一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种X65级耐超低温无缝管线管及其制造方法与流程

2022-02-20 12:57:53 来源:中国专利 TAG:

一种x65级耐超低温无缝管线管及其制造方法
技术领域
1.本发明涉及一种管线管及其制造方法,尤其涉及一种耐超低温无缝管线管及其制造方法。


背景技术:

2.天然气资源从开采地到最终的消费地中间,通常需要通过管道进行站点的集输和长距离输送。近年来,天然气资源在能源结构中占的比重越来越大,伴随着人们对天然气资源需求量的不断扩大,市场针对于输运天然气管线管的需求量也在不断增加。输送天然气的管线管主要通过焊接来进行连接,因此,管线管的母材成分在化学元素成分设计时需要考虑其焊接性。
3.为了开采寒冷或深海地区的天然气资源,管道通常需要在低温的环境下铺设和服役,这样恶劣的服役环境也对管线管母材和其焊接热影响区的低温冲击韧性也提出了更高的要求。
4.需要说明的是,向管线管母材中添加c、mo和mn元素,提高母材中c、mo和mn元素的含量可以有效提高管线管的强度。但是,当管线管中c含量较高时,mo等合金元素含量添加较多时,亦或是过高mn导致管坯中心偏析时,均容易在淬火过程或焊接热影响区冷却过程中使钢中的m-a组元数量增多,从而会对管线管基体和焊接热影响区的低温冲击韧性产生不利影响。
5.公开号为cn107779744a,公开日为2018年3月9日,名称为“一种贝氏体型x100级无缝管线管及其制造方法”的中国专利文献公开了一种贝氏体型x100级无缝管线管及其制造方法,其化学成分为c 0.03~0.09%、si 0.1~0.5%、mn 1.5~2.5%、mo 0.4~1%、al 0.01~0.1%,且控制焊接冷裂纹敏感指数pcm≤0.24,通过淬火回火的调质热处理工艺获得贝氏体相比例≥90%的组织,0℃全尺寸冲击功≥50j,屈服强度≥690mpa。其热处理工艺采用920~1000℃淬火/15~80℃/s快速冷却 500~700℃回火。需要说明的是,该专利的无缝管线管中添加了较多的mn和mo元素,这些元素虽然可以有效提高无缝管线管的强度,但容易在淬火过程或焊接热影响区冷却过程中使钢中的m-a组元(马氏体-残余奥氏体组元)数量增多,对管线管基体和焊接热影响区的低温冲击韧性均不利。
6.公开号为cn103993245a,公开日为2014年8月20日,名称为“一种低碳当量高强度热轧无缝管线管及其制造方法”的中国专利文献公开了一种低碳当量高强度热轧无缝管线管,其化学成分为c 0.08~0.2%、si 0.1~0.45%、mn 0.8~1.6%、cr≤0.5%、ni≤0.5%、cu≤0.5%、mo≤0.05%、v 0.05~0.1%、nb≤0.05%、ti≤0.04%,ceq=0.38~0.45,热轧或正火态交货,强度可达到x60钢级或更高,0℃冲击韧性akv>100j。但是需要说明的是,该专利为了保证热轧或正火态交货而添加了较多的c元素以保证无缝管线管强度,但钢中c元素含量过高会对管线管基体和焊接热影响区的低温冲击韧性均产生不利影响,同时无缝管线管中mo元素含量过低,不利于获得细小的贝氏体组织,对强度和低温韧性均不利。
7.公开号为cn102154593a,公开日为2011年8月17日,名称为“x80钢级抗腐蚀低温无缝管线管”的中国专利文献公开了一种x80钢级抗腐蚀低温无缝管线管,化学成分为c 0.08~0.14%、si 0.20~0.35%、mn 1.10~1.40%、p≤0.015%、s≤0.005%、mo 0.10~0.20%、al 0.020~0.060%、nb 0.02~0.05%、v0.05~0.10%、cu 0.10~0.20%、ni 0.10~0.20%、ti≤0.015%、cr≤0.15%、ca 0.0015~0.0060%、b≤0.0005%、n≤0.012%、cev≤0.43%、pcm≤0.23%,韧脆转变温度在-60℃以下。该专利考虑腐蚀性能,限制了mn含量添加量,从而需要加入较高的c、cu以在mn不足的条件下来保证强度,而为了弥补c、cu高对低温韧性的不利影响又需要加入较多的ni改善低温韧性,导致成本较高。此外,无缝管线管的韧脆转变温度仅能满足≤-60℃的技术需求。
8.综上所述,随着寒冷和深海区域天然气开采对管线钢低温韧性的要求不断提高,期望获得一种新的耐超低温无缝管线管,以保证在这些极端恶劣环境地区服役的管线在超低温下安全运行。


