一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

电动阀的制作方法

2022-02-20 19:24:47 来源:中国专利 TAG:

电动阀
【技术领域】
1.本发明涉及制冷控制技术领域,特别涉及一种电动阀。


背景技术:

2.电动阀主要应用于制冷系统中,在一种包括齿轮机构的电动阀中,电动阀的定子线圈连接驱动控制器,驱动控制器通电后,向定子线圈发出脉冲驱动信号,定子线圈产生变化的磁场,使电动阀的转子发生旋转,转子通过齿轮机构可以带动阀块相对于阀座旋转,从而实现制冷剂流量控制或制冷剂通路的切换。


技术实现要素:

3.本发明的目的在于提供一种电动阀,该电动阀内具有相对较高的稳定性。
4.为实现上述目的,采用以下技术方案:
5.一种电动阀,包括阀体,所述阀体包括阀座组件、固定齿轮,所述固定齿轮包括固定齿轮主体部和固定齿轮连接部,所述固定齿轮主体部与所述固定齿轮连接部为一体结构,所述固定齿轮连接部与所述阀座组件固定连接;
6.所述阀座组件包括进口部,所述进口部包括进阀口部,所述固定齿轮还包括固定齿轮止动部,沿所述阀体的轴向方向,所述固定齿轮止动部朝向所述阀座组件的投影至少遮盖部分所述进阀口部。
7.本方案提供的电动阀,从进阀口部流入电动阀内的流体介质,有部分会冲击到固定齿轮止动部,因此,流体介质的冲击力会有至少部分被固定齿轮止动部所吸收,可以减少流体介质对齿轮的冲击,相对于流体介质直接冲击齿轮电动阀,本方案提供的电动阀的稳定性较高。
【附图说明】
8.图1为本发明一种实施方式的剖面示意图;
9.图2为图1中太阳轮部件的剖面示意图;
10.图3为图1中阀座组件的结构示意图;
11.图4为图1中阀座组件的俯视图;
12.图5为图1中倒置的固定齿轮的结构示意图;
13.图6为图1中行星齿轮组件的结构示意图;
14.图7为图1中行星齿轮组件的爆炸示意图;
15.图8为图5中倒置的行星架的结构示意图;
16.图9为图1中倒置的阀块的结构示意图;
17.图10为图1中阀块的仰视图;
18.图11为电动阀处于全关状态时阀块与阀座组件的位置关系示意图;
19.图12为电动阀处于流量调节的中间状态时阀块与阀座组件的位置关系示意图;
20.图13为电动阀处于流量全开状态时阀块与阀座组件的位置关系示意图;
21.图14为本发明提供的电动阀第二实施例的剖面示意图;
22.图15为图14中阀座组件的结构示意图;
23.图16为图14中阀座组件的俯视图;
24.图17为本发明提供的电动阀第三实施例的剖面示意图。
25.上述附图包括以下附图标记:
26.1、阀体;11、阀座组件;111、阀座;1111、阀座孔部;112、进口部;1121、进阀口部;113、出口部;1131、出阀口部;114、第一接管;115、第二接管;116、配合面部;117、流量调节部;117a、第一曲线;117b、第二曲线;118、台阶部;1181、台阶横部;1182、台阶纵部;119、阀座定位孔部;120、阀座定位部;12、转子;13、太阳轮部件;131、通孔;132、太阳轮齿轮部;1321、太阳轮大径部;1322、太阳轮小径部;133、太阳轮抵压部;15、壳体部件;151、第一壳体部件;1511、第一顶壁部;1512、第一侧壁部;152、第二壳体部件;1521、第二顶壁部;1522、第二侧壁部;16、轴套;17、弹簧;18、行星齿轮组件;181、行星架;1811、支撑柱;1812、行星架底板;1813、行星架止动部;1814、行星架限位部;1815;底板凸起部;182、盖板;183、行星齿轮;184、行星齿轮轴;19、固定齿轮;191、固定齿轮主体部;192、固定齿轮连接部;193、固定齿轮止动部;1931、遮盖面;194、固定齿轮定位部;195、固定齿轮定位孔部;20、阀块;201、阀块通孔部;202、阀块配合孔部;203、流量控制部203;2031、贴合面部;2032、缺口部;1a、定位凸出部;1b定位孔部:a、阀腔;
【具体实施方式】
27.为了使本领域的技术人员更好地理解本发明的技术方案,下面结合附图和具体实施例对本发明作进一步的详细说明。
28.请具体参考图1,图1是本发明一种实施方式的剖面示意图。如图1所示,本实施方式提供的电动阀包括阀体1和定子线圈(图中未示出)。阀体1包括阀座组件11、转子12、以及阀轴14。电动阀的定子线圈连接驱动控制器,驱动控制器通电后,会向定子线圈发出脉冲驱动信号,定子线圈产生周期性变化的磁场,从而驱动电动阀的转子12进行正向或者反向旋转。
