一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

铜基石墨烯气凝胶复合催化剂、气体扩散电极和应用的制作方法

2021-12-04 02:14:00 来源:中国专利 TAG:


1.本发明涉及电还原二氧化碳催化剂技术领域,具体而言,涉及一种铜基石墨烯气凝胶复合催化剂、气体扩散电极和应用。


背景技术:

2.化石燃料的大量开采与利用,导致co2排放量急剧增加,从而致使大气中co2含量不断攀升。而co2的大量排放打破了自然界的碳循环,引起了温室效应,引发了海平面上升、气候反常等一系列环境问题。如何减少co2排放并使之转化为燃料或化学品,已成为全球的研究热点。目前,co2转化的主要方法有热催化法、生化法、光催化法和电催化法。与其他转化方法相比,电催化法具有反应条件温和、反应过程可控、环境友好、可构建碳中性循环等优点,且电催化反应系统紧凑、模块化,易于实现工业放大。
3.电催化co2还原反应的产物种类很多,包括一氧化碳(co)、甲酸(hcooh)、甲烷(ch4)、乙烯(c2h4)、乙醇(c2h5oh)等。其中,能生成c2h4的金属催化剂仅有铜基催化剂。铜作为二氧化碳还原电催化剂的独特之处在于,它是唯一对co*具有负吸附能,对h*具有正吸附能的金属。研究表明,多晶铜箔会产生超过16种不同的产物,这对它的选择性是一个巨大的挑战。为此,研究者们通过调控铜的尺寸、形貌、晶面、氧化态等逐步提升c2h4的选择性。近些年,研究者们发现,铜氧化物比铜有更好的c2h4选择性。但是,铜氧化物催化剂导电性较差,导致反应的总电流密度较小,催化剂活性较差;且铜氧化物催化剂稳定性较差,易在反应过程中发生团聚,进而导致催化剂失活;催化剂的c2h4选择性仍然较低(<40%)。近年来,研究者们开始关注金属

碳复合材料,并将其用于电催化co2还原领域,但是依旧存在金属和碳材料的复合工艺较为复杂,金属颗粒较易发生团聚等问题。
4.因此,开发低成本、高活性、高选择性和高稳定性的新型电催化剂是电催化co2还原领域的关键问题。
5.鉴于此,特提出本发明。


技术实现要素:

6.本发明的目的是为了克服上述现有技术存在的缺陷而提供一种铜基石墨烯气凝胶复合催化剂、气体扩散电极和应用。
7.本发明是这样实现的:
8.第一方面,本发明提供一种铜基石墨烯气凝胶复合催化剂,其包括:石墨烯气凝胶以及负载于石墨烯气凝胶上的珊瑚状纳米氧化亚铜棒和纳米铜棒,且纳米氧化亚铜棒和纳米铜棒的直径均为40

60nm。
9.第二方面,本发明还提供一种上述的铜基石墨烯气凝胶复合催化剂的制备方法,其包括:通过溶剂热法,在石墨烯气凝胶上生长珊瑚状纳米氧化亚铜棒和纳米铜棒。
10.第三方面,本发明还提供一种气体扩散电极,其包括:气体扩散电极本体和上述的铜基石墨烯气凝胶复合催化剂,且铜基石墨烯气凝胶复合催化剂附着在气体扩散电极本体
表面;
11.优选地,气体扩散电极本体为碳纸、碳布或碳纳米管海绵;
12.优选地,气体扩散电极本体的尺寸为0.5cm
×
0.5cm~3cm
×
3cm;
13.优选地,气体扩散电极本体表面的铜基石墨烯气凝胶复合催化剂的负载量为0.5~5mg/cm2。
14.第四方面,本发明还提供一种上述的气体扩散电极的制备方法,其包括:将铜基石墨烯气凝胶复合催化剂的分散液涂敷于气体扩散电极本体的表面;
15.优选地,铜基石墨烯气凝胶复合催化剂的分散液的制备包括以下步骤:将铜基石墨烯气凝胶复合催化剂分散到醇水溶液中,加入nafion溶液后超声,得到催化剂分散液;
16.优选地,醇水溶液中醇包含异丙醇和乙醇;
17.优选地,异丙醇与乙醇的体积比为1:10~10:1,醇与水的体积比为1:10~10:1,nafion溶液与水的体积比为1:1~1:10,nafion溶液的质量浓度为5

