一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种基于神经网络的工业以太网故障预测方法与流程

2021-12-08 00:53:00 来源:中国专利 TAG:


1.本发明涉及工业以太网技术领域,具体涉及一种基于神经网络的工业以太网故障预测方法。


背景技术:

2.工业以太网的维护管理如果缺乏完善的网络监视和管理功能,仅仅局限于冗余切换、事后告警、不坏不修,将会使得网络系统故障、响应滞后,带来巨大的安全隐患。因此,故障预测的研究对于预知网络异常情况,提升网络运维效率以及降低运维成本具有重要意义。随着大数据技术的发展与故障预测理论的革新,工业以太网的网络健康管理从对故障和异常事件的被动反应向网络健康状态的实时感知与故障预测方向发展。
3.过去几年来,用机器学习技术来进行故障预测取得了较大的进步。人工神经网络作为一种大规模并行处理的非线性系统,可利用学习训练或改变架构的方式处理线性、非线性的问题,而且人工神经网络自学习和抗干扰能力强,对于信息的综合处理能力强,理论上能逼近任何非线性系统。小脑模型神经网络(cerebellar model articulation controller,cmac)作为一种典型的局部逼近网络,它通过每次学习只修改一部分权值的方法来学习复杂的非线性过程,具有学习速度快的优点,特别适用于非线性函数映射领域。


技术实现要素:

4.本发明主要是为了解决,工业以太网的维护管理缺乏完善的网络监视和管理功能导致存在安全隐患的问题,提供了一种基于神经网络的工业以太网故障预测方法,通过训练改进的基于信度分配思想的cmac神经网络生成故障预测模型,实时感知工业以太网的健康状态,对工业以太网进行健康评估和故障预测,做到事前预测事先做出维护措施,提高网络维护维修效率,提高网络服务质量。
5.为了实现上述目的,本发明采用以下技术方案:
6.一种基于神经网络的工业以太网故障预测方法,包括以下步骤:步骤s1)采集工业以太网发生性能越限事件和告警事件时工业以太网交换机的历史性能值;步骤s2)对采集到的历史性能值进行预处理并分析,获得单个性能值的变化规律以及多个性能值之间的关系规律;步骤s3)设计多维的cmac神经网络,基于信度分配思想,对常规cmac神经网络的训练算法进行改进,校正误差根据存储单元的可信度进行分配;步骤s4)用预处理后的历史性能值数据训练改进后的cmac神经网络生成故障预测模型;步骤s5)使用故障预测模型进行工业以太网故障预测。本发明基于信度分配思想对cmac神经网络进行改进,再训练改进后的基于信度分配思想的cmac神经网络生成故障预测模型,最后用故障预测模型对工业以太网进行故障预测。工业以太网的性能值变化能够反映网络中设备或链路的状态,在设备或链路即将出现故障时会伴随着性能值越限,如光纤老化的过程会伴随着出现丢包率、误码率的升高。本发明提供了一种基于神经网络的工业以太网故障预测方法,对工业以太网的性能越限事件和告警事件进行挖掘,采集工业以太网交换机的性能值如系统信息、端口状
态、告警信息、端口速率、丢帧率、误帧率、平均往返时间、带宽和带宽利用率等,然后对采集的历史性能值数据进行预处理获得训练集。因为工业以太网的设备或链路出现故障前可能会导致多个性能值越限,所以根据单个性能值越限的情况进行故障预测的准确率会比较低,需要对网络的多个性能值进行采集和分析,获得单个性能值的变化规律以及多个性能值之间的关系规律,从而保证工业以太网故障预测的准确性。cmac神经网络的基本结构包括输入层、隐含层、输出层三部分,其基本思想在于:在输入空间中给出一个状态,从存储单元中找到对应该状态的地址,将这些存储单元中的内容求和得到cmac神经网络的输出,将此响应输出值与期望输出值进行比较,并根据学习算法修改这些已激活的存储单元的内容。在常规算法中,校正误差基于同样的信度被平均分配到所有被激活的存储单元,但是经过多次学习后,最初的存储单元已经包含了一些先前学习的知识,所以每一个存储单元具有不同的学习历史,如果无视此差异,让所有被激活的存储单元都获得相同的校正误差,那么那些由未学习状态产生的误差将对先前学习的信息产生“腐蚀”。为了克服常规cmac神经网络的“腐蚀”效应,本方案基于信度分配思想,对cmac神经网络的训练算法进行改进,校正误差根据存储单元的可信度进行分配。
7.步骤s2中基于信度分配思想,对常规cmac神经网络的训练算法进行改进,改进后的cmac神经网络训练算法如下:其中,w表示权值,m和t表示学习次数,l和j表示某个激活的存储单元,β表示学习速率,f
d
表示期望值,f(s)表示输出值,c表示泛化参数,f
t
(j)表示第j个激活的存储单元第t次学习时的已学习次数,f
t
(i)表示第i个激活的存储单元第t次学习时的已学习次数,f
m
(l)表示第l个激活的存储单元第m次学习时的已学习次数,k表示平衡学习常数。此训练算法对训练过程中每个激活的存储单元的学习次数进行统计,该统计不仅包含后续学习样本对相同存储单元激活次数的改变,也包含后续训练对存储单元激活次数的改变,然后更新权值时把误差按激活的存储单元的学习次数占所有激活的存储单元的学习次数总和的百分比来进行分配。从上式可见百分比越大,分配误差越小。权值调整规则为:学习次数多,则包含信息可信度高,调整量少;学习次数少,则包含信息可信度低,调整量多。如此,既可减少后续学习样本对先前学习样本的学习干扰,也可减少后续训练对先前训练的学习干扰。该算法基于信度分配误差,对于学习次数多的存储单元少校正误差,对于学习次数少的存储单元多校正误差,从而减少了学习干扰。
8.作为优选,步骤s5中使用故障预测模型进行工业以太网故障预测,具体过程包括
以下步骤:步骤s21)采集待测工业以太网的交换机实时性能值并对实时性能值数据进行预处理、预测;步骤s22)将预处理后的实时性能值数据作为故障预测模型的输入,故障预测模型输出待测工业以太网的故障状态。本方案训练改进的基于信度分配思想的cmac神经网络生成故障预测模型后,搭建平台采集待测工业以太网交换机的实时性能值,并对实时性能值进行预处理和预测,然后将预处理后的实时性能值数据作为故障预测模型的输入,故障预测模型输出待测工业以太网的故障状态,包括故障、非故障状态,本发明实时感知工业以太网的健康状态,对工业以太网进行健康评估和故障预测,做到事前预测事先做出维护措施,提高网络维护维修效率,提高网络服务质量。
9.作为优选,步骤s4中用预处理后的历史性能值数据训练改进后的cmac神经网络的过程,包括以下步骤:步骤a1:采用四阶龙格

库塔法求解性能值数据和故障状态之间的微分方程,公式如下:其中k1=f(x
i
,y
i
))k4=f(x
i
h,y
i
hk3)其中,k1表示开始斜率,k2表示第一中点斜率,k3表示第二中点斜率,k4表示终点斜率,h表示时间间隔,y
i
表示当前状态,y
i 1
表示下一个状态,x表示时间;再根据上述公式采用迭代算法求得离散点上的近似解;步骤a2:引入专家协调器,根据当前的误差信号切换控制策略,公式如下:其中,u
bangbang
表示专家控制,u
d
表示cmac控制,u
p
表示比例控制,e表示误差;步骤a3:引入极值控制,当误差在大偏差范围内时,进行快速校正;步骤a4:引入比例控制,作为cmac神经网络的辅助控制器,本步骤对系统的初始动态有一定的改善作用;步骤a5:引入改进的cmac神经网络控制,将期望输出状态向量s
d
定义为:s
d
=<x
1e
[k 1],x1[k],e
d
>,e
d
=x
1e
[k 1]