29.请具体参考图2,图2为图1中太阳轮部件的剖面示意图。转子12与太阳轮部件13连接,这样,当转子12发生转动的时候,就能够带动太阳轮部件13同步进行旋转,在本实施方式中,转子12与太阳轮部件13为固定连接,当然,也可以设置为限位连接的方式,只需满足转子12能够带动太阳轮部件13一起旋转即可。太阳轮部件13设置有穿过其中心的通孔131,阀轴14穿设于通孔131,并且太阳轮部件13能够围绕阀轴14转动,阀轴14的一端与阀座组件11固定连接,另一端与设于阀体1顶部的轴套16(下文会提到)或者直接与壳体15连接,这样,阀轴14能够为转子12以及太阳轮部件13的旋转提供良好的同心度。
30.电动阀包括壳体部件15,在本实施方式中,壳体部件15包括第一壳体部件151以及第二壳体部件152,第一壳体部件151大体呈一端开口的套筒状,可以采用不锈钢材料制成,具有第一顶壁部1511和第一侧壁部1512,第一顶壁部1511大致为第一壳体部件151顶部的部分,第一侧壁部1512大致为第一壳体部件151侧边的部分;第二壳体部件152大体呈两端开口的套筒状,也可以采用不锈钢材料制成,具有第二顶壁部1521和第二侧壁部1522,第二
顶壁部1521大致为第二壳体部件152顶部的部分,第二侧壁部1522大致为第二壳体部件152侧边的部分。第二壳体部件152的第二侧壁部1522的直径大于第一壳体部件151的第一侧壁部1512的直径,这样,第一壳体部件151的下端部可以与第二壳体部件152的第二顶壁部1521可以配合固定,比如通过焊接的方式进行固定。第二壳体部件152的第二侧壁部1522的下端边缘部则与阀座组件11固定连接,比如通过焊接的方式进行固定连接。当然,附图1作为一种具体的实施方式,示出了第一壳体部件151与第二壳体部件152的一种具体结构和连接方式,本领域技术人员也可以作为一定的变换,比如,第二壳体部件152不设置第二顶壁部1521,而是作为一个两端开口的等径套筒,而在第一壳体部件151的底部设置一个沿着径向向外延伸的底壁部,然后与第二壳体部件152固定连接,也可以实现上述连接关系。或者,不再区分第一壳体部件151和第二壳体部件152,而是做成一体成型的壳体部件15,比如采用金属板一次冲压成型,使其同时形成第一侧壁部1512、第二侧壁部1522、第一顶壁部1511、第二顶壁部1521,同样也能够实现本发明的目的,本实施方式采用第一壳体部件151和第二壳体部件152进行连接的方式,只是一种具体的实现手段,不能理解为对保护范围的限制。
31.本实施例提供的电动阀还包括轴套16,轴套16可以由橡胶等高分子材料制成,轴套16设置于壳体部件15的第一壳体部件151内,轴套16可以与第一壳体部件151采用间隙配合、过渡配合或者过盈配合的方式,轴套16的大致中心位置设置有通孔或者盲孔,并且阀轴14的一端穿设于该通孔或者盲孔,使得阀轴14相对远离阀座111的一端的至少部分位于该通孔或者盲孔,以使阀轴14的轴线与阀体1的轴线大致重合,阀轴14与该通孔或者盲孔也可以采用间隙配合、过渡配合或者过盈配合的方式,轴套16的设置,可以为转子12以及太阳轮部件13的旋转提供良好的同心度,减少阀轴14相对于阀体1的轴线偏移的情况的产生,增加电动阀的工作稳定性和使用寿命,在本实施例中,阀轴14大致位于电动阀的轴线处。
32.此外,在轴套16与太阳轮部件13之间设置有弹簧17,即弹簧17的一端与轴套16相抵接,弹簧17的另一端与转子12相抵接,此时,由于转子12与太阳轮部件13固定连接或者限位连接,弹簧17能够通过转子12给太阳轮部件13施加一定的弹力,该弹力的方向大致是沿阀体1的轴线方向竖直向下的,如此设置,可以约束太阳轮部件13向上发生过大的位移量。更具体的,太阳轮部件13下端设有太阳轮抵压部133,太阳轮抵压部133大致为沿着太阳轮部件13的齿轮的周向方向向下延伸而形成的结构,通过太阳轮抵压部133与阀块20(下文会提到)相抵,阀块20会受到弹簧17的弹力载荷,使得阀块20贴合于阀座组件11的配合面部116。
33.需要说明的是,在本实施例太阳轮部件13与转子12的连接方式下,弹簧17的下端抵接于转子12,而由于太阳轮部件13和转子12采用固定连接或者限位连接的方式,两者可以视为一个组件,因此在结构上存在多种组合方式,因此,也可以设置为弹簧17的下端与太阳轮部件13相抵接。)