10wt%;
18.更优选地,将所得分散液涂覆到气体扩散电极本体上,然后置于红外灯下干燥,得到气体扩散电极。
19.第五方面,本发明还提供一种上述的铜基石墨烯气凝胶复合催化剂或气体扩散电极在电催化还原二氧化碳上的应用。
20.第六方面,本发明还提供一种电催化还原二氧化碳的方法,其包括:采用上述的气体扩散电极作为阴极进行电催化还原二氧化碳;
21.优选地,采用双室电解池,施加外部电压,以碳酸氢钾水溶液为电解质溶液;
22.优选地,采用h型双室电解池,中间用nafion117质子交换膜隔开,以铜基石墨烯气凝胶复合催化剂负载的气体扩散电极为工作电极,铂网电极为对电极,ag/agcl电极为参比电极组成三电极体系,阴阳两极电解质溶液为0.1mol/l~0.5mol/l的碳酸氢钾溶液,电催化过程中,h型双室电解池均持续通入二氧化碳气体,更优选地,反应进行之前在电解液中通入二氧化碳气体30min~60min。
23.本发明具有以下有益效果:
24.本发明提供一种铜基石墨烯气凝胶复合催化剂、气体扩散电极和应用,将铜盐、石墨烯气凝胶分别分散于乙二醇中,得到铜盐前驱体溶液和石墨烯气凝胶分散液,然后将铜盐溶液和石墨烯气凝胶分散液混合得到的混合液采用一步溶剂热反应,即得铜基石墨烯气凝胶复合催化剂。本发明可通过有效调控溶剂热反应的工艺条件来获得具有特定形貌和特定价态的铜基石墨烯气凝胶复合催化剂。
25.本发明的铜基石墨烯气凝胶复合催化剂中铜以0价和 1价形式存在,构筑cu

和cu共存的催化还原co2的界面环境,发挥cu

和cu的协同作用,共同促进co2吸附活化和co二聚两个关键步骤,进而提高了乙烯的选择性和活性。同时,本发明提供的铜基石墨烯气凝胶复合催化剂中纳米氧化亚铜棒和纳米铜棒呈现珊瑚状形貌,暴露更多的活性位,进而提高催化剂的活性与选择性。
26.本发明选择石墨烯气凝胶作为催化剂载体,其具有比表面积大、孔隙率高、电子传输速率快等优点。其三维多孔结构和极大地比表面积有利于氧化亚铜和铜纳米棒在其上生长,可抑制纳米氧化亚铜和纳米铜在生长过程中发生团聚。且由于石墨烯气凝胶独特的三维多孔结构,其制备出的气体扩散电极有利于二氧化碳的传质,提高了催化剂活性组分与
二氧化碳的接触,提供了更多的催化活性位,进而提高催化剂的活性与选择性。石墨烯气凝胶具有优异的导电性能,可以弥补铜氧化物导电性不好的缺点,可显著提高电催化二氧化碳还原反应的电流密度,提高催化剂的催化活性。
27.本发明制备的铜基石墨烯气凝胶复合催化剂表现出优异的电催化二氧化碳还原的活性和选择性,乙烯的法拉第效率最高可达50.3%,同时催化剂在连续电解过程中乙烯的法拉第效率基本保持不变,表明该催化剂稳定性良好。
28.本发明的制备工艺简单、化学药品使用少(仅使用前驱体和一种还原剂)、操作性强、绿色环保、成本低廉等,易于规模化生产。
附图说明
29.为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
30.图1为本发明实施例1的铜基石墨烯气凝胶复合催化剂的扫描电镜图(sem);
31.图2为本发明实施例1、对比例1和对比例2的铜基石墨烯气凝胶复合催化剂的x射线衍射分析图谱(xrd);
32.图3为本发明实施例1的铜基石墨烯气凝胶复合催化剂在n2饱和和co2饱和的0.1m khco3溶液中的线性伏安扫描曲线;
33.图4为本发明实施例1的铜基石墨烯气凝胶复合催化剂在不同电位下电催化co2还原产物的法拉第效率柱状图;
34.图5为本发明实施例1的铜基石墨烯气凝胶复合催化剂在不同电位下电催化co2还原产物的分电流密度与总电流密度柱状图。
具体实施方式
35.为使本发明实施例的目的、技术方案和优点更加清楚,下面将对本发明实施例中的技术方案进行清楚、完整地描述。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
36.为实现本发明的上述目的,特采用的技术方案。
37.第一方面,本发明实施例提供了一种铜基石墨烯气凝胶复合催化剂,其包括:石墨烯气凝胶以及负载于其上的珊瑚状纳米氧化亚铜棒和纳米铜棒,且纳米氧化亚铜棒和纳米铜棒的直径均为40