技术实现要素:

9.本发明的目的之一在于提供一种x65级耐超低温无缝管线管,该x65级耐超低温无缝管线管不仅具有x65钢级的强度,还具有优异的耐超低温韧性,其可以有效应用于天然气管道运输,服役于超低温恶劣环境中,具有良好的推广前景和应用价值。
10.为了实现上述目的,本发明提供了一种x65级耐超低温无缝管线管,其除了fe以外还含有质量百分比如下的下述化学元素:
11.c:0.04~0.08%;mn:1.3~2.0%;mo:0.05~0.25%;si:0.15~0.35%;v:0.04~0.07%;nb:0.02~0.045%。
12.进一步地,在本发明所述的x65级耐超低温无缝管线管中,其各化学元素质量百分比为:
13.c:0.04~0.08%;mn:1.3~2.0%;mo:0.05~0.25%;si:0.15~0.35%;v:0.04~0.07%;nb:0.02~0.045%;余量为fe和其他不可避免的杂质元素。
14.在本发明所述的x65级耐超低温无缝管线管中,无缝管线管采用了低c、中mn、低mo、低v的成分设计以获得合适的强度以及耐超低温韧性,其各化学元素的设计原理如下所述:
15.c:在本发明所述的x65级耐超低温无缝管线管中,c元素是最主要的固溶强化元素,其可以显著提高钢的强度,c元素可以与nb、v微合金元素结合形成碳化物,在调质热处理钢种中起析出强化作用。但是需要注意的是,钢中c元素含量过高时,会增加钢中m-a组元(马氏体-残余奥氏体组元)的数量,从而显著降低钢的韧性尤其是低温韧性,而且对钢的焊接性能也不利。基于此,在本发明所述的x65级耐超低温无缝管线管中控制c的质量百分比在0.04~0.08%之间。
16.mn:在本发明所述的x65级耐超低温无缝管线管中,mn元素具有提高淬透性、固溶强化和细化晶粒的作用。mn是补偿c降低而引起强度损失的最主要、最经济的强化元素,mn元素在提高钢的强度的同时,还可以提高钢的韧性,降低韧脆转变温度。为保证得到的钢管具有足够的淬透性和强度,钢中mn元素含量应该控制在1.3%以上。但是,需要说明的是,钢中mn元素含量应控制在2.0%以下,若钢中mn元素含量增加过多,不仅会导致管坯中心偏析
使韧性恶化,还会促进m-a组元数量增多。基于此,在本发明所述的x65级耐超低温无缝管线管中控制mn的质量百分比在1.3~2.0%之间。
17.mo:在本发明所述的x65级耐超低温无缝管线管中,mo是重要的固溶强化元素,钢中加入适量的mo元素可以有效降低c的扩散系数,抑制先共析铁素体的析出和长大,推迟珠光体组织转变,使得在较低的冷速下同样也可以扩大贝氏体转变区间,获得贝氏体组织,并使相变向低温方向转变促进组织进一步细化。但是,需要注意的是,钢中mo元素含量过高会增加m-a岛的含量,从而会对基体和焊接热影响区的韧性,尤其是对低温韧性产生不利影响。基于此,在本发明所述的x65级耐超低温无缝管线管中控制mo的质量百分比在0.05~0.25%之间。
18.si:在本发明所述的x65级耐超低温无缝管线管中,si是重要的脱氧元素,为保证si元素能够发挥足够的脱氧效果,钢中si元素含量应控制在0.15%以上。但是,若钢中si元素含量过高,则会对钢的韧性产生不利影响,应将si元素控制在0.35%以下。基于此,在本发明所述的x65级耐超低温无缝管线管中控制si的质量百分比在0.15~0.35%之间。
19.v:在本发明所述的x65级耐超低温无缝管线管中,v是最佳的沉淀强化元素,但是钢中v元素含量不宜过高,这是因为v元素可以与c结合形成碳化物vc,vc含量过高会显著降低钢的韧性,尤其是钢的低温韧性。基于此,在本发明所述的x65级耐超低温无缝管线管中控制v的质量百分比在0.04~0.07%之间。
20.nb:在本发明所述的x65级耐超低温无缝管线管中,在淬火过程中,钢中未溶解的nb(c,n)粒子可以有效阻止奥氏体晶粒长大粗化,对组织细化有利,对提高低温韧性有利,同时可避免因奥氏体晶粒粗大使淬透性增强而导致在冷却过程中形成数量较多的板条贝氏体组织。当钢中nb元素含量高于0.045%时,上述效果饱和且成本提高。而若钢中nb元素含量低于0.02%时,淬火加热过程中无法有效阻止奥氏体晶粒长大粗化,一方面晶粒粗化会降低钢的韧性,另一方面也导致随后冷却后粗大的过冷奥氏体晶粒容易形成比例过高的板条贝氏体组织,从而使粒状贝氏体组织比例过低。基于此,综合考虑生产成本以及nb元素的作用效果,在本发明所述的x65级耐超低温无缝管线管中控制nb的质量百分比在0.02~0.045%之间。