34.在大致由第一壳体部件151、第二壳体部件152、阀座组件11围成的阀腔a内,还设置有行星齿轮组件18、固定齿轮19以及阀块20,其主要工作原理为:转子12和太阳轮部件13旋转驱动行星齿轮组件18的行星齿轮183旋转,行星齿轮183在旋转的同时带动阀块20旋转,以改变阀块20相对于阀座组件11的位置,达到控制流量的目的。以下将针对阀座组件11、行星齿轮组件18、固定齿轮19、阀块20的结构以及连接或配合关系进行介绍。
35.本方案提供的电动阀,采用了行星齿轮减速系统,相对于毛细管节流的方式能够实现对冰箱等制冷系统的制冷剂流量实现相对较为精确的调节。
36.请参考图3-4,其中,图3为本实施例提供的阀座组件的11的结构示意图,图4为本实施例提供的阀座组件11的俯视图。本实施例提供的阀座组件11,包括阀座111、第一接管114以及第二接管115;阀座111、第一接管114以及第二接管115固定组装。第一接管114和第二接管115分别作为电动阀流体介质的流入和流出管道,一般用于其安装在冰箱、冷柜、空调等制冷、制热系统中与系统管路连接。
37.阀座111大体呈板状结构,具有设置于其大致中心部位的阀座孔部1111,本实施方式中,阀座孔部1111呈盲孔结构,即未贯通阀座1111,当然,阀座孔部1111也可以采用通孔的形式。装配时,阀轴14一端插入阀座孔部1111固定。
38.阀座组件11还设置有进口部112和出口部113,进口部112和出口部113都为贯穿阀座111上下表面的通孔,第一接管114通过进口部112与阀座111固定连接,第二接管115通过出口部113与阀座111固定连接,此外,进口部112还设置有进阀口部1121,进阀口部1121为进口部112相对靠近行星齿轮组件18处的阀口;出口部113还设置有出阀口部1131,出阀口部1131为出口部113相对靠近行星齿轮组件18处的阀口。
39.在阀座111相对靠近行星齿轮组件18的一侧设置有配合面部116,并且阀座组件11设置有沿配合面116的轴向方向凹陷而形成的流量调节部117,当然,流量调节部117也可以采用单独加工再与阀座1111固定连接的方式。流量调节部117整体呈狭长的弧形槽状,由第一曲线117a和第二曲线117b限定流量调节部的117的边缘线。第一曲线117a和第二曲线117b可以可以采用圆弧线,第一曲线117a位于第二曲线117b的圆周(以阀座孔部1111为圆心)外侧,且流量调节部117与出阀口部1121相连通,并且,第一曲线117a与第二曲线117b之间的间距沿着靠近出口部113的方向逐断增大。这样,流量调节部117整体尺寸较小,相对于普通采用针阀结构的流量调节阀来说,特别适用于小流量的精确调节,比如冰箱制冷系统的制冷剂流量调节。
40.更进一步地,还可以对流量调节部117的深度进行设置,使流量调节部117远离出阀口部1131的一端的深度朝着靠近出阀口部1131一端的深度逐渐增大。
41.在实际操作中,可以根据系统流量的需要,对流量调节部117的宽度和深度同时进行相应的设置,以满足不同的需求。
42.请参照图5,图5是本发明本实施例提供的固定齿轮19倒置时的结构示意图。固定齿轮19大致呈圆筒状,其包括固定齿轮主体部191和固定齿轮连接部192,固定齿轮主体部191与固定齿轮连接部192为一体结构,即固定齿轮主体部191和固定齿轮连接部192在实际产品中为一个整体结构,并不能彼此脱离。具体的,固定齿轮连接部192可以采用金属结构(例如不锈钢),在固定齿轮19制作过程中,固定齿轮连接部192可以作为嵌件,与固定齿轮主体部191一体注塑成型,或者固定齿轮主体部191采用粉末冶金等方式与固定齿轮主体部一体成型等其他方式,固定齿轮部1912用于和下文所述的行星齿轮组件18的行星齿轮183啮合。
43.此外,本实施例提供的固定齿轮19还包括固定齿轮止动部193,固定齿轮止动部193大致位于固定齿轮主体部191的轴向下方,固定齿轮止动部193可以与固定齿轮主体部191一体注塑成型。
44.请参考图2,为了进一步保证固定齿轮19与阀座组件11连接时的稳定性和连接强度,阀座组件11还设置有沿其周向分布的台阶部118,该台阶部118包括台阶横部1181与台阶纵部1182,台阶横部1181大致沿水平方向分布,台阶纵部1182大致沿竖直方向分布,且台阶横部1181大致位于台阶纵部1182的周向外边,此时,台阶部118大致呈正向设置的台阶状。
