一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种交直流混联配电系统不确定扰动下的可达性分析方法与流程

2021-11-15 14:09:00 来源:中国专利 TAG:


1.本发明涉及电力领域,尤其是一种交直流混联配电系统不确定扰动下的可达性分析方法。


背景技术:

2.随着以可再生能源为主的分布式电源在电网中的渗透率不断提高,以电动汽车及计算中心为代表的直流负荷的不断增加,传统的交流配网已经逐渐难以满足现代电网呈现的新需求和新态势。建立于多端直流(multi

terminal dc, mtdc)之上的交直流配电网可以基于电力电子接口可以实现新能源的充分消纳,充分利用。交直流配电网的引入可以实现功率的支援互补,提高能源利用效率,提高系统灵活控制能力。
3.氢能由于其高热值的化学特性,从生产到消费环节结束全程无环境污染的良好环保特性,以及氢氧燃料电池在新能源汽车中的广泛应用,成为前景十分光明的新兴清洁能源。氢能集成到交直流混联配电系统已经成为未来智能配电网发展的趋势。
4.交直流混联配电网是可再生能源大规模接入电网的一种有效接入形式,系统的稳定运行和优化控制研究是交直流混联配电网的重要目标。相比以火力发电机为主的传统交流电网,交直流系统由于电力电子化特征明显,带来了低惯量,高不确定性等特点。传统的交流电网状态空间模型无法直接应用于直流系统,不确定输入和直流负荷的不确定性导致交直流配电系统难以准确建模。另外,以往的不确定性模型往往采取直接按比例输入来处理不确定性输入,难以精确描述不确定输入对交直流配电系统的影响。传统的基于模拟的方法容易忽略不确定输入下一些极端工作状况,导致系统控制不准确,而且具有运算量大,运算时间长的缺点。而利用系统能量函数的直接法由于李雅普诺夫函数目前尚不存在标准化的构建方法,在很多情况难以使用。因此,需要一种更为准确的建模方法来描述交直流配电系统。


技术实现要素:

5.为了解决上述问题,提出一种交直流混联配电系统不确定扰动下的可达性分析方法,能够通过有限量的计算得出系统安全运行边界,解决了可再生能源的不确定性对系统影响难以准确描述的问题,填补相关技术空白,应用前景广阔。运用高维泰勒展开对交直流配电系统的数学模型进行线性化处理,利用集合运算和相关性分析,有针对性地对可再生能源对应的不确定性进行建模,减少了传统不确定模型的计算量和复杂度,为保障系统稳定运行提供了一项重要工具。
6.本发明的技术方案为:一种交直流混联配电系统不确定扰动下的可达性分析方法,包括如下步骤:步骤1. 进行交直流混联配电系统建模;步骤2. 进行交直流混联配电系统不确定扰动建模;步骤3. 进行交直流混联配电系统不确定扰动下的可达性分析。
7.所述步骤1. 进行交直流混联配电系统建模,包括:建立定直流电压控制策略的vsc模型;建立定功率控制策略的vsc模型;建立直流网络为线路的阻抗模型;构建描述交直流混联配电系统动态的微分代数表示式。
8.有益效果:本发明基于vsc换流站的数学模型以及park变换,建立了交直流混联配电系统在定直流电压控制,定功率控制策略下的状态空间模型。在数学模型方面,本发明综合包含了直流网络和vsc换流站在不同策略下的状态空间模型,综合了交流侧和直流侧的网络特性。在不确定扰动量建模方面,本发明引入了集合描述的方式来定义交直流配电系统的可再生能源不确定输入,相比以往的比例波动来描述输入的不确定性要更加准确。引入了相关性分析方法,判断周期性外激励与不确定输入的相关性强弱从而确定相应的不确定扰动模型。交直流混联配电系统不确定扰动下的可达性分析方法可以只通过一次计算得出从初始状态集合出发轨迹所有可能经过的区域,计算速度快,可靠性高,是一种保障系统稳定控制的实用方法。
附图说明
9.图1含可再生能源/氢能交直流混联配电系统示意图;图2 本发明的方法流程图。
具体实施方式
10.下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整的描述,显然,所描述的实施例仅为本发明的一部分实施例,而不是全部的实施例,基于本发明中的实施例,本领域的普通技术人员在不付出创造性劳动的前提下所获得的所有其他实施例,都属于本发明的保护范围。
11.可达性分析是一种形式化分析(formal analysis),是一种基于状态空间模型的分析方法,可达性分析可以一次性计算从初始状态集合出发的所有轨迹的集合,可以包含系统轨迹所有可能经过的区域。相比模拟方法,可达性分析具有计算次数少,计算时间少,所得集合可靠性高的优点。利用可达性分析可以用集合形式描述不确定输入可能的取值范围,得出所有系统轨迹能够到达区域,确定系统能否安全运行。
12.根据本发明的实施例,提出一种交直流混联配电系统不确定扰动下的可达性分析方法,如图2所示,包括如下步骤:步骤1. 进行交直流混联配电系统建模;图1描述了含可再生能源/氢能的交直流混联配电系统等效电路,其中直流网络中集成了光伏、风电等可再生能源,制氢电解槽和电动汽车等直流负荷,下标n表示第n个vsc(voltage source converter电压源型换流站)的变量,其中,u
sabc,n
、i
sabc,n
、u
oabc,n
、i
cabc,n
、u
cabc,n
分别表示第n个vsc所接入的交流系统三相电网电压、三相电网电流,以及三相并网电压、三相输出电流、三相输出电压;r
s,n
、l
s,n
、r
n
、l
n
、c
f,n
分别表示第n个vsc的交流线路等效电阻、电感,以及滤波器等效电阻、电感、电容;u
dc,n
、i
dc,n
、c
dc,n
分别表示第n个vsc直流侧的输
出电压、输出电流、直流电容。
13.vsc等效电路的d

