一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种多类型生物多样性综合评估指标体系的构建方法与流程

2021-12-07 20:13:00 来源:中国专利 TAG:


1.本发明涉及生物多样性保护技术领域,具体涉及一种多类型生物多样性综合评估指标体系的构建方法。


背景技术:

2.生物多样性是指生态系统中生物及其环境形成的生态复合体以及与此相关的各种生态过程的综合。从生物个体数量、功能和亲缘进化关系的角度出发,将生物多样性划分为物种多样性(species diversity)、功能多样性(functional diversity)、系统发育多样性(phylogenetic diversity)多个层次。物种多样性是在物种水平上,基于物种种类、个数、丰富度和均匀度来反映物种多样性的状况。功能多样性在功能性状的水平上,基于物种间功能性状的差异特征反映功能多样性状况。系统发育多样性在物种进化关系的水平上,基于生物种系间的隶属关系的差异特征反映物种亲缘进化关系的多样化。
3.从物种多样性的角度从发,重点考虑物种个体数量和相对丰度的信息来评估生物多样性现状是目前最广泛应用的方法。而物种多样性的计算过程中将群落中每个物种视为等同,忽略了各个物种彼此之间功能性状特征及亲缘进化关系距离上的差异。这些信息的缺失,导致物种多样性层面上对生物多样性的评估具有一定的片面性。兼顾生物个体数量、功能性状特征及亲缘进化关系差异性特征,对生物多样性系统全面的评估是生态系统中生物多样性保护的关键。
4.因此,如何综合多类型多样性特征,多角度系统建立综合评估生物多样性的方法,进而建立系统有效的生物多样性保护策略成为亟待解决的技术问题。


技术实现要素:

5.本发明的目的在于克服上述不足,提供一种多类型生物多样性综合评估指标体系的构建方法,以解决综合多类型生物多样性定量评估方法缺乏的技术问题,建立系统有效的生物多样性保护策略。
6.本发明为解决上述技术问题,所采用的技术方案是:一种多类型生物多样性综合评估指标体系的构建方法,它包括如下步骤:
7.步骤1):构建一套包含物种多样性、功能多样性和系统发育多样性的多类型生物多样性的综合评估指标体系框架;
8.步骤2):基于生物个体数量、功能性状和系统发育特征,筛选出能够良好反映生物多样性的指标;
9.步骤3):结合生物群落的实际情况,确定生物多样性综合评估指标体系中各个指标的界定标准,计算出各个生物多样性评估指标的具体数值;
10.步骤4):利用最小极差标准化法对原始数据标准化处理后,利用主成分分析方法计算各指标权重后,进一步通过各指标权重归一化方法计算各个指标的最终权重;
11.步骤5):得到各个单项指标评价值及其权重后,利用叠置指数法计算得到多类型
生物多样性综合指数。
12.优选地,所述步骤1)中,物种多样性定量指标选取丰富度指数、均匀度指数、香浓多样性指数和优势度指数来综合反映物种多样性的状况。
13.优选地,(1)丰富度指数计算公式为:
[0014][0015]
式中d是margalef丰富度指数;n是个体总数;s是物种数;
[0016]
(2)均匀度指数计算公式为:
[0017][0018]
式中j是pielouj均匀度指数;h’是shannon