x1[k]其中,k表示学习步数,e
d
表示期望误差,x
1e
[k 1]表示下一步期望输出,x1[k]表示当前输出;将当前输入状态向量so定义为:s0=<x1,x2,d
x
>其中,x1,x2表示工业以太网特征值,d
x
表示工业以太网聚合特征值;步骤a6:进行cmac神经网络基函数计算,引入数论函数[x],[x]表示将x取整为大于或等于x的一个最小的整数,即[x]=k 1,k<x≤k 1,式中k为自然数;基函数总数p的计算
公式如下:其中,c表示泛化参数,n表示输入维数,r
i
表示对应输入轴的量化级,d
ij
表示覆盖偏移向量;步骤a7:进行cmac神经网络输入空间量化,cmac神经网络需要定义一个n维的网格基来标准化输入空间,使得每个输入都落在一个超立方体内;对输入空间的划分不仅影响网络的内存消耗,还影响网络的建模能力和学习收敛速度,划分得越细,网络的学习精度越高,同时也带来更大的计算量;步骤a8:进行cmac神经网络泛化参数寻优,泛化参数c是cmac网络中的重要参数,它表征了信号检测单元的感受野大小,直接影响系统的泛化能力;泛化参数c不仅规定了影响输出的基函数的数量,还定义了基函数定义域的大小,当c增加时,定义域也增大,网络学习变得缺少局部特性,网络的建模能力通常会下降,因此需要试凑后选定最优的泛化参数c,在最优泛化参数c下网络具有较好的泛化能力,收敛速度也很快;步骤a9:进行cmac神经网络学习速率寻优,cmac神经网络存在过学习的缺点,即学习次数多的泛化效果并不如学习次数少的泛化效果好;通过训练结果发现学习速率取1时的学习效果并不是最好的,而且大于1的学习速率虽然能使网络收敛但是会使学习性能变坏;步骤a10:进行cmac神经网络学习次数寻优,从步骤a9的训练结果发现最优的学习速率在0.4附近,此时的网络前5000次训练误差较小,而且网络的后期训练误差也不大;此外较小的学习速率可以使得网络的后期训练误差变小,但是可能使第5000次内的学习误差变大,因为在第5000次到第10000次网络能得到有效学习,使误差迅速减小;由步骤a9和a10可见对于多次学习的情况可以选取较小的学习速率,此时可以兼顾网络在线学习性能要求和学习精度要求,也可以在网络学习后期达到满意的结果,因此本发明用设定学习次数代替设定容许误差的方法来结束学习,学习次数的设定可以通过寻优后选定,如此可以避免过学习,学习次数在寻优后使得网络能较快完成训练并且具有较好的泛化能力;步骤a11:进行cmac神经网络学习误差评价,训练后计算训练样本的绝对误差tae和均方根误差rmse,计算公式如下:其中,n表示总故障状态数,f
d
表示故障状态s的期望输出值,f(s)为故障状态s的实际输出值。
[0010]
作为优选,步骤s1中采集的历史性能值包括以太网交换机的系统信息、端口状态、告警信息、端口速率、丢帧率、误帧率、平均往返时间、带宽和带宽利用率等。工业以太网的性能值变化能够反映网络中设备或链路的状态,在设备或链路即将出现故障时会伴随着性能值越限,如光纤老化的过程会伴随着出现丢包率、误码率的升高。本发明对工业以太网的性能越限事件和告警事件进行挖掘,采集工业以太网交换机的性能值如系统信息、端口状态、告警信息、端口速率、丢帧率、误帧率、平均往返时间、带宽和带宽利用率等,实时感知工
业以太网的健康状态,对工业以太网进行健康评估和故障预测,做到事前预测事先做出维护措施,提高网络维护维修效率,提高网络服务质量。
[0011]
作为优选,所述预处理包括对数据进行清洗、防噪、聚合等。本方案搭建平台采集性能值数据后,需要对数据进行预处理以获得用于训练cmac神经网络的训练集或故障预测模型的输入。
[0012]
作为优选,步骤a5中引入改进的cmac神经网络控制,具体过程包括:将期望输出状态向量s
d
定义为:s
d
=<x
1e
[k 1],x1[k],e
d
>,e
d
=x
1e
[k 1]