60nm。
38.第二方面,本发明实施例还提供了一种铜基石墨烯气凝胶复合催化剂的制备方法,包括以下步骤:
39.(1)、将三水合硝酸铜溶于乙二醇中,搅拌并加热,配置铜盐的前驱体溶液,记为溶液a。
40.(2)、将石墨烯气凝胶粉末分散于乙二醇中,超声处理,制备出均匀悬浮液,记为分散液b。
41.(3)、将分散液b滴加至溶液a中搅拌得到混合液。将混合液置于反应釜中进行溶剂热反应,产物自然冷却后抽滤,洗涤、干燥并研磨后得到催化剂。
42.以上铜基石墨烯气凝胶复合催化剂的制备过程中,将三水合硝酸铜、石墨烯气凝胶分别溶于乙二醇中,然后将三水合硝酸铜的乙二醇溶液和石墨烯气凝胶的乙二醇分散液混合后进行溶剂热反应,溶剂热的反应过程中,选择铜盐作为原料,乙二醇作为介质和还原剂,由于乙二醇无毒且价格低,乙二醇能直接还原标准电极电势偏低的物质如铜盐,生成氧化亚铜和铜纳米晶。通常认为只有铜基催化剂才能将二氧化碳还原为乙烯,且不同氧化态的铜中, 2价的cu会抑制二氧化碳还原,主要发生析氢反应;0和 1价的铜则会将二氧化碳还原为乙烯等产物。因而发明人通过实践,努力在石墨烯气凝胶上均匀生长直径合适的纳米氧化亚铜棒和纳米铜棒,抑制纳米铜氧化物在生长过程中发生团聚,不仅发挥了载体自身的优质属性,而且构筑cu

和cu共存的催化还原co2的界面环境,发挥cu

和cu的协同作用,共同促进co2吸附活化和co二聚两个关键步骤,从而使制备得到的铜基石墨烯气凝胶复合催化剂表现出优异的电催化二氧化碳还原的活性和乙烯的选择性。
43.优选地,石墨烯气凝胶的制备方法包括以下步骤:将氧化石墨烯超声分散于水溶液后冷冻干燥,再将其还原得到石墨烯气凝胶材料。
44.优选地,溶液a中三水合硝酸铜的浓度为0.005~0.05mol/l,分散液b中石墨烯气凝胶粉末的浓度为1

