n4自身的分解反应、副反应hfn 2sio2=hfo2 2sio(g) 1/2n2(g)中hfn与sio2的反应及五元系统内存在的反应,都会导致系统在反应中有少量气体(n2)产生,对陶瓷的致密化有不利影响,故选用热压烧结法既能加速气体排出,亦能降低烧结温度得到致密陶瓷。此外,通过热压烧结工艺降低了反应物表面自由能、促进反应颗粒的接触扩散和物质传输,对系统反应程度和速率产生了促进作用;
22.(3)采用n2作为保护气体的目的:热压烧结使用n2气氛,以抑制副反应hfo2 2/3si3n4=hfn 2sio(g) 5/6n2(g)的发生。
23.本发明的有益效果:
24.(1)本发明采用si3n4、hfo2、m
x
oy(bao、sro,la2o3)等原料通过固相反应直接制备hfn基复合陶瓷的方法,比直接使用hfn粉体与烧结助剂制备陶瓷所需的烧结温度(≥2000℃)要低300~500℃,具有原料成低廉、节约能源,降低制备难度和成本的优点,且生成的第二相可作为烧结助剂提高hfn复合陶瓷的致密度;
25.(2)本发明中强碱性氧化物(bao、sro、la2o3)的引入可促进系统反应合成hfn,降低hfn的反应生成温度和体系烧失率,且反应生成的硅酸盐、含氮硅酸盐、铪酸盐物质可促进陶瓷的致密化,提高hfn基合陶瓷材料的致密度;
26.(3)本发明制备得到具有五元系统(hfo
2-si3n
4-sio
2-hfn-bao或hfo
2-si3n
4-sio
2-hfn-sro或hfo
2-si3n
4-sio
2-hfn-la2o3)的hfn基复合陶瓷材料,具有结构致密度高、显微硬度高、抗弯强度高、断裂韧性好、烧失率低等诸多性能上的优点。
具体实施方式
27.为了使本发明技术方案更容易理解,现采用具体实施例的方式,对本发明的技术方案进行清晰、完整的描述。
28.一、具体实施例
29.实施例1:
30.本实施例的hf-si-o-n-m五元系统反应热压烧结制备hfn基复合陶瓷的方法,包括以下步骤:
31.(1)物料混合:以摩尔配比hfo2:si3n4:bao=3:1:6称取hfo2、si3n4及bao粉料,并将物料混合均匀得到混合物料;
32.(2)热压烧结:将混合物料放入石墨模具内,并将石墨模具置于烧结炉内,在n2保护下,以15℃/min的升温速率加热至保温温度1500℃,并保温1~3h,然后随炉冷却,加热过程中,在炉温为10000℃时开始向模具逐步加压,直至炉温达到保温温度时加压至保压压力15mpa,并保压1h。
33.实施例2:
34.本实施例的hf-si-o-n-m五元系统反应热压烧结制备hfn基复合陶瓷的方法,包括以下步骤:
35.(1)物料混合:以摩尔配比hfo2:si3n4:bao=3:2:4称取hfo2、si3n4及bao粉料,并将物料混合均匀得到混合物料;
36.(2)热压烧结:将混合物料放入石墨模具内,并将石墨模具置于烧结炉内,在n2保护下,以20℃/min的升温速率加热至保温温度1550℃,并保温2h,然后随炉冷却,加热过程中,在炉温为1200℃时开始向模具逐步加压,直至炉温达到保温温度时加压至保压压力20mpa,并保压1.5h。
