一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

纳米线发光开关装置及其方法与流程

2021-11-15 18:26:00 来源:中国专利 TAG:

纳米线发光开关装置及其方法
1.本技术要求2018年8月24日提交的美国临时专利申请序列号62/722,268的权益,所述申请特此通过引用整体并入。
技术领域
2.这种技术大体上涉及纳米线结构,并且更具体地涉及纳米线发光开关装置及其方法。


背景技术:

3.当前的显示分辨率已达到其实际限制。为了实现像素密度和分辨率的进步,必须进一步减小显示器中包括的薄膜晶体管(tft)的尺寸。
4.因此,显示技术的未来可能是纳米线发光二极管(led),纳米线发光二极管由于更高的效率(70%对5

7%)、更高的可靠性以及提供更高像素密度的潜力而被探寻。关于可靠性,由于可以制造纳米线led的材料,与其他当前可用的技术相比,纳米线led能够更好地承受长期运行和更高的温度。然而,关于更高的像素密度,还没有简便的方法将纳米线led与使纳米线led“开启”或“关闭”的晶体管(开关)紧密集成在一起。解决这个问题的当前可用方法牺牲了led面积以及装置性能,因此限制了潜在的应用。
5.明确地说,先前将晶体管与led组合的工作依赖于降低led性能、消耗面积并增加成本的方法。这些方法包括多种方法,诸如将用于另一种材料的横向生长的区域专用于产生高电子迁移率晶体管(hemt)。遗憾的是,这个过程导致led性能下降,并占据了总器件面积的非所要部分。
6.另一种方法已尝试在与cmos晶体管结合的硅上生长。遗憾的是,由于材料的不匹配,硅上生长可能会在led中产生缺陷,从而相应地降低性能。另外,这种方法仍然难以管理温度变化,并且仍然消耗过多的面积。
7.另一种方法尝试了在硅上与led进行倒装芯片结合。通过这种方法,单独地制造led,个别地切割led,并且随后将所述led安装在硅晶片的顶部,以将led与cmos晶体管在硅上组合在一起。遗憾的是,这种方法具有由需要连接在一起的数百个单独led导致的可靠性问题以及现有技术无法缩小尺寸的问题。


技术实现要素:

8.一种纳米线系统包括衬底和至少一个纳米线结构,所述纳米线结构沿着轴从所述衬底的表面向外延伸。所述纳米线结构包括发光二极管和装置驱动器,所述装置驱动器被电耦合以控制所述发光二极管的操作状态。所述发光二极管与所述装置驱动器被集成以彼此共用至少一个掺杂区。
9.一种制造纳米线系统的方法包括提供衬底以及形成至少一个纳米线结构,所述纳米线结构沿着轴从所述衬底的表面向外延伸。所述纳米线结构包括发光二极管和装置驱动器,所述装置驱动器被电耦合以控制所述发光二极管的操作状态。所述发光二极管与所述
装置驱动器被集成以彼此共用至少一个掺杂区。
10.这种技术提供了许多优点,包括提供一个或多个节能且可靠的纳米线发光开关装置,所述纳米线发光开关装置的单轴取向和集成的共用层结构使得能够易于制造高像素密度阵列。明确地说,所要求保护的技术的示例新颖地使用了gan,gan是led结构的发光层中常见的材料,但不常见于使led结构开启和关闭的晶体管的层中。与现有技术中发现的约5