10g/l。
45.优选地,三水合硝酸铜与石墨烯气凝胶粉末的质量比1~10:1。
46.优选地,步骤(1)中,加热温度为80~140℃,处理时间为0.5~2h。
47.优选地,步骤(2)中,超声处理时间为0.5~2h。
48.优选地,将分散液b滴加至溶液a中搅拌,搅拌时间为0.5~2h,得到混合液。
49.优选地,步骤(3)中,溶剂热的反应温度为140~180℃,反应时间为6~24h。
50.优选地,步骤(3)中,洗涤所用的洗涤液为无水乙醇或异丙醇中的一种;干燥为真空干燥,其干燥温度为30~60℃。
51.优选地,步骤(3)中,溶剂热反应在反应釜中进行,反应釜为不锈钢外套和聚四氟乙烯内胆组成,其中内胆容积为100~500ml。
52.第三方面,本发明实施例还提供了一种气体扩散电极,其包括气体扩散电极本体和上述的铜基石墨烯气凝胶复合催化剂,气体扩散电极本体上负载有上述的铜基石墨烯气凝胶复合催化剂。
53.优选地,气体扩散电极本体为碳纸、碳布或碳纳米管海绵。
54.优选地,气体扩散电极本体的尺寸为0.5cm
×
0.5cm~3cm
×
3cm;
55.优选地,气体扩散电极本体表面负载的铜基石墨烯气凝胶复合催化剂的负载量为0.5~5mg/cm2。
56.第四方面,本发明实施例还提供了一种上述气体扩散电极的制备方法,包括以下步骤:将上述的铜基石墨烯气凝胶复合催化剂分散到醇水溶液中,加入nafion溶液后超声,得到催化剂分散液,将此分散液涂覆到气体扩散电极本体上,置于红外灯下干燥,得到气体扩散电极。
57.优选地,醇水溶液中醇包含异丙醇和乙醇。
58.优选地,异丙醇与乙醇的体积比为1:10~10:1,醇与水的体积比为1:10~10:1,
nafion溶液与水的体积比为1:1~1:10,nafion溶液的质量浓度为5

10wt%。
59.第五方面,本发明还提供一种上述的铜基石墨烯气凝胶复合催化剂或气体扩散电极在电催化还原二氧化碳上的应用。
60.第六方面,本发明还提供一种电催化还原二氧化碳的方法,其包括:采用上述的气体扩散电极作为阴极进行电催化还原二氧化碳;
61.优选地,采用双室电解池,施加外部电压,以碳酸氢钾水溶液为电解质溶液;
62.优选地,采用h型双室电解池,中间用nafion117质子交换膜隔开,以铜基石墨烯气凝胶复合催化剂负载的气体扩散电极为工作电极,铂网电极为对电极,ag/agcl电极为参比电极组成三电极体系,阴阳两极电解质溶液为0.1mol/l~0.5mol/l的碳酸氢钾溶液,电催化过程中,h型双室电解池均持续通入二氧化碳气体,更优选地,反应进行之前在电解液中通入二氧化碳气体30min~60min。
63.以下结合实施例对本发明的特征和性能作进一步的详细描述。
64.实施例1
65.一种铜基石墨烯气凝胶复合催化剂,其包括石墨烯气凝胶以及负载于其上的纳米铜氧化物,催化剂的制备方法为溶剂热法,具体步骤如下:
66.(1)、将氧化石墨烯超声分散于水溶液后冷冻干燥,再将其还原得到石墨烯气凝胶材料。
67.(2)、将0.80g的三水合硝酸铜溶于200ml乙二醇中,在100℃下搅拌1h,配置铜的前驱体溶液,记为溶液a。
68.(3)、将0.20g石墨烯气凝胶分散于100ml乙二醇中,超声处理1h,制备出均匀悬浮液,记为分散液b。将分散液b滴加至溶液a中搅拌1h。
69.(4)、将混合液置于反应釜中,反应釜为具有不锈钢外套和聚四氟乙烯内胆的500ml水热合成反应釜,将反应釜放入160℃烘箱中进行溶剂热反应10h,自然冷却后将所得产物抽滤,并用无水乙醇洗涤数次后,放入50℃真空干燥箱中干燥12h,取出后研磨得到铜基石墨烯气凝胶复合催化剂。
70.扫描电镜(sem)测试结果如图1所示,a图显示:在石墨烯气凝胶(灰色的背景)表面生长出纳米棒,在放大的b图中也显示:纳米棒相互交错呈现珊瑚状形貌,纳米棒的直径在40