x1[k]其中,k表示学习步数,e
d
表示期望误差,x
1e
[k 1]表示下一步期望输出,x1[k]表示当前输出;将当前输入状态向量so定义为:s0=<x1,x2,d
x
>其中,x1,x2表示工业以太网特征值,d
x
表示工业以太网聚合特征值。
[0013]
作为优选,步骤a6中进行cmac神经网络基函数计算,具体过程包括:引入数论函数[x],[x]表示将x取整为大于或等于x的一个最小的整数,即[x]=k 1,k<x≤k 1,式中k为自然数;基函数总数p的计算公式如下:其中,c表示泛化参数,n表示输入维数,r
i
表示对应输入轴的量化级,d
ij
表示覆盖偏移向量。
[0014]
作为优选,步骤a11中进行cmac神经网络学习误差评价,具体过程包括:训练后计算训练样本的绝对误差tae和均方根误差rmse,计算公式如下:其中,n表示总故障状态数,f
d
表示故障状态s的期望输出值,f(s)为故障状态s的实际输出值。
[0015]
因此,本发明的优点是:(1)实时感知工业以太网的健康状态,对工业以太网进行健康评估和故障预测,辅助运维人员做到事前预测事先做出维护措施,提高网络维护维修效率,缩短工业以太网的故障平均修复时间,保证网络安全、可靠地运行,提高网络服务质量;(2)原理可靠,结构简单,具有较强的实际应用价值;(3)进一步推动工业以太网故障预测技术的广泛应用和发展,具有现实意义。
附图说明
[0016]
图1是本发明实施例的流程图。
[0017]
图2是本发明实施例的原理框图。
具体实施方式
[0018]
下面结合附图与具体实施方式对本发明做进一步的描述。
[0019]
如图1