45.在壳体部件15与阀座组件11进行固定连接操作时,可以先将第二侧壁部1522沿着台阶纵部1182套入,直至第二侧壁部1522的下端与台阶横部1181相抵,再将阀座组件11和课题部件15通过焊接的方式固定连接,此时,第二侧壁部1522与台阶纵部1182沿电动阀的轴线的投影存在重叠部分。
46.此时,第二壳体侧壁部1522的内径不小于台阶纵部1182的直径,第二壳体侧壁部1522的内径小于台阶横部1181的外径。
47.台阶部118的设置,可以起到导向和限位的作用,使得阀座组件11与固定齿轮19较为可靠的连接;同时可以提高阀座组件11的轴线与固定齿轮19的轴线的同轴度,使得阀体1内部的齿轮间相对运动更加平顺。
48.此外,固定齿轮连接部192大致呈空心的圆筒状,其下沿低于固定齿轮止动部193的轴向下端,即固定齿轮止动部193与固定齿轮连接部192靠近阀座111的端部存在轴向距离,此时,固定齿轮连接部192的下端至少有部分外套于台阶部118的台阶纵部1182,然后将阀座组件11与固定齿轮19固定连接。
49.请具体参考图1-2,在阀座组件11与固定齿轮19固定连接的过程中,固定齿轮连接部192外套于台阶纵部1182,台阶纵部1182能够为固定齿轮19提供导向,此外,当固定齿轮连接部192与台阶横部1181相抵时,固定齿轮连接部192并不能相对于阀座组件11继续向下位移,台阶横部1181能够对固定齿轮19起到限位的作用,之后,可以将阀座组件11和固定齿轮19采用焊接或者压接等方式固定连接。本实施方式提供的固定齿轮19固定于阀座组件11结构,其一端与阀座组件11固定连接,装配相对较为简单。
50.请参照图6-8,图6是本实施例提供的行星齿轮组件18的结构示意图,图7为本实施例提供的行星齿轮组件18的爆炸示意图,图8为本实施例提供的行星架倒置时的结构示意图。行星齿轮组件18包括行星架181、盖板182以及行星齿轮183,行星架181包括行星架底板1812以及从由行星架底板1812向上延伸的三个支撑柱1811。需要说明的是,本实施方式示例了3个行星齿轮的结构,实际上行星齿轮的结构可以根据输出扭矩的需要进行设置,并不局限于3个行星齿轮。本实施方式中,支撑柱1811的数量也为3个,并沿圆周方向均匀分布,3个行星齿轮183则设置在相邻的两个支撑柱1811之间。
51.行星架181和盖板182固定连接,以对行星齿轮183进行轴向的限位。具体而言,可以在盖板182上设置有小孔,将支撑柱1811的一端伸出盖板182的小孔后实施压接变形,从而实现固定连接。行星架181可以采用塑料注塑成型,盖板182可以采用金属板材冲压制成,这样,可以方便地对端部18111实施加热变形等方式,使盖板不会脱离行星架。3个行星齿轮183的通孔穿设于行星齿轮轴184,并且分别通过行星齿轮轴184设置在行星架181上,并且,行星齿轮183能够围绕行星齿轮轴184旋转,行星齿轮轴184的一端与行星架底板1812固定连接或者一体成型,另一端与盖板182固定连接,具体的,行星齿轮轴184靠近盖板182的一端也可以采用热熔铆接的方式以使行星齿轮轴184与盖板182固定连接。
52.以其中一个行星齿轮183为例,在装配时,太阳轮部件13从行星齿轮组件18的中心部位向下插入,使太阳轮部件13行星齿轮1831啮合,从而使转子12在旋转使能够带动行星齿轮183转动,3个行星齿轮183的内侧和外侧分别限定两个虚拟的圆,位于行星齿轮1831的圆周内侧的齿轮与太阳轮部件13啮合,位于行星齿轮1831的外侧的齿轮与固定齿轮19的固定齿轮部1912啮合。这样,太阳轮部件13在转动时,能够带动行星齿轮183同步转动,行星齿轮183在自身绕着行星齿轮轴184转动的同时,还沿着固定齿轮19的固定齿轮主体部1911所限定的轨迹转动。这样,电动阀通过电磁线圈通电驱动转子12及太阳轮部件13旋转,经过行星齿轮组183减速,最终带动行星架181旋转。
53.此外,本实施例提供的行星架181还包括行星架止动部1813,行星架止动部1813为大致沿着行星架底板1812朝着电动阀的轴向方向部分向下凸出结构,即行星架止动部1813凸出于行星架底板1812的下表面。
54.行星架止动部183与阀轴14的轴线的最远距离大于所述固定齿轮止动部193与所述阀轴14的轴线(即行星齿轮组件18的自转的轴线)的最近距离,行星架止动部1813和固定齿轮19的固定齿轮止动部193沿着阀体1的轴向中心线的投影存在重叠部分。
