一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

基于BP神经网络的碳酸盐岩高频层序自动化识别方法与流程

2021-11-20 04:30:00 来源:中国专利 TAG:

基于bp神经网络的碳酸盐岩高频层序自动化识别方法
技术领域
1.本发明属于油气勘探技术领域,特别涉及一种基于bp神经网络的碳酸盐岩高频层序自动化识别方法。


背景技术:

2.层序(sequence):“层序”这一概念对油气勘探具有重要指导意义,自20世纪80年代以来,四大层序地层学派先后兴起。“层序”概念最早由sloss等学者提出,1977年vail等人在此基础上与海平面升降相结合进一步建立了经典层序地层学,此后,以galloway等学者为代表的成因层序地层学派及以cross为代表的t

r层序地层学派先后兴起。通常情况下,高频层序(high frequency sequence)通常被认为是四级及其后续更高级别的旋回。
3.传统的层序地层学是以不整合面或与之对应的整合面为界限进行层序界面识别,在陆相层序地层研究中,层序边界往往是不整合面,其识别主要是依据地震反射特征(如削截、上超、下超、顶超等),能够在全盆内进行对比进而建立区域上的层序地层格架。常规层序地层划分通常针对碎屑岩颗粒沉积物,沉积过程稳定,容易找到明显的不整合面,因此根据地震反射特征是无法进行细粒沉积岩层序界面识别(图1)。另一方面,在常规油气勘探中,经典层序地层学是建立在湖扩体系或海侵体系,往往被认为是一个完整的沉积过程,很少考虑碳酸盐岩地层沉积体系,利用测井资料难以进行精确的高频层序界面识别。
4.调研显示,当前对高频层序的划分以地震剖面的人工划分为主,通过寻找地震剖面上的不整合界面,测井、录井数据上的电性、岩性突变处,进一步识别划分体系域,划分层序。目前层序地层划分的指导方法主要分为两种,分别是vail学派和cross学派。
5.vail层序地层学理论是以地层不整合或与此不整合可以对比的整合面为层序边界,以地震、测井资料等为基础,通过识别地震接触关系和地层叠加样式变化等,利用井震结合的方式,建立盆地或区域等时层序地层格架。
6.vail学派层序划分方法可分为以下步骤:
7.(1)测录井资料综合分析。测录井资料上的响应特征,直接反映了岩性的显著性变化,岩性变化又直接受海平面变化控制,依据测录井资料响应特征变化即可划定层序界面。
8.(2)地震资料分析。层序界面在地震资料上表现为反射结构和终止关系变化组合特征,如:中—高连续的中—强反射结构特征,区域上地层终止关系主要表现为顶超或削截特征;各层序界面之下的顶超特征均较普遍,表现为前积反射层终止于低角度面上。
9.(3)多级层序划分。在层序界面识别和追踪对比的基础上,结合研究区垂向上储、盖配置好的特征,考虑到界面的可操作性和可对比性,以海泛面作为四级层序的边界,对研究区四级层序进行了划分。通过识别追踪对比测井资料的海泛面,井震结合,划分出多级层序。
10.vail层序地层学理论通过地震、测井技术剖面人工识别、划分体系域,难度较高,人为因素影响较大。具体缺点总结如下:
11.(1)体系复杂。vail学派总结的体系域放分方案包含低位、水进、高位体系域,体系
域之下地层又分为进积、退积、加积等多种组合样式,分类复杂。
12.(2)人为干扰因素多。地震剖面的解释划分完全需要人工进行,不同人员进行解释时往往会产生较大差距。此外,在地震剖面上划分层序界面及后续多级层序时,完全依靠解释人员的经验,对于缺乏经验的解释人员通常不知如何下手,工作难度大,影响层序划分的精度。
13.cross高分辨率层序地层研究方法是以基准面旋回为理论依据,强调基准面变化对层序发育的控制作用,将基准面“升—降”旋回期间形成的地层作为一套层序,将基准面旋回变化的转换点作为层序边界;以岩心、三维露头、测井和高分辨率地震剖面等为基础,以基准面旋回与过程