21.在本发明所述的x65级耐超低温无缝管线管中,钢中c元素含量过低或mo、mn元素含量过低时,钢经淬火冷却后不能得到合适比例的板条贝氏体组织,不能满足本发明所需的x65钢级强度等级要求。而若钢中c元素含量过高或mo、mn元素含量过高时,则钢经淬火冷却后将易于形成完全以板条贝氏体为主的组织,但也会增加m-a组元的数量,对钢的低温韧性不利。vc含量过高同样也会对低温韧性不利。基于此,在本发明所述的x65级耐超低温无缝管线管中采用了低c、中mn、低mo、低v的成分设计以获得耐超低温且强度等级在x65钢级的无缝管线管材料。
22.另外,需要说明的是,在本发明所述的x65级耐超低温无缝管线管中不可避免的杂质元素可以包括有p、s、n和o元素。p、s、n和o这些元素均是钢中的杂质元素,在钢中的含量越低越好。
23.进一步地,在本发明所述的x65级耐超低温无缝管线管中,其各化学元素还满足:10≤n≤20,n=[c mn/6 (mo v)/5]
×
vc;其中,c、mn、mo、v分别表示相应元素的质量百分比,其代入百分号前面的数值,vc表示淬火冷却速度的数值,其单位为℃/s。
[0024]
在上述技术方案中,在本发明所述的x65级耐超低温无缝管线管中,在控制单一元素含量的同时,通过控制10≤n≤20,n=[c mn/6 (mo v)/5]
×
vc,可以有效保证本发明所述的x65级耐超低温无缝管线管优异的耐超低温韧性,式中c、mn、mo、v分别表示相应元素的质量百分比,其代入百分号前面的数值,vc则代入淬火冷却速度的数值。例如:0.07%c、1.55%mn、0.10%mo、0.05%v、vc=40℃/s时,n=[0.07 1.55/6 (0.10 0.05)/5]*40=14.3。
[0025]
进一步地,在本发明所述的x65级耐超低温无缝管线管中,其微观组织为板条贝氏体 粒状贝氏体。
[0026]
上述技术方案中,板条贝氏体是指尺寸细小的杆状形态的m-a组元(马氏体-残余奥氏体组元)在铁素体板条界面分布的一种贝氏体组织,韧性较高,强度也较高;粒状贝氏体是指尺寸较粗大的块状形态的m-a组元在等轴铁素体中分布的一种贝氏体组织,可以提供较多的大角度界面分割组织进一步提高阻碍裂纹扩展的能力提高韧性,但强度较低。
[0027]
进一步地,在本发明所述的x65级耐超低温无缝管线管中,所述板条贝氏体的体积分数为60~80%,所述粒状贝氏体的体积分数为20~40%。
[0028]
在本发明的上述技术方案中,控制板条贝氏体的体积分数60~80%和粒状贝氏体的体积分数20~40%,可以有效满足无缝管线管耐超低温的韧性要求。
[0029]
进一步地,在本发明所述的x65级耐超低温无缝管线管中,所述板条贝氏体和粒状贝氏体两者中m-a组元的总体积分数≤8%。
[0030]
在本发明的上述技术方案中,控制板条贝氏体和粒状贝氏体两者中m-a组元的总体积分数≤8%,同样也是为了满足无缝管线管耐超低温的韧性要求。
[0031]
进一步地,在本发明所述的x65级耐超低温无缝管线管中,其平均晶粒尺寸≤20μm。
[0032]
进一步地,在本发明所述的x65级耐超低温无缝管线管中,其室温屈服强度rt
0.5
为450~550mpa,室温抗拉强度rm为535~635mpa,-75℃下的冲击韧性kv2≥200j,韧脆转变温度tk≤-80℃。
[0033]
相应地,本发明的另一目的在于提供一种x65级耐超低温无缝管线管的制造方法,采用该制造方法制得的x65级耐超低温无缝管线管的室温屈服强度rt
0.5
为450~550mpa,室温抗拉强度rm为535~635mpa,-75℃下的冲击韧性kv2≥200j,韧脆转变温度tk≤-80℃,具有x65钢级的强度和优异的耐超低温韧性。
[0034]
为了实现上述目的,本发明提出了上述的x65级耐超低温无缝管线管的制造方法,包括步骤:
[0035]
(1)制得管坯;
[0036]
(2)将管坯制成钢管;
[0037]
(3)淬火:将钢管加热到t