55.此时,在行星架181相对于阀座组件11发生转动时,行星架止动部1813和固定齿轮19的固定齿轮止动部193能限定行星齿轮组件18的作动起始位置和作动结束位置,即行星架181如顺时针方向旋转至极限位置(行星架止动部1813与固定齿轮19的固定齿轮止动部193相抵)时,行星架181不能继续旋转;行星架181如逆时针方向旋转至极限位置(行星架止动部1813与固定齿轮19的固定齿轮止动部193相抵)时,行星架181不能继续旋转。通过行星架止动部1813与固定齿轮19的固定齿轮止动部193的配合,确定了行星架181的转动行程和角度。需要说明的是,行星架止动部1813的圆周长度(具体为与固定齿轮止动部193相抵处的圆周长度)可以根据系统的需要进行调整,从而可以调整行星架181的作动起始位置与作动结束位置之间的旋转角度。
56.请具体参考图9-10,图9为本实施例提供的阀块20倒置时的结构示意图,图10为本实施例提供的阀块20的仰视图。本实施例提供的电动阀还包括阀块20,阀块20的轴向投影可以大体呈圆形,阀块20包括大致位于阀块中心的阀块通孔部201,阀块通孔部201贯穿阀块20的上下表面,阀轴14穿设于该阀块通孔部201。此外,阀块20与行星架181可以采用固定连接或者限位连接的方式。在本实施例中,行星架181设置有底板凸起部1815,底板凸起部1815大致为行星架底板1812朝着该电动阀的轴向方向向下凸起的结构,相应的,阀块20包括与行星架181的底板凸起部1815配合的阀块配合孔部202,阀块配合孔部202可以采用盲孔或者通孔的形式,底板凸起部1815至少部分穿位于阀块配合孔部202,使得行星架181和阀块20固定连接或者限位连接,在行星架181旋转的同时,能同步带动阀块20同步旋转。
57.阀块20的底部设置有流量控制部203,如图7所示,流量控制部203在阀块20(除了流量控制部203部分)的底面上沿其轴向延伸一定的高度,形成用于与阀座组件11的配合面部116相贴合并可相对旋转的贴合面部2031,该贴合面部2031可在弹簧17的弹力载荷作用下与配合面部116相抵贴合,同时,流量控制部203还设置有缺口部2032,该缺口部2032大致为部分贴合面部2031朝着电动阀的轴向方向凹陷而形成的结构,这样,当阀块20与阀座组件11相抵时,流量控制部203位于缺口部2032的位置并没有与阀座组件11的配合面部116接触,这样,流体介质可以从缺口部2032与阀座111形成的空间内流动。
58.通过流量控制部203与阀座组件11的配合面部116相贴合,使流量控制部203的缺口部2032与阀座组件11的流量调节部117的周向位置的不同部位相对应,可以实现流量的调节功能。
59.当然,除了行星架181与阀块20采用两个零部件再连接的形式,行星架181和阀块20亦可以为一体成型的方式,即行星架181和阀块20一体注塑成型。
60.下面结合图11-13来说明流量调节的过程。其中,图11为电动阀处于全关状态时阀块20与阀座组件11的位置关系示意图,图12为电动阀处于流量调节的中间状态时阀块20与阀座组件11的位置关系示意图,图13为电动阀处于流量全开状态时阀块20与阀座组件11的位置关系示意图。
61.如图11所示,固定齿轮19的固定齿轮止动部193与行星架止动部1813一侧相抵接,此时,在图11所示的投影图中,流量控制部203设置的缺口部2032与流量调节部117及出阀口部1131在电动阀的轴向方向的投影均没有重叠部分,即流量调节部117和出阀口部1131均被贴合面部2031所贴合覆盖,从而流体无法从缺口部2032流出,此时电动阀处于全关状态。
62.如图12所示,阀块20逆时针旋转一定的角度后,缺口部2032与流量调节部117在电动阀的轴向方向的投影有部分的重叠,即图示的α区域,α区域为流量调节部117的一部分,此时,流体能够通过缺口部2032所形成的空间流入电动阀的阀腔a,然后从出阀口部1131流出,此时,缺口部2032相对于流量调节部117的位置决定了电动阀的流量。本领域技术人员可以理解,图10示出了阀块20的某一具体位置,而随着阀块20的不断旋转,相应的α区域也会逐渐变化从而引起电动阀的流量发生变化,这一过程,就是电动阀的流量调节过程。