wiener多样性指数;s是物种数;
[0019]
(3)香浓多样性指数计算公式为:
[0020][0021]
式中h’是shannon

wiener多样性指数;ni是第i中物种的个体数;n是总个体数;
[0022]
(4)优势度指数计算公式为:
[0023][0024]
式中d是simpson优势度指数;ni是第i中物种的个体数;n是总个体数。
[0025]
优选地,所述步骤1)中,依据河流生态系统大型底栖动物对水文情势变异响应的差异性,选取能有效表征大型底栖动物抵御环境波动的代表性功能性状计算各个功能多样性指数,功能多样性指数包括功能多样性指数、功能均匀度指数、功能分异度指数和二次熵指数(rao’s)。
[0026]
优选地,(1)功能丰富度指数计算公式为:
[0027][0028]
式中fr
ci
是群落i中的特征c的功能丰富度;sf
ci
是群落内物种占据的生态位;r
c
是绝对特征值范围;
[0029]
(2)功能均匀度指数计算公式为:
[0030][0031]
式中p
i
是物种i的相对特征值;s是物种数;
[0032]
(3)功能分异度指数计算公式为:
[0033][0034]
式中fd
iv
是包含多项功能特征的功能分异度指数;c
i
是第i项功能特征的数值;a
i
是第i项功能特征的相对丰富度,是物种特征值自然对数的加权平均,n是群落中的物种数;
[0035]
(4)二次熵指数(rao’s)计算公式为:
[0036][0037]
式中d
ij
是群落中i物种和j物种功能特征距离;p
i
是物种i的个体数占群落总物种个体数的比例;p
j
是物种j的个体数占群落总物种个体数的比例;s是群落中总物种数。
[0038]
优选地,所述步骤1)中,依据河流生态系统大型底栖动物在系统发育分类树中亲缘关系的远近程度,计算系统发育多样性指数,系统发育多样性指数包括分类多样性指数、分类差异性指数、平均分类差异性指数和分类差异变异性指数。
[0039]
优选地,(1)分类多样性指数计算过程:
[0040]
分类多样性指数是计算任意两个物种间在系统发育分类树状图中平均分类距离;
[0041][0042]
式中x
i
是第i个物种数量,x
j
是第j个物种数量;ω
ij
是第i个和第j个物种在分类树中的路径长度;
[0043]
(2)分类差异性指数计算过程:
[0044]
分类差异性指数是计算任意两个物种间在系统发育分类树状图中平均分类距离时忽略相同物种个体之间路径的长度;
[0045][0046]
式中x
i
是第i个物种数量,x
j
是第j个物种数量;ω
ij
是第i个和第j个物种在分类树中的路径长度;
[0047]
(3)平均分类差异性指数计算过程:
[0048]
平均分类差异性指数是计算物种名录中任意一对物种之间平均分类距离的路径长度,不考虑物种丰度;
[0049][0050]
式中ω
ij
是第i个和第j个物种在分类树中的路径长度;s是群落中出现的种类数;
[0051]
(4)分类差异变异性指数计算过程:
[0052]
分类差异变异性指数是计算平均分类差异性指数偏离程度的理论平均值,评估每一对物种间路径距离的变异性;
[0053][0054]
式中ω
ij
是第i个和第j个物种在分类树中的路径长度;s是群落中出现的种类数。
[0055]
优选地,步骤4)中最小极差标准化法对原始物种数据标准化计算公式为:
[0056][0057]
式中x
ij
和z
ij
分别为第i(i=1,2,
……
,m)个评价指标第j(j=1,2,
……
,n)个点位的原始数据值和标准化处理后的数据值,minx
i
和maxx
i
分别为第i个评价指标的最小数据值和最大数据值。
[0058]
优选地,步骤4)中主成分分析方法计算各指标权重的具体过程为:
[0059]
(1)相关系数矩阵计算过程:
[0060]
标准化数据矩阵计算对应的相关系数矩阵r,并计算r的特征值与特征向量;
[0061]
r=

(r
ij
)p
×
p
ꢀꢀ
(式14)
[0062]
其中:
[0063]
式中i=1,2,......,n,j=1,2,......,p,r的特征值为λ
i
,特征向量为λ
i
(i=1,2,......,p);
[0064]
(2)主成分模型计算过程:
[0065]
根据累计贡献率来获取主成分,使其特征值大于1,选取k个主成分,建立主成分模型;
[0066]
第1主成分f1=a
11
z1 a
21
z2 a
31
z3