2所示,一种基于神经网络的工业以太网故障预测方法,包括以下步骤:步骤s1)采集工业以太网发生性能越限事件和告警事件时工业以太网交换机的历史性能值;步骤s2)对采集到的历史性能值进行预处理并分析,获得单个性能值的变化规律以及多个性能值之间的关系规律;步骤s3)设计多维的cmac神经网络,基于信度分配思想,对常规cmac神经网络的训练算法进行改进,校正误差根据存储单元的可信度进行分配;步骤s4)用预处理后的历史性能值数据训练改进后的cmac神经网络生成故障预测模型;步骤s5)使用故障预测模型进行工业以太网故障预测。本发明基于信度分配思想对cmac神经网络进行改进,再训练改进后的基于信度分配思想的cmac神经网络生成故障预测模型,最后用故障预测模型对工业以太网进行故障预测。工业以太网的性能值变化能够反映网络中设备或链路的状态,在设备或链路即将出现故障时会伴随着性能值越限,如光纤老化的过程会伴随着出现丢包率、误码率的升高。本发明提供了一种基于神经网络的工业以太网故障预测方法,对工业以太网的性能越限事件和告警事件进行挖掘,采集工业以太网交换机的性能值如系统信息、端口状态、告警信息、端口速率、丢帧率、误帧率、平均往返时间、带宽和带宽利用率等;然后对采集的历史性能值数据进行预处理获得训练集,预处理包括对数据进行清洗、防噪、聚合等;因为工业以太网的设备或链路出现故障前可能会导致多个性能值越限,所以根据单个性能值越限的情况进行故障预测的准确率会比较低,需要对网络的多个性能值进行采集和分析,获得单个性能值的变化规律以及多个性能值之间的关系规律;然后用训练集训练改进的基于信度分配思想的cmac神经网络生成故障预测模型;最后使用故障预测模型对待测工业以太网进行故障预测,具体过程为:搭建平台采集待测工业以太网交换机的实时性能值,并对实时性能值进行预处理和预测,然后将预处理后的实时性能值数据作为故障预测模型的输入,故障预测模型输出待测工业以太网的故障状态,包括故障、非故障状态。cmac神经网络的基本结构包括输入层、隐含层、输出层三部分,其基本思想在于:在输入空间中给出一个状态,从存储单元中找到对应该状态的地址,将这些存储单元中的内容求和得到cmac神经网络的输出,将此响应输出值与期望输出值进行比较,并根据学习算法修改这些已激活的存储单元的内容。在常规算法中,校正误差基于同样的信度被平均分配到所有被激活的存储单元,但是经过多次学习后,最初的存储单元已经包含了一些先前学习的知识,所以每一个存储单元具有不同的学习历史,如果无视此差异,让所有被激活的存储单元都获得相同的校正误差,那么那些由未学习状态产生的误差将对先前学习的信息产生“腐蚀”。为了克服常规cmac神经网络的“腐蚀”效应,本方案基于信度分配思想,对cmac神经网络的训练算法进行改进,校正误差根据存储单元的可信度进行分配。改进后的cmac神经网络训练算法如下:
其中,w表示权值,m和t表示学习次数,l和j表示某个激活的存储单元,β表示学习速率,f
d
表示期望值,f(s)表示输出值,c表示泛化参数,f
t
(j)表示第j个激活的存储单元第t次学习时的已学习次数,f
t
(i)表示第i个激活的存储单元第t次学习时的已学习次数,f
m
(l)表示第l个激活的存储单元第m次学习时的已学习次数,k表示平衡学习常数。此训练算法对训练过程中每个激活的存储单元的学习次数进行统计,该统计不仅包含后续学习样本对相同存储单元激活次数的改变,也包含后续训练对存储单元激活次数的改变,然后更新权值时把误差按激活的存储单元的学习次数占所有激活的存储单元的学习次数总和的百分比来进行分配。从上式可见百分比越大,分配误差越小。权值调整规则为:学习次数多,则包含信息可信度高,调整量少;学习次数少,则包含信息可信度低,调整量多。如此,既可减少后续学习样本对先前学习样本的学习干扰,也可减少后续训练对先前训练的学习干扰。该算法基于信度分配误差,对于学习次数多的存储单元少校正误差,对于学习次数少的存储单元多校正误差,从而减少了学习干扰。
[0020]
步骤s5中使用故障预测模型进行工业以太网故障预测,具体过程包括以下步骤:步骤s21)采集待测工业以太网的交换机实时性能值并对实时性能值数据进行预处理、预测;步骤s22)将预处理后的实时性能值数据作为故障预测模型的输入,故障预测模型输出待测工业以太网的故障状态。本方案训练改进的基于信度分配思想的cmac神经网络生成故障预测模型后,搭建平台采集待测工业以太网交换机的实时性能值,并对实时性能值进行预处理和预测,预处理包括对数据进行清洗、防噪、聚合等,然后将预处理后的实时性能值数据作为故障预测模型的输入,故障预测模型输出待测工业以太网的故障状态,包括故障、非故障状态,实时感知工业以太网的健康状态,对工业以太网进行健康评估和故障预测。
[0021]
步骤s4中用预处理后的历史性能值数据训练改进后的cmac神经网络的过程,包括以下步骤:步骤a1:采用四阶龙格