=900~980℃且t

273.15≤7510/[2.96-lg(nb
×
c)]-80),保温一段时间,然后以20~60℃/s的冷却速度vc冷却到200℃以下;
[0038]
(4)回火。
[0039]
在本发明所述的x65级耐超低温无缝管线管的制造方法中,通过对工艺条件尤其是淬火处理工艺参数和快速冷却工艺参数的控制,有效保证了采用本发明所述的制造方法所制得的x65级耐超低温无缝管线管的性能。
[0040]
在本发明所述制造方法的步骤(3)中,将淬火加热温度t

限定在900~980℃之间且控制t

273.15≤7510/[2.96-lg(nb
×
c)]-80,可以有效控制无缝管线管的平均晶粒尺寸≤20μm。其中,公式中nb和c分别表示其对应元素质量百分比百分号前的数值。淬火保温后加以合适的20~60℃/s的冷却速度vc控制,可以有助于x65级耐超低温无缝管线管获得所需的体积分数在60~80%的板条贝氏体 20~40%的粒状贝氏体的混合组织,从而获得良好的强韧性匹配效果。
[0041]
需要说明的是,在上述步骤(3)中,若淬火加热温度t

低于900℃,不仅会使各种合金元素不能充分固溶,影响固溶强化效果,而且还会导致奥氏体晶粒过于细小。合金元素未充分固溶和奥氏体晶粒过于细小这两点均会导致钢在随后的冷却过程中,容易形成铁素体组织和过多的粒状贝氏体组织,而不易于形成足够比例的板条贝氏体组织,导致强度降低。而若控制淬火加热温度t