a
p1
z
p
ꢀꢀ
(式16)
[0067]
第2主成分f2=a
1222
a
22
z2 a
32
z3

a
p2
z
p
ꢀꢀ
(式17)
[0068]
第k主成分f
k
=a
1k
z2 a
2k
z2 a
3k
z3

a
pk
z
p
ꢀꢀ
(式18)
[0069]
式中a
ij
描述了因子i在第j个主成分中的因子得分系数,及第i个因子对第j个主成分的贡献率,它与该主成分对应方差的贡献率e
j
的组合为第i个因子的权重值;
[0070][0071]
式中a
ij
描述了因子i在第j个主成分中的因子得分系数,e
j
为第j个主成分方差的贡献率,w
i
为计算得出的指标权重值;
[0072]
(3)指标权重的归一化计算过程:
[0073]
指标权重需要在综合模型中指标系数的基础上归一化,确保所有指标的权重之和为1;
[0074][0075]
式中w
i0
为归一化后的指标最终权重值,w
i
为未归一化的指标权重值。
[0076]
优选地,所述步骤5)中生物多样性综合指数为:
[0077][0078]
式中hb为生物多样性综合指数,w
i0
为第i个指标归一化权重值,z
i
为第i个指标标准化后的评价值。
[0079]
本发明的有益效果:
[0080]
一、构建了一套基于生物多样性维持生态系统稳定性的多类型多样性的综合生物多样性定量评估体系,实现多样性在物种多样性、功能多样性和系统发育多样性特征上的集合。
[0081]
二、评价结果是对生态系统中生物群落数量、功能和进化特征的综合评价,该体系反映了生物群落在数量和分类上的多样化也反映了在生物功能和进化发育上的多样化。
[0082]
三、该指标体系不是针对某一特定类型生态系统,具有一定的普适性。
[0083]
四、本发明基于生物多样性维持生态系统稳定性的生物机制,综合生物个体数量、功能性状和系统发育特征选取适宜多样性指标,通过建立多类型生物多样性综合指数计算方法、综合评价方法系统量化生物多样性现状,进而建立有效的生物多样性保护策略,更加准确的对生物多样性进行保护。
附图说明
[0084]
图1为本发明一实施例中生物多样性综合指数结果图;
[0085]
图2为本发明一实施例中生物多样性综合指数的季节性变异图;
[0086]
图3为本发明一实施例选取的各类多样性指数的季节性变异图。
具体实施方式
[0087]
下面结合附图和具体实施例对本发明作进一步的详细描述。
[0088]
一种多类型生物多样性综合评估指标体系的构建方法,它包括如下步骤:
[0089]
步骤1):构建一套包含物种多样性、功能多样性和系统发育多样性的多类型生物多样性的综合评估指标体系框架;
[0090]
步骤2):基于生物个体数量、功能性状和系统发育特征,筛选出能够良好反映生物多样性的指标;
[0091]
步骤3):结合生物群落的实际情况,确定生物多样性综合评估指标体系中各个指标的界定标准,计算出各个生物多样性评估指标的具体数值;
[0092]
步骤4):利用最小极差标准化法对原始数据标准化处理后,利用主成分分析方法计算各指标权重后,进一步通过各指标权重归一化方法计算各个指标的最终权重;
[0093]
步骤5):得到各个单项指标评价值及其权重后,利用叠置指数法计算得到多类型生物多样性综合指数。
[0094]
优选地,所述步骤1)中,物种多样性定量指标选取丰富度指数、均匀度指数、香浓多样性指数和优势度指数来综合反映物种多样性的状况。
[0095]
优选地,(1)丰富度指数计算公式为:
[0096][0097]
式中d是margalef丰富度指数;n是个体总数;s是物种数;
[0098]
(2)均匀度指数计算公式为:
[0099]
[0100]
式中j是pielouj均匀度指数;h’是shannon