63.如图13所示,行星架181逆时针旋转至行星架止动部1813与固定齿轮止动部193另一侧相抵时停止转动,相应的,阀块20也停止转动。此时,缺口部2032与流量调节部117靠近出阀口部1131的部分以及出阀口部1131的轴向投影形成重叠区域,即,出阀口部1131整体位于缺口部2032所遮盖的位置,此时,电动阀的阀腔a内的流体从缺口部2032所形成的空间流入,从出阀口部1131流出,如图13中β区域所示,此时电动阀处于全开状态。
64.由于固定齿轮19与行星齿轮组件18主要依靠固定齿轮止动部193和行星架止动部1813来限定行星齿轮组件18相对于阀座组件11的起始位置和结束位置,因此阀座组件11的流量调节部117和固定齿轮19在初始安装时,需要有一个相对固定的位置,来限定行星架止动部1813与固定齿轮止动部相抵时,阀块20上的流量控制部203相对于阀座组件11的流量调节部117在周向上的的相对位置关系。
65.在本实施例中,固定齿轮19和阀座组件11的初始位置主要依靠定位凸出部1a和定位孔部1b来实现。
66.具体的,请参考图5,在本实施例中,固定齿轮19还设置有固定齿轮定位部194,固定齿轮定位部194大致为沿着固定齿轮止动部193的下表面朝着靠近阀座组件11方向轴向部分延伸而形成的结构,固定齿轮定位部194可以与固定齿轮止动部193一体成型或者固定连接,例如,固定齿轮定位部194采用定位销的形式,该定位销与固定齿轮止动部193组装固定,并且定位销凸出于固定齿轮止动部193的下表面,在本实施例中,固定齿轮19在注塑时形成固定齿轮定位部194与固定齿轮止动部193。此外,请参考图1-3,阀座组件11设置有阀座定位孔部119,阀座定位孔部119可以为设置在阀座111上的盲孔结构,当然也可以设置为
通孔结构,在阀座组件11与固定齿轮19组装固定前,可以先将固定齿轮定位部194插入阀座定位孔部119,使固定齿轮定位部194的至少部分位于阀座定位孔部119,此时,可以通过阀座定位孔部119和固定齿轮定位部194来限定行星架止动部1813相对于阀座组件11在在周向的相对位置。在本实施例中,定位凸出部1a为固定齿轮定位部194,定位孔部1b为阀座定位孔部119。
67.当电动阀在工作时由第一接管114流入的流体介质(例如冷媒),可能会对电动阀内的齿轮等零部件产生冲击,该冲击可能会影响产品使用寿命和产品性能。
68.为了减少流体介质对电动阀内齿轮等其他零部件的冲击的不利影响,本实施例提供的电动阀,在其轴向方向,固定齿轮止动部193朝向阀座组件11的投影至少遮盖部分进阀口部1121。
69.通过以上设置,从第一接管114流入阀腔a的流体介质,会至少部分冲击到固定齿轮止动部193,因此,流体介质的冲击力会至少部分被固定齿轮止动部193所吸收并分散,可以减少流体介质对齿轮等其他零部件的冲击,可以增加产品的使用寿命和性能,相对于流体介质直接冲击齿轮等其他零部件的电动阀,本方案提供的电动阀的稳定性也较高。
70.当然,当固定齿轮止动部193在朝向阀座组件11的投影覆盖全部进口部112时,理论上会有更多的流体介质的冲击力被固定齿轮止动部193吸收,此时效果更好。
71.在本实施例中,固定齿轮止动部193包括遮盖面1931,该遮盖面为1931为固定齿轮止动部193沿阀体1的轴向方向覆盖进口部112的底面部分,此时,遮盖面1931与进阀口部1121之间的距离d1》0。
72.此时,从进口部112流入的流体介质可以通过以上遮盖面1931与进口部112之间的距离得到缓冲和分散,该缓冲和分散效果可以相对减少流体介质对固定齿轮止动部193的冲击力。
73.下面说明电动阀的装配过程。可以先将阀座组件11组装并固定为一个组件,即,阀座111、第一接管114以及第二接管115所构成的组件。组装后,再采用焊接的方式固定。然后将阀轴14与阀座组件11固定连接,阀轴14既可以采用焊接的方式与阀座组件固定连接,也可以采用压装的式与阀座组件11固定连接;然后,再将固定齿轮19与阀座组件11固定连接;然后,将设置有阀块20的行星齿轮组件18装入,即,将阀块通孔部201沿着阀轴14装入,使得阀块20的贴合面部2031与阀座组件11的配合面116相贴合,并使行星齿轮组件18的行星齿轮183与固定齿轮主体部191啮合;然后,再装入带太阳轮部件13的转子12、弹簧17、轴套16;然后装入壳体部件15,需要说明的是,此处的壳体部件15,可以是如上所记载的分别制备第一壳体部件151和第二壳体部件152然后通过焊接的方式组装成为壳体部件15,也可以一体冲压成型壳体部件15。壳体部件15具有第一侧壁部1512、第二侧壁部1522、第一顶壁部1511、第二顶壁部1521,并将壳体部件15与阀座组件11焊接固定。