60nm。
71.x射线衍射(xrd)测试结果如图2所示,在2θ为43.3
°
、50.4
°
和74.1
°
处出现衍射峰,分别对应于cu的(111)、(200)和(220)晶面;在2θ为29.6
°
、36.4
°
、42.3
°
和61.4
°
处出现衍射峰,分别对应于cu2o的(110)、(111)、(200)和(220)晶面。说明该催化剂表面生长形成cu2o和cu的复合物,即在载体石墨烯气凝胶上构筑出cu

和cu共存的催化还原co2的界面环境。
72.气体扩散电极的制备:
73.称取10mg的铜基石墨烯气凝胶复合催化剂,加入400μl乙醇、400μl异丙醇、100μl水和100μl的5wt%的nafion溶液,超声混合0.5h,用移液枪量取200μl悬浊液均匀滴涂于1cm
×
1cm的碳纸上,在红外灯下烘干,得到催化剂负载量为1mg/cm2的气体扩散电极。
74.电化学测试:
75.定制的h型电解池,中间由nafion117质子交换膜隔开,以铜基石墨烯气凝胶复合催化剂负载的气体扩散电极为工作电极,铂网电极为对电极,ag/agcl电极为参比电极组成
三电极体系。阴阳两极电解液分别为85ml的0.1m的khco3溶液。
76.电化学性能测试分别采用线性扫描伏安法和计时电流法。线性扫描伏安测试分别在n2和co2条件下进行,测试前分别向反应体系中通入高纯n2和co2气体0.5h。扫描范围为0~

1.9v(vs rhe),扫描速率为5mv/s。本发明中所显示的电位均通过下述公式转化为相对于可逆氢电极电位(rhe):e(vs rhe)=e(vs ag/agcl) 0.197v 0.0591v
×
ph。计时电流法在电解前需向反应体系中通入高纯co2气体0.5h,然后分别选取不同电位(

1.4、

1.6和

1.8v)进行3h的恒电位电解实验,并对气相和液相产物进行分析测试。
77.图3为本发明实施例1的铜基石墨烯气凝胶复合催化剂在n2饱和和co2饱和的0.1m khco3溶液中的线性伏安扫描曲线,由图1可知,n2饱和的电解液中电流主要是氢析出反应的贡献,表现出较高的起始电位。与此相比,co2饱和的电解液中表现更大的电流密度和较低的起始电位,增加的电流密度主要源于铜基石墨烯气凝胶复合催化剂对co2的电催化还原,说明该复合催化剂对co2还原反应的催化性能优异。
78.图4为本发明实施例1的铜基石墨烯气凝胶复合催化剂在不同电位下电催化co2还原产物的法拉第效率柱状图,由图2可知,随着电位的正移,即电势的减小,c2h4的法拉第效率不断增大,在

1.4v(vs rhe)电位下,c2h4的法拉第效率最大,可达50.3%。在不同电位下,产物c2h4均具有很高的法拉第效率,这表明铜基石墨烯气凝胶复合催化剂具有优异的活性及选择性。h2的法拉第效率的变化规律与之相反,即随着电位的正移,h2的法拉第效率不断减小,有抑制析氢反应的趋势。
79.图5为本发明实施例1的铜基石墨烯气凝胶复合催化剂在不同电位下电催化co2还原产物的分电流密度与总电流密度柱状图,电位在