响应原理为理论依据,运用精细层序划分对比技术,建立区域、油田乃至油藏级储层的高分辨率层序地层对比格架。
14.cross学派层序划分方法可分为以下步骤:
15.(1)首先利用钻井岩心,确定研究区超短期基准面旋回类型及特征。超短期基准面旋回类型及特征主要为向上变深的非对称型(ⅰ型)和向上变浅的非对称型(ⅱ型)2种超短期旋回,进一步可分为低可容空间向上变浅的非对称型
ⅱ‑
1和高可容空间向上变浅的非对称型
ⅱ‑
2型。
16.(2)然后用钻井标定测井,根据测井曲线反映的地层叠加样式,确定研究区的短期旋回。短期基准面旋回类型及特征主要为对称型层序。此处水下分流河道、河口坝主要发育在基准面对称类型中的下降半旋回中,自然伽马曲线分别呈箱形和漏斗形。
17.(3)确定中期基准面旋回特征。依据短期旋回的叠加样式,根据基准面旋回叠加理论,可进一步确定中期基准面旋回特征。
18.vail和cross的层序划分方案虽不相同,但操作过程均需要大量人工操作,因此,cross学派方案存在与vail学派方案相同的缺点。


技术实现要素:

19.本发明的目的在于克服现有技术的不足,提供一种通过对具有丰富层序划分经验的地质人员的层序划分标准进行学习,建立具有强迁移能力的bp神经网络,实现了高频层序的自动化划分的基于bp神经网络的碳酸盐岩高频层序自动化识别方法。
20.本发明的目的是通过以下技术方案来实现的:基于bp神经网络的碳酸盐岩高频层序自动化识别方法,包括以下步骤:
21.s1、建立高频层序识别划分标准数据库:通过在少量生产井的地层综合柱状图上利用岩性、测井曲线、钻井测试信息,建立高频旋回的人工划分方案;在人工划分的旋回基础上,利用one

hot编码的方案,将正旋回编码为(0,1),将反旋回编码为(1,0),将高频旋回编码结果与测井曲线一起建立高频层序识别划分标准数据库;
22.s2、编写并调试基于python的bp神经网络模型,具体步骤如下:
23.s21、数据预处理:利用sklearn中preprocessing对测井数据进行归一化处理,其计算方法为:
[0024][0025]
p
i
为归一化后的测井数据,l
i
为原始测井数据,l
max
和l
min
分别为测井数据的最大值
和最小值;
[0026]
s22、利用shuffle函数将测井数据打乱;
[0027]
s23、建立神经网络模型,神经网络模型包含5个dense全连接层:第一个dense全连接层包含1000个神经元,激活函数为elu;第二个dense全连接层包含500个神经元,激活函数为selu;第三个dense全连接层包含250个神经元,激活函数为tanh;第四个dense全连接层包含125个神经元,激活函数为softsign;第五个dense全连接层包含2个神经元,激活函数为softmax;神经网络模型的损失函数采用交叉熵损失函数,具体公式如下:
[0028][0029]
其中,f(n)表示交叉熵,n表示所有类别的个数,本发明对应正反两种旋回;y是每种旋回内训练的数据点个数,a是预测的准确率;
[0030]
s24、采用牛顿梯度下降法对神经元的权重进行动态调整。
[0031]
本发明的有益效果是:本发明通过对具有丰富层序划分经验的地质人员的层序划分标准进行学习,建立具有强迁移能力的bp神经网络,有效解决了层序划分难度大、周期长的问题,实现了高频层序的自动化划分,能够作为认识海相地层沉积环境演化、辅助油气勘探的重要手段。
附图说明
[0032]
图1为利用地震剖面识别划分层序示意图;
[0033]
图2为本发明的碳酸盐岩高频层序自动化识别方法的流程图。
具体实施方式
[0034]
下面结合附图进一步说明本发明的技术方案。
[0035]
如图2所示,本发明的一种基于bp神经网络的碳酸盐岩高频层序自动化识别方法,包括以下步骤:
[0036]
s1、建立高频层序识别划分标准数据库:标准数据库根据少量井的生产数据建立,通过在少量生产井的地层综合柱状图上利用岩性、测井曲线、钻井测试信息,建立高频旋回的人工划分方案;在人工划分的旋回基础上,利用one