74.需要注意的是,上述装配顺序也可以进行相应的调整,比如可以先装配阀块20和行星齿轮组件18,然后再将固定齿轮19与阀座组件11实施焊接固定。即,上述装配过程只是示例性地说明本实施方式提供的电动阀的一种装配方法,而不是意味着限制电动阀的唯一装配顺序。
75.此外,请具体参考图2,在本实施例中,太阳轮部件13包括太阳轮齿轮部132,太阳轮齿轮部132为太阳轮部件13的齿轮,太阳轮大径部1321和太阳轮小径部1322,太阳轮大径
部1321大致为太阳轮部件13齿顶圆所在的外缘部位,太阳轮小径部1322大致为太阳轮部件13齿根圆所在的内缘部位。
76.在本实施例中,太阳轮部件13从上至下插入行星齿轮组件18的中间位置,使得太阳轮部件13的齿轮与行星齿轮183啮合,太阳轮抵压部133与阀块20相抵。
77.此外,为了顺利使太阳轮部件13从上至下插入行星齿轮组件18,可以理解,太阳轮部件齿顶圆与齿根圆之间的区域和太阳轮抵压部133在轴向方向的投影不存在重叠区域,该投影面可以为阀座111的上表面。
78.当太阳轮抵压部133的外轮廓设置为圆形时,太阳轮抵压部133的外径小于太阳轮小径部1322的直径。
79.在太阳轮部件13和行星齿轮组件18转动的过程中,行星齿轮组件18可能会发生沿着阀体1的轴向方向发生上下作动的情况。
80.为了减少该情况的产生,本实施例提供的行星架181还包括行星架限位部1814,行星架限位部1814大致为沿着行星架底板1812的内缘向圆心方向周向延伸而形成的结构,在本实施例中,行星架限位部1814与行星架底板1812为一体成型的结构,即行星架限位部1814与行星架底板1812是一体注塑成型的。
81.当然,行星架限位部1814和行星架底板1812也可以为分体再固定连接的结构。
82.在电动阀的轴向方向,太阳轮抵压部133与行星架限位部1814的投影不存在重叠区域,行星架限位部1814与太阳轮大径部1321的投影存在重叠区域。
83.当行星架限位部1814内缘和太阳轮抵压部133的外缘都为圆形时,行星架限位部1814的内径大于太阳轮抵压部133的外径。
84.此外,在电动阀的轴向方向,行星架限位部和太阳轮齿轮部设置有轴向距离d2。
85.通过以上设置,在通常情况下,例如在电动阀没有通电的情况下,行星架限位部1814与太阳轮部件13不接触,当行星齿轮组件18沿着阀体1的轴向方向向上移动一定距离时(在电动阀没有设置垫片等部件的情况下,该距离为d2),行星架限位部1814与太阳轮部件13的齿轮相抵,能限制行星齿轮继续向上移动,可以增加行星齿轮组件18在电动阀内的稳定性,同时也可以减少由于行星齿轮组件18相对于固定齿轮19上下位移而产生的噪音。
86.通过以上设置,行星齿轮组件18相对于固定齿轮19在电动阀的轴向方向的位移量被阀块20和太阳轮大径部1321之间的距离所限制,即在通常状态下,行星架限位部1814与阀块20的上端面相抵,当行星齿轮组件18相对于固定齿轮向上移动一定距离时,行星架限位部1814与太阳轮部件13相抵。
87.值得说明的是,太阳轮部件13与阀块20相抵,此处包括太阳轮部件13与阀块20直接相抵,也包括太阳轮部件13与阀块20间接相抵,当太阳轮部件13与阀块20间接相抵时,在太阳轮部件13与阀块20之间可以设置垫片等零部件。
88.本实施例提供的电动阀,其行星架止动部1813和行星架限位部1814都位于行星架181,在同一部件上既实现了限定行星齿轮组件18的作动起始位置和作动结束位置,又可以减少流体介质对齿轮等其他零部件的冲击,从而减少噪音,增加产品的使用寿命和稳定性,这些功能都集成于行星架181,也有利于产品的小型化。
89.请具体参考图13-15,图13为本发明提供的电动阀第二实施例的剖面示意图;图14为图13中阀座组件的结构示意图,图15为图13中阀座组件的俯视图。
90.为了便于描述本实施例,对于本实施例与第一实施例中具有相同结构且具有相同作用的部件采用同一附图标记,第一实施例中各部件的描述同样适用于第二实施例,以下针对与第一实施例不同之处加以详细描述。