高于980℃时或t

273.15>7510/[2.96-lg(nb
×
c)]-80时,则nb(c,n)会大量溶解,不能阻止奥氏体晶粒长大粗化,不仅不利于无缝管线管的低温韧性,而且在随后的冷却过程中容易形成过多的板条贝氏体组织。
[0042]
此外,需要注意的是,在步骤(3)中,淬火加热后的冷却速度vc对板条贝氏体、粒状贝氏体和m-a组元的比例有影响。若淬火加热后冷却速度vc过低,则粒状贝氏体体积分数比过高,且m-a组元比例高,对钢的强度和韧性均不利;而若冷却速度vc过高,则板条贝氏体体积分数比高,粒状贝氏体体积分数过少,对钢的韧性也不利。因此在本发明所述的制造方法中将冷却速度vc控制在20~60℃/s之间。
[0043]
在一些优选的实施方式中,在控制冷却速度vc在20~60℃/s之间的同时,还可以控制冷却速度vc满足板条贝氏体相变因子n(n=[c mn/6 (mo v)/5]
×
vc)在10≤n≤20范围的要求。当控制冷却速度vc低于20℃/s且n<10时,则不能获得完全的贝氏体组织,组织细化程度不足以使m-a组元弥散细小化,从而降低低温韧性;而若控制冷却速度vc高于60℃/s且n>20时,则组织中形成具有杆状m-a组元的板条贝氏体的体积分数会>80%。
[0044]
另外,在本发明所述的x65级耐超低温无缝管线管的制造方法中步骤(3)中的淬火可以采用油淬或者水淬。
[0045]
进一步地,在本发明所述的制造方法中,在步骤(4)中,控制回火温度为500~700℃。
[0046]
在上述技术方案中,在步骤(4)中,可以通过回火热处理工艺使钢中m-a组元分解,从而进一步改善韧性,但回火又会导致板条贝氏体退化程度加大,降低钢的强度,无法满足x65钢级强度要求。当回火温度低于500℃,制得的无缝管线管的耐超低温韧性不足;而若回火温度高于700℃,则制得的无缝管线管强度过低。因此,可以控制回火温度在500~700℃之间,以满足x65钢级的要求。
[0047]
此外,需要说明的是,针对回火热处理工艺会导致板条贝氏体退化程度加大,从而降低强度,无法满足x65钢级强度要求的问题。本专利通过添加适量的vc可以在不降低韧性的前提下补充强度损失。在回火过程中v元素与c结合析出的vc会起到强烈的析出强化作用,虽对强度有利,但会极大地降低韧性尤其是低温韧性,因此在本发明中为了保证制得的无缝管线管具有低温韧性还需采用低v的成分设计。
[0048]
进一步地,在本发明所述的制造方法中,在步骤(3)中,淬火保温时间为0.3~1.2h。
[0049]
本发明所述的x65级耐超低温无缝管线管及其制造方法相较于现有技术具有如下所述的优点以及有益效果:
[0050]
综上所述可以看出,与现有无缝管相比较,本发明技术方案核心设计之处在于低c、中mn、低mo、低v的成分设计 特定淬火和冷却工艺的组合设计。本发明所述的x65级耐超低温无缝管线管通过合理的化学成分c、mn、mo、v元素含量设计,配合淬火步骤中特定设计的淬火加热温度t

和冷却速度vc,可以获得微观组织为板条贝氏体 粒状贝氏体的无缝管线管。该x65级耐超低温无缝管线管的室温屈服强度rt
0.5
为450~550mpa,室温抗拉强度rm为535~635mpa,-75℃下的冲击韧性kv2≥200j,韧脆转变温度tk≤-80℃,具有x65钢级的强度以及优异的耐超低温韧性。
[0051]
本发明所述的x65级耐超低温无缝管线管钢可以有效应用于天然气管道运输,服役于超低温恶劣环境中,具有良好的推广前景和应用价值。
具体实施方式
[0052]
下面将结合具体的实施例对本发明所述的x65级耐超低温无缝管线管及其制造方法做进一步的解释和说明,然而该解释和说明并不对本发明的技术方案构成不当限定。
[0053]
实施例1-6和对比例1-6
[0054]
实施例1-6的x65级耐超低温无缝管线管和对比例1-6的无缝管线管均采用以下步骤制得:
[0055]
(1)按照表1所示的化学成分进行冶炼并连铸成圆管坯;
[0056]
(2)将管坯加热保温,经穿孔、连轧、张力减径或定径得到钢管,其中可以控制管坯加热温度为1150~1300℃,控制保温时间1~5h;
[0057]
(3)淬火:将钢管加热到t