7%的能量效率相比,利用纳米线发光开关装置的这些基于gan的示例,可获得高达约70%的能量效率。这些能量效率增益可大大降低功率消耗,因此也大大延长了电池寿命。此外,纳米线发光开关装置的这些和其他示例能够实现在低的个位数微米范围内的像素截面,并有可能实现更高的分辨率,从而使显示分辨率比现有的显示器大几个数量级。
11.另外,要求保护的技术的示例使用单个半导体材料系统实现了真正的单片纳米线发光开关装置。这种纳米线发光开关装置的独特结构(在led与装置驱动器之间共用至少一层)具有比需要多个层和占用空间的布局的现有led结构更少的层。另外,所要求保护的技术的这些示例使制造工艺比多材料led所需的工艺简单得多,具有更少的步骤,并且能够在执行蚀刻步骤之前和添加源极金属层、栅极金属层、漏极金属层和绝缘层之前形成led和有源装置驱动器的所有功能层以完成纳米线发光开关装置或阵列。
12.此外,要求保护的技术具有优于现有技术的其他优点。举例来说,现有技术不仅需要使用多个层,而且还需要在led的发光层和fet层中使用多种材料,再加上大量的金属层,这增加了处理成本。形成鲜明对比的是,所要求保护的技术的示例可以依赖于一种材料系统,在该示例中为gan,用于发光层和fet层,并且仅具有三个关联的金属层或其他导电层。利用所要求保护的技术的示例消除了现有的多材料系统对额外层和不同材料的需求,从而大大简化了设计,从而降低了制造成本和时间。另外,要求保护的技术的示例使得有机会实现更高的产量,并且比现有技术的分辨率提高了100倍。
附图说明
13.图1a是具有多个纳米线发光开关装置的纳米线阵列系统的示例的截面图;
14.图1b是图1a中所示的纳米线阵列系统的一部分的部分剖视图和部分透视图;
15.图1c是图1a至图1b中所示的纳米线发光开关装置中的一者的示例的透视图;
16.图2a至图2f是制造纳米线阵列系统的示例的方法的示例的透视图;
17.图3是示出另一种制造技术的纳米线阵列系统的另一个示例的截面图;以及
18.图4是示出又一种制造技术的纳米线阵列系统的又一个示例的截面图。
具体实施方式
19.纳米线阵列系统20(1)的示例在图1a至图1c中示出。纳米线阵列系统20(1)包括多个间隔开的纳米线发光开关装置11、导电层12、13和14、绝缘层16和衬底17,但是所述系统可以包括采取其他配置的其他类型和/或数量的系统、装置、部件、层、区或其他元件。这种技术提供许多优点,包括提供一个或多个高能效且可靠的纳米线发光开关装置,所述纳米线发光开关装置的单轴取向且集成的共用层结构使得能够容易地制造高像素密度阵列。
20.更具体地参看图1a至图1b,在纳米线阵列系统20(1)的此示例中,衬底17包括al2o3(蓝宝石)层,但是可以使用其他类型和/或数量的衬底,仅举例来说,诸如sic(碳化硅)衬底
或硅(si)衬底。
21.导电层12、13和14各自包括金属层,但是所述导电层中的每一者可以包括其他类型和/或数量的导电层和/或其他材料。在此示例中,导电层12形成位于间隔开的纳米线发光开关装置11中的每一者的一端上的漏极接触层,但是可以使用采取其他配置的其他类型和/或数量的导电层。另外,在此示例中,导电层13形成位于间隔开的纳米线发光开关装置11中的每一者的另一端附近的源极接触层,但是可以使用采取其他配置的其他类型和/或数量的导电层。另外,在此示例中,导电层14形成位于间隔开的纳米线发光开关装置11中的每一者的沟道区7的至少一部分周围的栅极金属接触层,但是可以使用采取其他配置的其他类型和/或数量的导电层。
22.透明导电膜(tcf)15包括另一个导电层,所述导电层可以形成以将一个或多个间隔开的纳米线发光开关装置11的一个或多个导电层12耦合在一起,但是可以使用采取其他配置的其他类型和/或数量的导电层。如图1a中的截面图中所示,间隔开的纳米线发光开关装置11可以例如使用透明导电膜(tcf)15耦合用于三个纳米线发光开关装置11的三个单独的导电层12。
23.还可以通过改变导电层14和导电层15的宽度以增加或减少用作单个显示像素的发光开关装置可11的数量来改变在此示例中由发光开关装置11(在本文的示例中也被称为纳米线结构或纳米线)的间隔形成的像素阵列中的像素的尺寸、密度和亮度。图1b示出共用导电层14和导电层15的多个发光开关装置11的示例。
24.透明绝缘体16位于导电层13与导电层14之间并且位于导电层13与透明导电膜(tcf)15的至少一部分和每一间隔开的纳米线发光开关装置11的大致对应部分之间,但是可以使用采取其他配置的其他类型和/或数量的绝缘层。
25.更具体地参看图1a至图1c,间隔开的纳米线发光开关装置11各自包括发光二极管(led)层8、9和10以及包括层6、7和8的场效应晶体管(fet)或其他装置驱动器或开关,但是所述装置中的每一者可以包括其他类型和/或数量的其他层、区或其他元件。在此示例中,fet被耦合以控制每一纳米线发光开关装置11中的led的操作状态,即,在此示例中为开启状态或关闭状态,但是可以使用其他类型的驱动器或开关。另外,在此示例中,led和fet有利地共用一层或其他掺杂区8以帮助最小化由于先前将装置驱动器或开关定位led附近而占用宝贵面积所致的损失空间。另外,在此示例中,led和fet有利地各自被构造成沿着单个轴从衬底17向外延伸以实现更紧凑的窄设计,从而实现了纳米线发光开关装置11的较紧密间隔,使得可以实现更高的分辨率,但是可以使用其他配置。
26.由一个或多个发光开关装置11制造的每一像素还可以具有通过包括装置驱动器而调制的亮度,在此示例中,所述装置驱动器是发光开关装置11的fet。例如可以通过对导电层14和/或导电层15的电偏压来改变亮度水平。
27.场效应晶体管(fet)或其他装置驱动器或开关的层6是在衬底17上生长或以其他方式形成的用于fet的富电子源极区,但是可以使用其他类型的源极区。在此特定示例中,层6是无意掺杂的(u