库塔法求解性能值数据和故障状态之间的微分方程,公式如下:其中k1=f(x
i
,y
i
)
k4=f(x
i
h,y
i
hk3)其中,k1表示开始斜率,k2表示第一中点斜率,k3表示第二中点斜率,k4表示终点斜率,h表示时间间隔,y
i
表示当前状态,y
i 1
表示下一个状态,x表示时间;再根据上述公式采用迭代算法求得离散点上的近似解;步骤a2:引入专家协调器,根据当前的误差信号切换控制策略,公式如下:其中,u
bangbang
表示专家控制,u
d
表示cmac控制,u
p
表示比例控制,e表示误差;步骤a3:引入极值控制,当误差在大偏差范围内时,进行快速校正;步骤a4:引入比例控制,作为cmac神经网络的辅助控制器,本步骤对系统的初始动态有一定的改善作用;步骤a5:引入改进的cmac神经网络控制,将期望输出状态向量s
d
定义为:s
d
=<x
1e
[k 1],x1[k],e
d
>,e
d
=x
1e
[k 1]

x1[k]其中,k表示学习步数,e
d
表示期望误差,x
1e
[k 1]表示下一步期望输出,x1[k]表示当前输出;将当前输入状态向量so定义为:s0=<x1,x2,d
x
>其中,x1,x2表示工业以太网特征值,d
x
表示工业以太网聚合特征值;步骤a6:进行cmac神经网络基函数计算,引入数论函数[x],[x]表示将x取整为大于或等于x的一个最小的整数,即[x]=k 1,k<x≤k 1,式中k为自然数;基函数总数p的计算公式如下:其中,c表示泛化参数,n表示输入维数,r
i
表示对应输入轴的量化级,d
ij
表示覆盖偏移向量;步骤a7:进行cmac神经网络输入空间量化,cmac神经网络需要定义一个n维的网格基来标准化输入空间,使得每个输入都落在一个超立方体内;对输入空间的划分不仅影响网络的内存消耗,还影响网络的建模能力和学习收敛速度,划分得越细,网络的学习精度越高,同时也带来更大的计算量,综合考虑这些因素,并结合数据样本特点选取不同的量化级别,量化等级在200

300之间选取;步骤a8:进行cmac神经网络泛化参数寻优,泛化参数c是cmac网络中的重要参数,它表征了信号检测单元的感受野大小,直接影响系统的泛化能力;泛化参数c不仅规定了影响输出的基函数的数量,还定义了基函数定义域的大小,当c增加时,定义域也增大,网络学习变得缺少局部特性,网络的建模能力通常会下降,因此需要试凑后选定最优的泛化参数c,在最优泛化参数c下网络具有较好的泛化能力,收敛速度也很快,本发明的泛化参数c在50

100之间进行寻优;步骤a9:进行cmac神经网络学习速率寻优,cmac神经网络存在过学习的缺点,即学
习次数多的泛化效果并不如学习次数少的泛化效果好,通过训练结果发现学习速率取1时的学习效果并不是最好的,而且大于1的学习速率虽然能使网络收敛但是会使学习性能变坏;在改进的cmac下,本发明对目标函数的学习速率分别从0.1开始以0.1的间隔取到1.2进行训练来确定最优学习速率,训练结果发现最优的学习速率在0.4附近;步骤a10:进行cmac神经网络学习次数寻优,从步骤a9的训练结果发现最优的学习速率在0.4附近,此时的网络前5000次训练误差较小,而且网络的后期训练误差也不大;此外较小的学习速率可以使得网络的后期训练误差变小,但是可能使第5000次内的学习误差变大,因为在第5000次到第10000次网络能得到有效学习,使误差迅速减小;由步骤a9和a10可见对于多次学习的情况可以选取较小的学习速率,此时可以兼顾网络在线学习性能要求和学习精度要求,也可以在网络学习后期达到满意的结果,因此本发明用设定学习次数代替设定容许误差的方法来结束学习,学习次数的设定可以通过寻优后选定,如此可以避免过学习,学习次数在寻优后使得网络能较快完成训练并且具有较好的泛化能力;步骤a11:进行cmac神经网络学习误差评价,训练后计算训练样本的绝对误差tae和均方根误差rmse,计算公式如下:其中,n表示总故障状态数,f
d
表示故障状态s的期望输出值,f(s)为故障状态s的实际输出值。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献