=900~980℃且t

273.15≤7510/[2.96-lg(nb
×
c)]-80),保温一段时间,控制淬火保温时间为0.3~1.2h,然后以20~60℃/s的冷却速度vc冷却到200℃以下。
[0058]
(4)回火:控制回火温度为500~700℃。
[0059]
需要说明的是,本发明实施例1-6的x65级耐超低温无缝管线管的化学成分设计和相关工艺参数均满足设计要求。相应的,在对比例1-6的无缝管线管中,化学成分设计和相关工艺参数存在不满足设计要求的参数。
[0060]
表1列出了实施例1-6的x65级耐超低温无缝管线管和对比例1-6的无缝管线管中各化学元素质量百分比。
[0061]
表1.(余量为fe和其他不可避免的杂质)
[0062]
编号c(wt%)si(wt%)mn(wt%)mo(wt%)nb(wt%)v(wt%)n实施例10.0580.161.500.180.030.0710.02实施例20.0790.251.310.080.0210.04112.95实施例30.0410.301.650.120.0440.06317.63实施例40.0600.341.980.220.0380.05513.35实施例50.0600.291.600.10.0310.06716.20实施例60.0700.311.550.090.0320.06919.81对比例10.0650.301.700.350.0350.06321.55
对比例20.0600.331.800.2200.05512.45对比例30.0450.331.800.220.0280.05512.00对比例40.0650.301.650.120.0350.06316.95对比例50.0650.302.20.120.0350.06325.75对比例60.0650.301.650.120.0350.06332.01
[0063]
注:n=[c mn/6 (mo v)/5]
×
vc;其中,c、mn、mo和v分别表示相应元素的质量百分比,其代入百分号前面的数值,vc表示淬火冷却速度的数值,其单位为℃/s。
[0064]
表2列出了实施例1-6的x65级耐超低温无缝管线管和对比例1-6的无缝管线管的具体工艺参数。
[0065]
表2.
[0066][0067][0068]
将制得的实施例1-6的x65级耐超低温无缝管线管和对比例1-6的无缝管线管进行各项力学性能测试,所得的测试结果列于表3中。
[0069]
表3列出了实施例1-6的x65级耐超低温无缝管线管和对比例1-6的无缝管线管的力学性能测试结果。
[0070]
表3.
[0071][0072]
由表3可以看出,本发明实施例1-6的x65级耐超低温无缝管线管的室温屈服强度rt
0.5
均在450~550mpa范围之间,室温抗拉强度rm均在535~635mpa范围内,-75℃冲击韧性kv2均≥200j且韧脆转变温度tk均≤-80℃。各实施例的x65级耐超低温无缝管线管的力学性能十分优异,不仅具有x65级的强度,还具有良好的低温韧性。
[0073]
在本发明中,对实施例1-6的x65级耐超低温无缝管线管和对比例1-6的无缝管线管进行取样分析,观察各实施例和对比例微观组织的平均晶粒尺寸大小和组织中粒状贝氏体、板条贝氏体的体积分数,以及在淬火态测量粒状贝氏体和板条贝氏体两者中总的m-a组元体积分数,所得观察结果列于表4中。
[0074]
表4列出了实施例1-6的x65级耐超低温无缝管线管和对比例1-6的无缝管线管的微观组织观察结果。
[0075]
表4.
[0076][0077]
需要说明的是,板条贝氏体是指尺寸细小的杆状形态的m-a组元(马氏体-残余奥
氏体组元)在铁素体板条界面分布的一种贝氏体组织,韧性较高,强度也较高;粒状贝氏体是指尺寸较粗大的块状形态的m-a组元在等轴铁素体中分布的一种贝氏体组织,可以提供较多的大角度界面分割组织进一步提高阻碍裂纹扩展的能力提高韧性,但强度较低。
[0078]
由表4可以看出,本发明各实施例的x65级耐超低温无缝管线管的平均晶粒尺寸均≤20μm。本发明实施例1-6的x65级耐超低温无缝管线管的微观组织均为板条贝氏体 粒状贝氏体。其中,微观组织中的板条贝氏体的体积分数均在60~80%之间,粒状贝氏体的体积分数均在20~40%之间,板条贝氏体和粒状贝氏体两者中m-a组元的总体积分数均≤8%。
[0079]
结合表1、表2、表3和表4可以看出,实施例1-6的化学成分和相关工艺参数均符合本发明设计规范控制要求。相较于实施例1-6,对比例1-6控制安排有未能满足发明设计要求的化学成分或相关工艺参数。
[0080]
对比例1由于钢中mo元素含量过高且板条贝氏体相变因子n>20,导致其制得的无缝管线管中的粒状贝氏体含量较少,体积分数<20%,且ma含量较多,体积分数>8%,使得-75℃低温冲击韧性明显不足,低于200j。
[0081]
对比例2由于钢中未添加nb元素,导致奥氏体晶粒尺寸粗大,平均晶粒尺寸>20μm,制得的无缝管线管中的粒状贝氏体含量较少,体积分数<20%,且没有nb元素的沉淀强化作用,导致强度不足和-75℃低温冲击韧性较低。
[0082]
对比例3虽然将淬火加热温度t