gan)缓冲层,但是同样可以使用其他类型的源极区,仅举例来说,诸如n型gan层。由于由o2和缺陷并入导致的10
17
cm
‑3‑
10
20
cm
‑3的高电子浓度,u

gan缓冲层6作为fet的富电子源极区是可能的。
28.场效应晶体管(fet)或其他装置驱动器或开关的层7是在层6上生长或以其他方式
形成的用于fet的缺电子沟道区,但是可以使用其他类型的沟道区。在此特定示例中,层7是比源极区6厚的u

gan层,但是同样可以使用其他类型的沟道区,诸如p型gan层。由于材料中的本征氮空位,可以将此较厚的u

gan层7用作fet的缺电子沟道区,从而使所述层略为n型。
29.场效应晶体管(fet)或其他装置驱动器或开关的层8是在层7上生长或以其他方式形成的用于fet的富电子漏极区,但是可以使用其他类型的源极区。在此特定示例中,层8是n型gan层,但是同样可以使用其他类型的漏极区。此层8在纳米线发光开关装置11的fet和led之间共用,并且用作led的富电子层。在此特定示例中,用于层8的gan层包括led的阴极区和fet或其他装置驱动器的漏极区。
30.层9是具有例如用于led的有效地产生光的ingan或algan量子阱和gan或algan势垒的多量子阱(mqw)区9,但是可以使用其他类型的层和/或阱和其他势垒。更具体地说,在此示例中,从led发光利用了此层9,所述层是多量子阱(mqw)区,其中氮化铟镓(ingan)层或氮化铝镓(algan)层被限定在gan层或algan层之间以便截留用于产生光的电子

空穴对。在其他示例中,一个或多个其他材料层可以在层9上,以更改光谱发射。再举例来说,额外层中的一者或多者可以包括颜色转换器。
31.层10是用于led的p

gan区10或阳极区,但是同样可以针对led的区使用其他类型的区和其他配置。此层10与层8和9一起完成了纳米线发光开关装置11中的每一者的led的此示例。因此,在此示例中,led和fet与共用层8串联连接,并且fet能够使led在“开启”或“关闭”操作状态之间切换。
32.如以上示例中所示,fet和led的每一层可以有利地由相同的材料(例如,基于gan的材料)形成,这减少了制造所需的材料数量,从而提供所得效率。另外,led发光区和fet(驱动器或开关)中的基于gan的材料本质上是透明的,并且在与一系列一种或多种金属结合时,可以使阵列系统变为光学上透明的。这种光学透明性使得这种技术的示例能够在许多新应用中使用,诸如各种不同类型的显示技术,包括例如增强现实显示。用于纳米线发光开关装置11的这种光学透明性和单轴取向的结构使得能够产生用于可穿戴和否则弯曲的电子装置的柔性显示装置。
33.参看图2a至图2f,示出了制造纳米线阵列系统的示例的方法的示例。如下文举例说明,此集成led