1.4~

1.8v(vs rhe),c2h4的分电流密度变化不大,说明生成c2h4的反应活性基本保持不变。且在电位为

1.4v(vs rhe)时,在所有产物中c2h4的分电流密度最高。所以,铜基石墨烯气凝胶复合催化剂电催化co2还原在较低的电势下拥有较高的活性和选择性。
80.在不同电位下的3h连续电解过程中,总电流密度变化不大。且在3h连续电解过程中乙烯的法拉第效率基本保持不变。这表明该催化剂稳定性良好。
81.实施例2
82.一种铜基石墨烯气凝胶复合催化剂,其包括石墨烯气凝胶以及负载于其上的纳米铜氧化物,催化剂的制备方法为溶剂热法,具体步骤如下:
83.(1)、将氧化石墨烯超声分散于水溶液后冷冻干燥,再将其还原得到石墨烯气凝胶材料。
84.(2)、将0.80g的三水合硝酸铜溶于200ml乙二醇中,在100℃温度下搅拌1h,配置铜的前驱体溶液,记为溶液a。
85.(3)、将0.20g石墨烯气凝胶分散于100ml乙二醇中,超声处理1h,制备出均匀悬浮液,记为分散液b。将分散液b滴加至溶液a中搅拌1h。
86.(4)、将混合液置于反应釜中,反应釜为具有不锈钢外套和聚四氟乙烯内胆的500ml水热合成反应釜,将反应釜放入140℃烘箱中进行溶剂热反应10h,自然冷却后将所得产物抽滤,并用无水乙醇洗涤数次后,放入50℃真空干燥箱中干燥12h,取出后研磨得到铜基石墨烯气凝胶复合催化剂。
87.按照实施例1的方法利用本技术所得铜基石墨烯气凝胶复合催化剂制备气体扩散
电极并进行电化学测试,在

1.4v(vs rhe)电位下,c2h4的法拉第效率为35.7%。
88.实施例3
89.一种铜基石墨烯气凝胶复合催化剂,其包括石墨烯气凝胶以及负载于其上的纳米铜氧化物,催化剂的制备方法为溶剂热法,具体步骤如下:
90.(1)、将氧化石墨烯超声分散于水溶液后冷冻干燥,再将其还原得到石墨烯气凝胶材料。
91.(2)、将0.80g的三水合硝酸铜溶于200ml乙二醇中,在100℃温度下搅拌1h,配置铜的前驱体溶液,记为溶液a。
92.(3)、将0.20g石墨烯气凝胶分散于100ml乙二醇中,超声处理1h,制备出均匀悬浮液,记为分散液b。将分散液b滴加至溶液a中搅拌1h。
93.(4)、将混合液置于反应釜中,反应釜为具有不锈钢外套和聚四氟乙烯内胆的500ml水热合成反应釜,将反应釜放入180℃烘箱中进行溶剂热反应10h,自然冷却后将所得产物抽滤,并用无水乙醇洗涤数次后,放入50℃真空干燥箱中干燥12h,取出后研磨得到铜基石墨烯气凝胶复合催化剂。
94.按照实施例1的方法利用本技术所得铜基石墨烯气凝胶复合催化剂制备气体扩散电极并进行电化学测试,在

1.4v(vs rhe)电位下,c2h4的法拉第效率为30.8%。
95.对比例1
96.与实施例1的步骤相似,不同之处仅在于:溶剂热反应的温度为130℃。如图2所示,在2θ为29.6
°
、36.4
°
、42.3
°
和61.4
°
处出现衍射峰,分别对应于cu2o的(110)、(111)、(200)和(220)晶面。说明在此温度下,石墨烯气凝胶表面生长了纯的纳米氧化亚铜。
97.按照实施例1的方法利用该催化剂制备气体扩散电极并进行电化学测试,在

1.4v(vs rhe)电位下,c2h4的法拉第效率为18.5%。
98.对比例2
99.与实施例1的步骤相似,不同之处仅在于:溶剂热反应的温度为200℃,溶剂热反应的时间为6h。如图2所示,在2θ为43.3
°
、50.4
°
和74.1
°
处出现衍射峰,分别对应于cu的(111)、(200)和(220)晶面。说明在此温度下,石墨烯气凝胶表面生长了纯的纳米铜。
100.按照实施例1的方法利用该催化剂制备气体扩散电极并进行电化学测试,在

1.4v(vs rhe)电位下,c2h4的法拉第效率为12.4%。
101.从实施例和对比例的实验结果可以看出:本发明实施例提供的制备铜基石墨烯气凝胶复合催化剂的溶剂热的反应温度为140~180℃,铜基石墨烯气凝胶催化剂中铜是以0和 1价的形式存在,氧化亚铜和铜共存,cu