91.在本实施例中,阀座组件11的结构稍有不同,具体的,本实施例提供的阀座组件11,包括阀座111、第一接管114以及第二接管115;其中,第一接管114的数量为1个,第二接管115的数量为3个,当然,可以根据系统需要,将第二接管115的数量设置为其他数量,例如1个、2个或者多个。
92.阀座111、第一接管114以及第二接管115固定组装。第一接管114和第二接管115分别作为电动阀流体介质的流入和流出管道,一般用于其安装在冰箱、冷柜、空调等制冷、制热系统中与系统管路连接。
93.阀座111大体呈板状结构,具有设置于其大致中心部位的阀座孔部1111,本实施方式中,阀座孔部1111呈盲孔结构,即未贯通阀座1111,装配后,阀轴14一端插入阀座孔部1111固定。
94.与之对应的,阀座组件11还设置有进口部112和出口部113,在本实施例中,出口部113的数量跟第二接管115的数量同样为3个。进口部112和出口部113都为贯穿阀座111上下表面的通孔,第一接管114通过进口部112与阀座111固定连接,第二接管115通过出口部113与阀座111固定连接,此外,进口部112还设置有进阀口部1121。进阀口部1121为进口部112相对靠近行星齿轮组件18处的阀口;出口部113还设置有出阀口部1131,出阀口部1131为出口部113相对靠近行星齿轮组件18处的阀口,在本实施例中,出阀口部1131的数量与第二接管115的数量同样为3个。
95.本发明提供的电动阀,阀块20在转子12的带动下相对于阀座组件11发生周向转动,与此同时,阀块20的缺口部2032可以依次经过三个出阀口部1131,当缺口部2032位于某一出阀口部1131时,该出阀口部1131对应的第二接管115就处于打开位置,流体介质可以从该第二接管115通过;而其余的出阀口部1131则被阀块20的贴合面部2031所遮盖,其对应的第二接管部115处于关闭位置,流体介质无法从这些第二接管部115通过。
96.请具体参考图17,图17为本发明提供的电动阀第三实施例的剖面示意图。
97.为了便于描述本实施例,对于本实施例与第一实施例中具有相同结构且具有相同作用的部件采用同一附图标记,第一实施例中各部件的描述同样适用于第三实施例,以下针对与第一实施例不同之处加以详细描述。
98.在本实施中,固定齿轮19包括固定齿轮定位孔部195,固定齿轮定位孔部195大致为沿着固定齿轮止动部193的下表面朝着远离阀座111凹陷而形成的孔状结构,阀座组件11包括阀座定位部120,阀座定位部120大致为沿着阀座111的上表面凸出而形成的结构,阀座定位部120凸出于所述阀座111的上表面,阀座定位部120可以与阀座111一体成型或者固定连接,例如,阀座定位部120采用定位销形式,该定位销与阀座111组装固定,并且定位销凸出于阀座111的上表面,至少部分位于止动定位孔部195在本实施例中,在车加工阀座组件111时形成阀座111和阀座定位部120,即阀座111与阀座定位部120为一体结构。并且,阀座定位部120的至少部分位于止动定位孔部195,此时,固定齿轮19和阀座组件11的初始位置主要依靠定位阀座定位部120和固定齿轮定位孔部195来实现,定位凸出部1a包括该阀座定位部120,定位孔部1b包括该止动定位孔部195。
99.当然,本发明并不排除同时设置阀座定位孔部119、阀座定位部120、固定齿轮定位部194和固定齿轮定位孔部195的方案。
100.需要说明的是,本实施例所提及的上、下、左、右等方位名词,均是以说明书附图作为基准,为便于描述而引入的;以及部件名称中的“第一”、
[0101]“第二”等序数词,也是为了便于描述而引入的,并不意味着对部件的任何次序作出任何的限定。并且,本说明书所记载的各实施例中,对于针对某一部件或者组件的各实施方式,可以在具备结合条件的情况下进行各种组合,而不限于该实施方式所记载的技术特征,比如上文中某一种关于第一板状部的具体实施方式可以与其他关于固定齿轮的实施方式进行各种组合,以形成一种新的实施例。限于篇幅,本说明书无法将每一种不同技术特征进行排列组合后的所有技术方案均分别作为实施例进行描述,但本领域技术人员应当理解,在不需付出创造性劳动(比如在两个组件或部件结合时仅作出本领域公知的适应性结构调整)即可组合在一起的技术特征所形成的新的技术方案,均在本发明权利要求的保护范围之内。
[0102]
以上对本发明所提供的电动阀进行了详细介绍。本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献