fet装置的制造可以采用半导体产业中可容易得到的制造技术,允许容易地采用这种技术。更具体地说,所要求保护的技术的示例可以利用使用广泛商用的金属有机化学气相沉积(mocvd)工具来常规地生长的led层。
34.更具体地参看图2a,首先在衬底17上生长富电子源极层或区6,在这些示例中,所述富电子源极层或区同样可以是无意掺杂(u

gan)缓冲层或n型gan层。如前所述,由于由o2和缺陷并入导致的10
17
cm
‑3‑
10
20
cm
‑3的高电子浓度,可以使用u

gan缓冲层。另外,在此示例中,衬底17是al2o3(蓝宝石),但是可以使用其他类型的衬底,诸如sic(碳化硅)衬底或硅(si)衬底。
35.接下来,在层或区6上生长缺电子沟道层或区7,所述缺电子沟道层或区同样可以是比用于层或区6或p型gan层厚的u

gan层。由于材料中的本征氮空位,可以将较厚的u

gan层用作缺电子沟道区7,从而使所述层略为n型。
36.接下来,在层7上生长或以其他方式形成富电子层8。底部富电子源极区6、缺电子沟道区7和n

gan漏极区8产生纳米线发光开关装置11中的每一者的fet的此示例的所需结
构。如下所述,此层8由纳米线发光开关装置11的此示例的fet与led共用。
37.接下来,为了针对每一纳米线发光开关装置11的此示例形成包括层8、9和10的led,在共用层或区8上形成具有有效地产生光的ingan或algan量子阱和gan或algan势垒的多量子阱(mqw)区9。
38.接下来,对于每一纳米线发光开关装置11的此示例,在用于10的led的多量子阱(mqw)区9上形成p

gan区10。因此,在此示例中,包括层8、9和10的led和包括层6、7和8的fet与共用层8串联连接,并且fet被耦合以能够使led在“开启”或“关闭”操作状态之间切换。在此示例中,对于每一纳米线发光开关装置11,共用富电子初始层同样既用作led的阴极又用作fet的漏极区。
39.接下来,可以通过金属剥离工艺对p

gan层10的暴露表面进行图案化以沉积ni或其他导电材料,其既用作层或区12的欧姆p型gan接触又用作用于如图2a至图2b所示的基于氯的干式蚀刻的硬掩膜。随后,纳米线11可以在o2中进行可选的退火以产生nio以与p

gan层或区12更大程度地欧姆接触。
40.接下来,可以使用基于氯的干式蚀刻,以便选择性地去除材料以留下纳米线发光开关装置11,所述纳米线发光开关装置各自沿着单个轴从衬底17向外延伸,如图2b所示。
41.接下来,对基于ti的或其他导电材料的金属化进行热蒸发,仅涂覆纳米线发光开关装置11的尖端和基底,如图2c所示。随后可以执行可选的退火以从金属生成tin,从而进一步增加u

gan缓冲层或区6的n型性质。
42.在金属沉积之后,随后涂覆并回蚀透明绝缘体16,以暴露出富电子源极区或层6的上边界上方的所有东西,如图2d所示。绝缘体16用作将金属或导电层13和14彼此分离的间隔物。
43.接下来,随后通过剥离工艺对用于栅极层14的金属线进行图案化。诸如ni的金属被热蒸发,用导电层或导线12和绝缘体16涂覆纳米线发光开关装置11的顶部,从而形成包括与u