q轴分量可以分别表示为:
ꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(1)其中,u
sd,n
与u
sq,n
为 u
sabc,n
的d轴与q轴分量,i
sd,n
与i
sq,n
为i
sabc,n
的d轴与q轴分量,u
od,n
与u
oq,n
为u
oabc,n
的d轴与q轴分量,i
cd,n
与i
cq,n
为i
cabc,n
的d轴与q轴分量,u
cd,n
与u
cq,n
为u
cabc,n
的d轴与q轴分量,u
dc,n
和i
dc,n
为第n个vsc直流侧的电压与电流,ω为系统的频率。
14.1) 定直流电压控制策略的vsc模型通常采用双环控制结构,其模型可以表示为:
ꢀꢀꢀꢀꢀ
(2)其中,k
vp,n
为第n个vsc的外环电压控制器p(比例)参数,k
vi,n
为第n个vsc的外环电压控制器i(积分)参数,u
*dc,n
是第n个vsc的u
dc,n
参考值,q
*n
是第n个vsc的无功功率参考值; x
1,n
、x
2,n
、x
3,n
分别表示第n个vsc的第1、2、3个状态变量。
15.所述状态控制结构模型的状态空间模型满足:
ꢀꢀꢀꢀꢀ
(3)其中:
δx
vsc_dc,n
=[δx
1,n δx
2,n δx
3,n δi
cd,n δi
cq,n δu
od,n δu
oq,n δi
sd,n δi
sq,n δu
dc,n ]其中,δ符号分别表示各变量的微增量;a
vsc_dc,n
,b
vsc_dc,n
分别为定直流电压控制策略下状态控制器模块的状态矩阵和输入矩阵;δx
vsc_dc,n
,δu
vsc_dc,n
分别表示定直流电压控制策略下状态控制器模块的状态矢量和输入矢量;2) 定功率控制策略的vsc模型可以简化为:
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(4)其中,p
*n
是第n个vsc的有功功率参考值。x
1,n
、x
2,n
分别表示第n个vsc的第1、2个状态变量;定功率控制策略的vsc模型的状态空间模型满足: (5)其中:δx
vsc_pq,n
=[δx
1,n δx
2,n δi
cd,n δi
cq,n δu
od,n δu
oq,n δi
sd,n δi
sq,n δu
dc,n ]其中,δ符号分别表示各变量的微增量;a
vsc_pq,n
,b
vsc_pq,n
分别为定功率控制策略下状态控制器模块的状态矩阵和输入矩阵;δx
vsc_pq,n
,δu
vsc_pq,n
分别表示定直流电压控制策略下状态控制器模块的状态矢量和输入矢量;3) 直流网络可以由线路的阻抗模型进行表示,结合直流线路的kvl、kcl方程,直流网络状态空间模型可以表示为:
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(6)其中:
其中,δ符号分别表示各变量的微增量;a
net
,b
net
分别为直流网络状态控制器模块的状态矩阵和输入矩阵;δx
net
,δu
net
分别表示定直流网络状态控制器模块的状态矢量和输入矢量;4) 由于直流网络的状态变量δi
dc,1
、δi
dc,2