hot编码的方案,将正旋回编码为(0,1),将反旋回编码为(1,0),将高频旋回编码结果与测井曲线一起建立高频层序识别划分标准数据库;
[0037]
本实施例层序识别划分标准数据库建立依托中国石油天然气集团勘探开发研究院提供的高频层序划分结果,部分数据如表1所示。
[0038]
表1
[0039]
顶深m底深m旋回dtgrrhob1542.7961562.3反旋回9820.4112.3021562.31586.84正旋回9920.7882.2941586.841604.12反旋回9921.1642.2871604.121617.844正旋回10021.4572.282
1617.8441704.875反旋回10021.752.2771704.8751756.91正旋回10122.0442.2731756.911772.875反旋回10122.3372.2681772.8751888.232正旋回10122.5282.265
[0040]
s2、编写并调试基于python的bp神经网络模型,具体步骤如下:
[0041]
s21、数据预处理:利用sklearn中preprocessing对测井数据进行归一化处理,其计算方法为:
[0042][0043]
p
i
为归一化后的测井数据,l
i
为原始测井数据,l
max
和l
min
分别为测井数据的最大值和最小值;
[0044]
s22、利用shuffle函数将测井数据打乱;shuffle函数是对建立的训练集进行打乱,打乱的目的是减少神经网络训练的过拟合。本实施例中采用基于25%采样率随机切片,即将75%的样本划分为训练集,将25%的样本划分为验证集。
[0045]
s23、建立神经网络模型,神经网络模型包含5个dense全连接层:第一个dense全连接层包含1000个神经元,激活函数为elu;第二个dense全连接层包含500个神经元,激活函数为selu;第三个dense全连接层包含250个神经元,激活函数为tanh;第四个dense全连接层包含125个神经元,激活函数为softsign;第五个dense全连接层包含2个神经元,激活函数为softmax;softmax是对分类函数,判定类别对应mishrif组地层所有的岩性类别。
[0046]
数据经过5个全连接层后进入损失函数,本发明的神经网络模型的损失函数采用交叉熵损失函数(categorical_crossentropy),交叉熵是用来评估当前训练得到的概率分布与真实分布的差异情况,刻画了实际输出(概率)与期望输出(概率)的距离,也就是交叉熵的值越小,两个概率分布就越接近;具体公式如下:
[0047][0048]
其中,f(n)表示交叉熵,n表示所有类别的个数,本发明对应正反两种旋回;y是每种旋回内训练的数据点个数,a是预测的准确率;
[0049]
s24、采用牛顿梯度下降法对神经元的权重进行动态调整。牛顿法是一种在实数域和复数域上近似求解方程的方法,使用损失函数的泰勒级数的前面几项来寻找损失函数方程=0的根。首先是所有神经元权重均为1时,计算此时的交叉熵函数f(1),计算此时损失函数的斜率。再结算以上一步计算的斜率,穿过(1,f(1))的点与损失函数的交点x1,将x1带入损失函数,重复上述步骤。
[0050]
本领域的普通技术人员将会意识到,这里所述的实施例是为了帮助读者理解本发明的原理,应被理解为本发明的保护范围并不局限于这样的特别陈述和实施例。本领域的普通技术人员可以根据本发明公开的这些技术启示做出各种不脱离本发明实质的其它各种具体变形和组合,这些变形和组合仍然在本发明的保护范围内。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献