gan区全环绕栅极耦合的层14,如图2d所示。因此,所要求保护的技术的示例可以将栅极包裹在每一纳米线发光开关装置11的沟道区或层7的至少一部分上,这在处于“关闭”操作状态时提供快速切换并降低功率消耗。
44.接下来,随后可以涂覆并回蚀更光学透明的绝缘体16以仅露出导线12的尖端。同样可以使用剥离来图案化透明导电膜(tcf)15的线以形成顶部互连15,如图2e所示。
45.作为最后的步骤,绝缘体16可以被选择性地蚀刻掉以暴露出埋入的金属或导电层13和14以用于外部连接,如图2f所示。
46.在这些步骤中的每一者中可以使用各种另选选择,诸如使用除了ni(仅举例来说)之外的用于栅极金属或导电层14的选择。在其他示例中,可以另选地集成沿纳米线侧的栅极绝缘体。这种方法的优点之一是,这种逐层的制造使得能够精确控制和定制最终的设计和布局。如前所述,另一个优点是这种技术能够利用现有的制造方法。
47.在此特定布局中示出的装置布局产生十字设计,以便选择性地寻址单独纳米线11以用于显示目的。在此示例中,源极金属或导电层13是所有纳米线所共有的,用作公共接地连接,而栅极金属或导电层14和漏极金属或导电层15交替地以行和列寻址。
48.现在将参看图1a至图1c来描述用于操作纳米线阵列系统中的一个纳米线发光开关装置11的方法的示例。当纳米线发光开关装置11的fet的栅极层14被激励时,随后电子从
源极区6穿过沟道区7流入共用漏极区8,从而使fet和led进入“开启”操作状态。电子从共用漏极区域8流过led,以与mqw区9中的空穴重新结合以产生光。漏极接触层8正向偏置与fet 6

8串联的led 8

10,从而允许正的源极至漏极偏置以进行fet操作。
49.参看图3,示出制造纳米线阵列系统20(2)中的纳米线发光开关装置11的另选方法。除了如本文另外举例说明或描述之外,这种方法与参看图2a至图2f所说明和描述的相同。在此示例中,这种制造方法通过使用绝缘层16用于选择性区域生长来利用自下而上的生长技术。纳米线发光开关装置11的选择性区域生长可以允许发生单独的生长,以产生各自发出不同颜色的纳米线发光开关装置11。可以在单个生长过程中使用绝缘层16的开口尺寸的变化,以便产生发出不同颜色的刚生长成的纳米线发光开关装置11。
50.参看图4,示出制造纳米线阵列系统20(3)中的纳米线发光开关装置11的另选方法。除了如本文另外举例说明或描述之外,这种方法与参看图2a至图2f所说明和描述的相同。在此示例中,这种制造方法,生长成的led的mqw区9和p型区10可以缠绕在共用n

gan区8的一部分上。
51.如本文举例说明和描述的,所要求保护的技术的示例可以用于各种不同类型的应用。例如,要求保护的技术可以用于从智能手表到电视到电话的各种不同类型的显示技术。纳米线发光开关装置11(每个是单独的像素)可以有利地间隔开以提供更高的分辨率。
52.在其他示例中,由于前面讨论的透明性质,所要求保护的技术可以用来代替典型的显示技术。结果,所要求保护的技术的示例在创建平视显示技术中非常有效。另外,再举例来说,当前的平视显示器依赖于庞大的投影仪,其中这种要求保护的技术的示例将消除这种需求。由这种要求保护的技术的示例制成的显示器将本身就是透明目镜,而不需要任何投影仪。
53.在其他示例中,纳米线发光开关装置11的纳米线性质允许柔性,这打开了与柔性显示器有关的其他机会。明确地说,纳米线发光开关装置11的线结构允许它们承受挠曲和机械运动的应力。
54.如此,已描述了本发明的基本概念,对于本领域技术人员而言将显而易见的是,前述详细公开内容意欲仅举例呈现,而非限制。虽然本文中没有明确说明,但是本领域的技术人员将能设想到并期望各种改变,改进和修改。这些改变、改进和修改意欲由此提出,并且属于本发明的精神和范畴内。另外,处理元件或序列的所陈述的顺序,或者为此使用数字、字母或其他名称,并不旨在将所要求保护的过程限制为任何顺序,除非可能在权利要求中指定。因此,本发明仅受以下权利要求以及其等效物的限制。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献