控制在900~980℃之间,但由于淬火加热温度t

273.15>7510/[2.96-lg(nb
×
c)]-80,会导致奥氏体晶粒尺寸粗大,平均晶粒尺寸>20μm,进一步导致粒状贝氏体含量较少,体积分数<20%,平均晶粒尺寸粗大和粒状贝氏体含量较少,使得制得的无缝管线管在-75℃低温冲击韧性明显不足,低于200j。
[0083]
对比例4由于淬火加热温度t

过高,t

>980℃,导致钢中奥氏体晶粒粗大,平均晶粒尺寸>20μm,进一步导致粒状贝氏体含量较少,体积分数<20%,平均晶粒尺寸粗大和粒状贝氏体含量较少,使得制得的无缝管线管在-75℃低温冲击韧性明显不足,低于200j。
[0084]
对比例5由于淬火加热温度t

温度过低,导致奥氏体晶粒过细,促进相变温度向高温方向移动,促进粒状贝氏体转变,导致粒状贝氏体含量过多,体积分数>40%,并形成了少量铁素体组织,使制得的无缝管线管强度不足,不能满足x65钢级的强度要求。
[0085]
对比例6在制造过程中控制的冷却速度vc过快,vc>60℃/s,且板条贝氏体相变因子n>20,从而会导致粒状贝氏体含量较少,体积分数<20%,使得制得的无缝管线管在-75℃低温冲击韧性明显不足,低于200j。
[0086]
综上所述可以看出,本发明所述的x65级耐超低温无缝管线管通过合理的化学成分c、mn、mo、v元素含量设计,配合淬火步骤中特定设计的淬火加热温度t

和冷却速度vc,可以获得微观组织为板条贝氏体 粒状贝氏体的无缝管线管。该x65级耐超低温无缝管线管的室温屈服强度rt
0.5
为450~550mpa,室温抗拉强度rm为535~635mpa,-75℃下的冲击韧性kv2≥200j,韧脆转变温度tk≤-80℃,具有x65级的强度以及优异的耐超低温韧性。
[0087]
本发明所述的x65级耐超低温无缝管线管钢可以有效应用于天然气管道运输,服役于超低温恶劣环境中,具有良好的推广前景和应用价值。
[0088]
需要说明的是,本发明的保护范围中现有技术部分并不局限于本技术文件所给出的实施例,所有不与本发明的方案相矛盾的现有技术,包括但不局限于在先专利文献、在先公开出版物,在先公开使用等等,都可纳入本发明的保护范围。
[0089]
此外,本案中各技术特征的组合方式并不限本案权利要求中所记载的组合方式或是具体实施例所记载的组合方式,本案记载的所有技术特征可以以任何方式进行自由组合或结合,除非相互之间产生矛盾。
[0090]
还需要注意的是,以上列举的仅为本发明的具体实施例,显然本发明不限于以上实施例,随之有着许多的类似变化。本领域的技术人员如果从本发明公开的内容直接导出或联想到的所有变形,均应属于本发明的保护范围。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献