37.实施例3:
38.本实施例的hf-si-o-n-m五元系统反应热压烧结制备hfn基复合陶瓷的方法,包括以下步骤:
39.(1)物料混合:以摩尔配比hfo2:si3n4:bao=3:2:3称取hfo2、si3n4及bao粉料,并将物料混合均匀得到混合物料;
40.(2)热压烧结:将混合物料放入石墨模具内,并将石墨模具置于烧结炉内,在n2保护下,以25℃/min的升温速率加热至保温温度1600℃,并保温3h,然后随炉冷却,加热过程中,在炉温为1400℃时开始向模具逐步加压,直至炉温达到保温温度时加压至保压压力25mpa,并保压2h。
41.实施例4:
42.本实施例的hf-si-o-n-m五元系统反应热压烧结制备hfn基复合陶瓷的方法,包括以下步骤:
43.(1)物料混合:以摩尔配比hfo2:si3n4:sro=3:1:6称取hfo2、si3n4及sro粉料,并将物料混合均匀得到混合物料;
44.(2)热压烧结:将混合物料放入石墨模具内,并将石墨模具置于烧结炉内,在n2保护下,以20℃/min的升温速率加热至保温温度1500℃,并保温2h,然后随炉冷却,加热过程中,在炉温为1300℃时开始向模具逐步加压,直至炉温达到保温温度时加压至保压压力20mpa,并保压1.5h。
45.实施例5:
46.本实施例的hf-si-o-n-m五元系统反应热压烧结制备hfn基复合陶瓷的方法,包括以下步骤:
47.(1)物料混合:以摩尔配比hfo2:si3n4:sro=3:4:6称取hfo2、si3n4及sro粉料,并将物料混合均匀得到混合物料;
48.(2)热压烧结:将混合物料放入石墨模具内,并将石墨模具置于烧结炉内,在n2保护下,以20℃/min的升温速率加热至保温温度1550℃,并保温2h,然后随炉冷却,加热过程中,在炉温为1200℃时开始向模具逐步加压,直至炉温达到保温温度时加压至保压压力20mpa,并保压1.5h。
49.实施例6:
50.本实施例的hf-si-o-n-m五元系统反应热压烧结制备hfn基复合陶瓷的方法,包括以下步骤:
51.(1)物料混合:以摩尔配比hfo2:si3n4:la2o3=3:4:6称取hfo2、si3n4及m
x
oy粉料,并将物料混合均匀得到混合物料;
52.(2)热压烧结:将混合物料放入石墨模具内,并将石墨模具置于烧结炉内,在n2保护下,以20℃/min的升温速率加热至保温温度1500℃,并保温2h,然后随炉冷却,加热过程中,在炉温为1200℃时开始向模具逐步加压,直至炉温达到保温温度时加压至保压压力20mpa,并保压1.5h。
53.二、hfn基复合陶瓷样品的表征方法
54.实施例的样品均通过热压烧结,样品成型尺寸为40mm
×
40mm
×
h(h>4mm)。将样品在平面磨床上抛磨成尺寸40mm
×
40mm
×
4mm的陶瓷片;再使用自动精密切割机将抛磨后的样品切割为尺寸40mm
×
4mm
×
3mm的标准样条;最后对标准样条进行抛光处理(金刚石研磨膏:40μm