和cu可发挥协同作用,共同促进co2吸附活化和co二聚两个关键步骤,进而提高了乙烯的选择性和活性。同时,本发明实施例提供的催化剂中纳米氧化亚铜棒和纳米铜棒呈现珊瑚状形貌,暴露更多的活性位,进而提高催化剂的活性与选择性。当溶剂热温度低时(如对比例1),铜盐经乙二醇还原生成纯氧化亚铜;当溶剂热温度高时(如对比例2),铜盐经乙二醇还原生成纯铜。石墨烯气凝胶负载的纯氧化亚铜和石墨烯气凝胶负载的纯铜虽能催化二氧化碳还原为乙烯,但由于缺少cu

/cu共存的界面环境,乙烯的选择性和活性均较低。
102.本发明实施例的方案与现有技术相比,有如下优点:
103.(1)、本发明实施例制备的铜基石墨烯气凝胶复合催化剂表现出优异的电催化二
氧化碳还原的活性和乙烯的选择性,同时催化剂在连续电解过程中乙烯的法拉第效率基本保持不变,表明该催化剂稳定性良好。
104.(2)、本发明实施例采用溶剂热法一步合成铜基石墨烯气凝胶复合催化剂,将铜氧化物和石墨烯气凝胶有机结合、优势互补,运用溶剂热法在石墨烯气凝胶上均匀生长了直径合适的纳米氧化亚铜棒和纳米铜棒,构筑了电化学性能优异的催化剂。本发明的制备工艺简单、化学药品使用少(仅使用前驱体和一种还原剂)、操作性强、绿色环保、成本低廉等,易于规模化生产。
105.(3)、本发明实施例的铜基石墨烯气凝胶复合催化剂中铜以0价和 1价形式存在,构筑cu

和cu共存的催化还原co2的界面环境,发挥cu

和cu的协同作用,共同促进co2吸附活化和co二聚两个关键步骤,进而提高了乙烯的选择性和活性。同时,本发明催化剂中纳米氧化亚铜棒和纳米铜棒呈现珊瑚状形貌,暴露更多的活性位,进而提高催化剂的活性与选择性。
106.(4)、本发明实施例选择石墨烯气凝胶作为催化剂载体,其具有比表面积大、孔隙率高、电子传输速率快等优点。其三维多孔结构和极大地比表面积有利于纳米铜氧化物颗粒在其上生长,可抑制纳米铜氧化物颗粒在生长过程中发生团聚。且由于石墨烯气凝胶独特的三维多孔结构,其制备出的气体扩散电极有利于二氧化碳的传质,提高了催化剂活性组分与二氧化碳的接触,提供了更多的催化活性位,进而提高催化剂的活性。石墨烯气凝胶具有优异的导电性能,可以弥补铜氧化物导电性不好的缺点,可显著提高电催化二氧化碳还原反应的电流密度,提高催化剂的催化活性。
107.综上,本发明实施例提供了一种铜基石墨烯气凝胶复合催化剂、气体扩散电极和应用,铜基石墨烯气凝胶复合催化剂的制备:以乙二醇作为石墨烯气凝胶的分散剂,将石墨烯气凝胶分散于乙二醇中,得到石墨烯气凝胶分散液,将铜盐溶液和石墨烯气凝胶分散液混合之后采用一步溶剂热反应,即得铜基石墨烯气凝胶复合催化剂。所制备的铜基石墨烯气凝胶复合催化剂组成包括:石墨烯气凝胶以及负载于石墨烯气凝胶上的珊瑚状纳米氧化亚铜棒和纳米铜棒,且纳米氧化亚铜棒和纳米铜棒的直径均为40~60nm,由此可见,负载于石墨烯气凝胶上的珊瑚状纳米氧化亚铜棒和纳米铜棒构筑出cu

和cu共存的催化还原co2的界面环境,将其用于电还原二氧化碳可以提高催化反应效率。
108.以上仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献