wiener多样性指数;s是物种数;
[0101]
(3)香浓多样性指数计算公式为:
[0102][0103]
式中h’是shannon

wiener多样性指数;ni是第i中物种的个体数;n是总个体数;
[0104]
(4)优势度指数计算公式为:
[0105][0106]
式中d是simpson优势度指数;ni是第i中物种的个体数;n是总个体数。
[0107]
优选地,所述步骤1)中,依据河流生态系统大型底栖动物对水文情势变异响应的差异性,选取能有效表征大型底栖动物抵御环境波动的代表性功能性状计算各个功能多样性指数,功能多样性指数包括功能多样性指数、功能均匀度指数、功能分异度指数和二次熵指数(rao’s)。
[0108]
优选地,(1)功能丰富度指数计算公式为:
[0109][0110]
式中fr
ci
是群落i中的特征c的功能丰富度;sf
ci
是群落内物种占据的生态位;r
c
是绝对特征值范围;
[0111]
(2)功能均匀度指数计算公式为:
[0112][0113]
式中p
i
是物种i的相对特征值;s是物种数;
[0114]
(3)功能分异度指数计算公式为:
[0115][0116]
式中fd
iv
是包含多项功能特征的功能分异度指数;c
i
是第i项功能特征的数值;a
i
是第i项功能特征的相对丰富度,是物种特征值自然对数的加权平均,n是群落中的物种数;
[0117]
(4)二次熵指数(rao’s)计算公式为:
[0118][0119]
式中d
ij
是群落中i物种和j物种功能特征距离;p
i
是物种i的个体数占群落总物种个体数的比例;p
j
是物种j的个体数占群落总物种个体数的比例;s是群落中总物种数。
[0120]
优选地,所述步骤1)中,依据河流生态系统大型底栖动物在系统发育分类树中亲缘关系的远近程度,计算系统发育多样性指数,系统发育多样性指数包括分类多样性指数、
分类差异性指数、平均分类差异性指数和分类差异变异性指数。
[0121]
优选地,(1)分类多样性指数计算过程:
[0122]
分类多样性指数是计算任意两个物种间在系统发育分类树状图中平均分类距离;
[0123][0124]
式中x
i
是第i个物种数量,x
j
是第j个物种数量;ω
ij
是第i个和第j个物种在分类树中的路径长度;
[0125]
(2)分类差异性指数计算过程:
[0126]
分类差异性指数是计算任意两个物种间在系统发育分类树状图中平均分类距离时忽略相同物种个体之间路径的长度;
[0127][0128]
式中x
i
是第i个物种数量,x
j
是第j个物种数量;ω
ij
是第i个和第j个物种在分类树中的路径长度;
[0129]
(3)平均分类差异性指数计算过程:
[0130]
平均分类差异性指数是计算物种名录中任意一对物种之间平均分类距离的路径长度,不考虑物种丰度;
[0131][0132]
式中ω
ij
是第i个和第j个物种在分类树中的路径长度;s是群落中出现的种类数;
[0133]
(4)分类差异变异性指数计算过程:
[0134]
分类差异变异性指数是计算平均分类差异性指数偏离程度的理论平均值,评估每一对物种间路径距离的变异性;
[0135][0136]
式中ω
ij
是第i个和第j个物种在分类树中的路径长度;s是群落中出现的种类数。
[0137]
优选地,对原始数据进行标准化处理后消除了各个指标在属性和数量级上的差异。标准化处理主要解决不同属性数据的加总问题,使不同属性指标变量在综合评价中发挥相同方向的作用,并消除变量的量纲影响,为避免标准化后指标产生负值而不利于后面的运算;步骤4)中最小极差标准化法对原始物种数据标准化计算公式为:
[0138][0139]
式中x
ij
和z
ij
分别为第i(i=1,2,
……
,m)个评价指标第j(j=1,2,
……
,n)个点位的原始数据值和标准化处理后的数据值,minx
i
和maxx
i
分别为第i个评价指标的最小数据值和最大数据值。
[0140]
在本发明的实施例中,基于赤水河(无闸坝的生态河流)和黑水河(闸坝调控河流)2019年4月和9月的大型底栖动物数据,构建不同水文情势变异下河流生态系统多类型生物
多样性的综合评估指标体系框架,如表1所示。
[0141]
表1生物多样性的综合评估指标体系与描述
[0142][0143]
优选地,步骤4)中主成分分析方法计算各指标权重的具体过程为:
[0144]
(1)相关系数矩阵计算过程:
[0145]
标准化数据矩阵计算对应的相关系数矩阵r,并计算r的特征值与特征向量;
[0146]
r=