、δi
dc,n
分别为各vsc的直流侧输出电流,而直流网络的输入变量δu
dc,1
、δu
dc,2


、δu
dc,n
各元素均为vsc的状态变量。利用该特性可以构建描述交直流混联配电系统动态的微分代数表示式,如(7)所示。
[0016]
(7)x(t),y(t),u(t)分别表示系统状态向量,输出向量,输入向量;其中,向量z:=[x
t
, y
t
, u
t
]
t
,其中,冒号“:”表示对冒号前的变量进行赋值,z0为线性化点z0:=[x
0t
, y
0t
, u
0t
]
t
, x
0t
, y
0t
, u
0t 为线性化点坐标,为线性化误差,其中:其中:其中,a、c、b表示f(z)分别对x、y、z求导得到的矩阵;公式的整体含义为通过泰勒展开将微分包含式进行线性化;当线性化误差小于阈值、可以忽略不计时,并设置:s:=f(z0),可以进一步简化(7),得到:
ꢀꢀ
(8)u0为的中心,进一步利用齐诺多面体对扰动进行建模,构建不确定扰动的集合。
[0017]
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(9)其中,符号表示集合的加法;
可得交直流混联配电系统所对应的线性微分包含式: (10)步骤2. 进行交直流混联配电系统不确定扰动建模;2.1 设定u0为当前时刻、施加扰动前输入量的稳态数值,则:δu满足:δu/ u0=a*δt b
t
*c* ;其中δt 为时间间隔,a为输入量的预测误差,而b
t
为输入量上一时间间隔的平均波动比例值,而c服从标准正态分布n(0,1);2.2 计算不确定扰动的集合=δu u0ꢀꢀ
;2.3 增加周期性外激励,f(t)=f
0*
sin(ω*δt β),其中f0和ω为周期性外激励的幅值以及频率,β为初始相位角,计算f(t)与的相关性:e=1/2*cos(ω*δt)*exp(

c2/2*δt)2.4 如果e<ζ(其中ζ为相关性阈值),则表示两者相关性不强,直接进行叠加,即= f(t);如果e<ζ(其中ζ为相关性阈值),则表示两者相关性强,即= f0*(1

sin(ω*δt β));步骤3. 交直流混联配电系统不确定扰动下的可达性分析;3.1以当前时刻的系统可达集为基础(即首时刻的可达集),计算公式(10)中方程在下一时刻对应解所形成的可达集(即末时刻的可达集);3.2 将首时刻的可达集、末时刻的可达集进行凸包运算,获取分析时间间隔内的可达集轨迹;3.3 针对,通过有限泰勒级数展开,并采用区间矩阵对余数项进行等效,进一步添加该特解所形成的可达集,修正该分析时间间隔内的可达集;3.4 当下一时刻到来时,重复3.1

3.3步骤。
[0018]
尽管上面对本发明说明性的具体实施方式进行了描述,以便于本技术领域的技术人员理解本发明,且应该清楚,本发明不限于具体实施方式的范围,对本技术领域的普通技术人员来讲,只要各种变化在所附的权利要求限定和确定的本发明的精神和范围内,这些变化是显而易见的,一切利用本发明构思的发明创造均在保护之列。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献