28μm

10μm,金刚石抛光剂:1μm);记录标准样条抛光后的尺寸并超声清洗后干燥备用。
55.(1)密度
56.采用阿基米德排水法测定hfn基复合陶瓷的密度,其密度ρ的计算公式为:
[0057][0058]
式中,m1为试样干燥后的干重(g);m2为试样浸水后的湿重(g);m3为试样浸水后的浮重(g);ρ*为水的密度(g/cm3)。
[0059]
(2)显微硬度
[0060]
采用维氏硬度计测量陶瓷样品的硬度,压头负载10kg,保压时间5s,每个样品取20个不同位置测试,取平均值。其显微硬度hv的计算公式为:
[0061][0062]
式中,hv为显微硬度(mpa);p为荷重(kg);d为凹坑对角线长度(mm)。
[0063]
(3)抗弯强度
[0064]
陶瓷样品的抗弯强度利用三点抗弯测试,每个配方制备9条标准样条用于测试,结果取平均值。其抗弯强度σ的计算公式为:
[0065][0066]
式中,f为样品破坏载荷(n);l为跨距(mm);b为样品宽度(mm);h为样品高度(mm)。
[0067]
(4)断裂韧性
[0068]
采用压痕法测陶瓷样品的断裂韧性,以10kg压头负载在样品表面产生压痕,断裂仍性k
ic
的计算公式为:
[0069][0070]
式中,p为载荷(n);c为裂纹长度(mm);hv为显微硬度(gpa);e为杨氏模量,对于hfn基复合陶瓷,由于各样品物相组成复杂,取hfn杨氏模量计算,即e=380gpa。
[0071]
三、hfn基复合陶瓷样品的表征结果及分析
[0072]
表1:实施例1至6中hfn基复合陶瓷样品的表征结果
[0073][0074]
表1中摩尔比h:s:m是指n(hfo2):n(si3n4):n(m
x
oy)。
[0075]
表征结果分析:
[0076]
(1)hf-si-o-n-la系统中:在热压烧结的烧结工艺中,提高起始加压温度使其与烧结时的保温温度一致,可促进主反应的进行以及抑制副反应的反应程度。hf-si-o-n-ba系统中各样品较为致密、气孔较少且全部生成了预期的化合物,另外还有副产物bahfo3相生成。其中:
[0077]
实施例1以配比n(hfo2):n(si3n4):n(bao)=3:1:6烧结的陶瓷样品(相组成为hfn,
ba2sio4,bahfo3)具有较好的抗弯强度和断裂韧性,分别为187.650mpa和5.65mpa
·m1/2

[0078]
实施例2以配比n(hfo2):n(si3n4):n(bao)=3:2:4烧结的样品(相组成为hfn,ba2si3o5n2,bahfo3)具有较好的显微硬度,为10.630gpa;
[0079]
实施例3配比n(hfo2):n(si3n4):n(bao)=3:2:3烧结的样品(相组成为hfn,ba3si6o9n4,bahfo3)具有较好的显微硬度,为10.630gpa和10.625gpa。
[0080]
(2)hf-si-o-n-sr系统中:反应热压烧结的样品均反应得到了预期相,具有较好的抗弯强度,断裂韧性较高。其中:
[0081]
实施例4以配方n(hfo2):n(si3n4):n(sro)=3:1:6,样品(相组成为hfn,srsi2n2o2,srhfo3),抗弯强度可达318.495mpa,断裂韧性为6.10mpa
·m1/2

[0082]
实施例5以配方n(hfo2):n(si3n4):n(sro)=3:4:6烧结的样品(相组成为hfn,srsi2n2o2,srhfo3)抗弯强度可达318.495mpa,断裂韧性为6.30mpa
·m1/2

[0083]
(3)hf-si-o-n-la系统中:各配方在经烧结后均生成了预期相,且各样品较为致密、气孔较少,有比较高的硬度。其中:
[0084]
实施例6以配方n(hfo2):n(si3n4):n(la2o3)=3:4:6制备的陶瓷样品(相组成为hfn,lasino2,la5si3o
12
)的硬度最大为10.783gpa,并具有最高的抗弯强度和断裂韧性,分别为155.643mpa和3.30mpa
·m1/2

[0085]
综合以上数据分析可以看出,通过本发明制备的本发明制备得到具有五元系统(hfo
2-si3n
4-sio
2-hfn-bao或hfo
2-si3n
4-sio
2-hfn-sro或hfo
2-si3n
4-sio
2-hfn-la2o3)的hfn基复合陶瓷材料,具有结构致密度高、显微硬度高、抗弯强度高、断裂韧性好、烧失率低等诸多性能上的优点。
[0086]
应当注意,在此所述的实施例仅为本发明的部分实施例,而非本发明的全部实现方式,所述实施例只有示例性,其作用只在于提供理解本发明内容更为直观明了的方式,而不是对本发明所述技术方案的限制。在不脱离本发明构思的前提下,所有本领域普通技术人员没有做出创造性劳动就能想到的其它实施方式,及其它对本发明技术方案的简单替换和各种变化,都属于本发明的保护范围。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献