(r
ij
)p
×
p
ꢀꢀ
(式14)
[0147]
其中:
[0148]
式中i=1,2,
……
,n,j=1,2,
……
,p,r的特征值为λ
i
,特征向量为λ
i
(i=1,2,
……
,p);
[0149]
(2)主成分模型计算过程:
[0150]
根据累计贡献率来获取主成分,使其特征值大于1,选取k个主成分,建立主成分模型;
[0151]
第1主成分f1=a
11
z1 a
21
z2 a
31
z3

a
p1
z
p
ꢀꢀ
(式16)
[0152]
第2主成分f2=a
1222
a
22
z2 a
32
z3

a
p2
z
p
ꢀꢀ
(式17)
[0153]
第k主成分f
k
=a
1k
z2 a
2k
z2 a
3k
z3

a
pk
z
p
ꢀꢀ
(式18)
[0154]
式中a
ij
描述了因子i在第j个主成分中的因子得分系数,及第i个因子对第j个主成分的贡献率,它与该主成分对应方差的贡献率e
j
的组合为第i个因子的权重值;
[0155][0156]
式中a
ij
描述了因子i在第j个主成分中的因子得分系数,e
j
为第j个主成分方差的贡献率,w
i
为计算得出的指标权重值;
[0157]
(3)指标权重的归一化计算过程:
[0158]
指标权重需要在综合模型中指标系数的基础上归一化,确保所有指标的权重之和为1;
[0159][0160]
式中w
i0
为归一化后的指标最终权重值,w
i
为未归一化的指标权重值。
[0161]
本发明实施例中各指标权重计算结果如表2:
[0162]
表2指标权重值计算结果
[0163][0164]
优选地,所述步骤5)中生物多样性综合指数为:
[0165][0166]
式中hb为生物多样性综合指数,w
i0
为第i个指标归一化权重值,z
i
为第i个指标标准化后的评价值。
[0167]
生物多样性综合评估结果:
[0168]
本发明实施例最终得到2019年4月和9月赤水河(无闸坝的生态河流,水文情势变异显著,夏季常发洪水)和黑水河(闸坝调控河流,水文情势小)生物多样现状(图1)。经过系统定量评估,在水文情势显著变异的影响下赤水河4月份生物多样性综合指数平均值为0.550,9月份综合指数为0.466,呈现显著的季节性变化。闸坝调控下水文情势相对稳定的黑水河中,综合多样性指数4月份为0.483,9月为0.482,季节性变化不显著(图2)。与生物多
样性综合评估指数相比,物种多样性指数在赤水河和黑水河中均呈现了显著的季节性变异(图3),物种多样性无法有效区分生物多样性正常的季节性波动和异常扰动(洪水、火灾等自然扰动,水环境污染等人为干扰)对多样性的影响。
[0169]
生物多样性综合评估指数集合大型底栖动物物种个体数量、功能性状和系统发育进化亲缘关系特征等特征,规避了仅考虑物种个体数量对生物多样性的片面评估,从功能特征、亲缘进化关系等角度出发,能有效区分正常季节性波动和异常干扰对生物多样性的影响,能更综合有效评估自然生态系统中生物多样性现状。
[0170]
需要明确的是,在上诉实施例中,描述和展示了依据河流生态系统大型底栖动物多样性性评估中各个指标的选取,本发明并不局限于所描述和示出的河流生态系统、大型底栖动物以及代表性的多样性指标。本发明具有普适性特征,适用于湖泊生态系统、森林生态系统和海洋生态系统等,同样适用于浮游植物、浮游动物、鱼类等生物群落。本领域的技术人员可以在领会本发明精神后,依据研究选取生态系统类型及研究对象的生物特征,选取适宜的多样性指标,依据本发明中生物多样性综合评估指标体系框架,构建适宜的多样性综合评估指标体系,完成对生物多样性的综合评估。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献