一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

聚碳酸酯全固态电解质和聚碳酸酯全固态电解质复合膜及其制备方法与锂离子电池与流程

2021-11-09 22:15:00 来源:中国专利 TAG:


1.本发明属于聚合物全固态电解质领域,具体地,涉及一种聚碳酸酯全固态电解质,该聚碳酸酯全固态电解质的制备方法,一种聚碳酸酯全固态电解质复合膜,该聚碳酸酯全固态电解质复合膜的制备方法,与一种锂离子电池。


背景技术:

2.随着锂离子电池的应用领域愈加广泛,人们对其研究也越来越深入。锂离子电池的主要组成部分包括正极、负极和电解质。电解质作为电池中重要的一部分,与电池的性能联系相当紧密。现今商用的锂离子电池电解质均为液体,安全性差并且能量密度接近了理论极限,未来发展空间有限,所以研究人员纷纷将目光转向了固态电解质。
3.聚合物固态电解质具有成本低、安全性高、集成性好等诸多优点,被认为是下一代电解质的发展方向,然而,相较于液态电解质,聚合物固态电解质离子电导率低,现阶段难以大规模应用。
4.无机固态电解质在常温下电导率高,但难与正负极直接接触。
5.将聚合物固态电解质和无机固态电解质复合,可以集合两者的优点,在一定程度上提高电解质的综合性能。然而,目前复合方案所得电解质的电导率仍不尽如意。


技术实现要素:

6.本发明的目的在于提供一种加入两种无机陶瓷快离子导体填料的聚碳酸酯全固态电解质,由该聚碳酸酯全固态电解质进一步得到的聚碳酸酯全固态电解质复合膜,以及一种锂离子电池,该聚碳酸酯全固态电解质和聚碳酸酯全固态电解质复合膜具有更高的电导率。
7.本发明的第一方面提供一种聚碳酸酯全固态电解质,该聚碳酸酯全固态电解质包括聚碳酸酯、无机陶瓷快离子导体填料和锂盐,所述无机陶瓷快离子导体填料由li
6.4
la3zr
1.4
ta
0.6
o
12
和li
1.5
al
0.5
ge
1.5
(po4)3组成。
8.本发明的第二方面提供一种聚碳酸酯全固态电解质复合膜,该聚碳酸酯全固态电解质复合膜包括聚碳酸酯全固态电解质膜和多孔支撑材料层;所述聚碳酸酯全固态电解质膜的材质为上述聚碳酸酯全固态电解质。
9.本发明的第三方面提供上述聚碳酸酯全固态电解质的制备方法,包括以下步骤:
10.1)将所述聚碳酸酯和所述锂盐与有机溶剂混合,得到混合溶液;
11.2)向所述混合溶液中加入所述无机陶瓷快离子导体填料,形成悬浊液;
12.3)将所述悬浊液进行干燥,得到所述聚碳酸酯全固态电解质。
13.本发明的第四方面提供上述聚碳酸酯全固态电解质复合膜的制备方法,包括以下步骤:
14.1)将所述聚碳酸酯和所述锂盐与有机溶剂混合,得到混合溶液;
15.2)向所述混合溶液中加入所述无机陶瓷快离子导体填料,形成悬浊液;
16.3)将所述悬浊液涂覆在所述多孔支撑材料上,然后进行真空干燥,得到所述聚碳酸酯全固态电解质复合膜。
17.本发明的第五方面提供一种锂离子电池,该锂离子电池包括正极、负极和电解质,所述电解质为上述聚碳酸酯全固态电解质和/或上述聚碳酸酯全固态电解质复合膜。
18.本发明具有以下优点:
19.1、本发明的聚碳酸酯全固态电解质和聚碳酸酯全固态电解质复合膜中加入有两种无机陶瓷快离子导体填料,通过不同种类无机陶瓷快离子导体填料之间的协同作用,有利于形成快速锂离子通道,从而提升电解质的电导率。
20.2、相比液态电解质或混合型电解质,本发明的聚碳酸酯全固态电解质和聚碳酸酯全固态电解质复合膜安全性好,不易燃。
21.3、本发明制备全固态电解质和全固态电解质复合膜的方法简单易行,原料易得,利于推广。
22.4、由于所用基材为具有生物降解性的聚碳酸酯,因此,本发明聚碳酸酯全固态电解质和聚碳酸酯全固态电解质复合膜属于环境友好型材料。
23.本发明的其它特征和优点将在随后具体实施方式部分予以详细说明。
附图说明
24.通过结合附图对本发明示例性实施方式进行更详细的描述。
25.图1为25℃下实施例1-2、5-6和对比例1-5的聚碳酸酯全固态电解质复合膜的电导率比较图。
具体实施方式
26.以下对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
27.本发明的第一方面提供一种聚碳酸酯全固态电解质,该聚碳酸酯全固态电解质包括聚碳酸酯、无机陶瓷快离子导体填料和锂盐,所述无机陶瓷快离子导体填料由li
6.4
la3zr
1.4
ta
0.6
o
12
和li
1.5
al
0.5
ge
1.5
(po4)3组成。
28.根据本发明,优选地,li
6.4
la3zr
1.4
ta
0.6
o
12
和li
1.5
al
0.5
ge
1.5
(po4)3的重量比为0.25-4:1,优选为0.3-3:1,进一步优选为0.5-2:1。具有优选复配比例的两种无机陶瓷快离子导体填料的聚碳酸酯全固态电解质具有更高的电导率。
29.本发明中,如常规使用状态,所述li
6.4
la3zr
1.4
ta
0.6
o
12
和所述li
1.5
al
0.5
ge
1.5
(po4)3均为纳米级。两种无机陶瓷快离子导体填料均可商购获得,或通过本领域公知的方法制得。
30.根据本发明一种优选实施方式,以所述聚碳酸酯全固态电解质的总重量为基准,所述聚碳酸酯的重量含量为35-90%,优选为40-80%,进一步优选为50-70%;所述无机陶瓷快离子导体填料的重量含量为0.5-50%,优选为2-40%,进一步优选为5-20%;所述锂盐的重量含量为9-50%,优选为18-50%,进一步优选为25-40%。
31.根据本发明,作为基材的聚碳酸酯优选为聚碳酸烯烃酯,更优选为聚碳酸低碳烯烃酯,进一步优选为聚碳酸乙烯酯和/或聚碳酸丙烯酯。本发明中,所述低碳烯烃是指碳原
子为2-4的烯烃。
32.本发明的聚碳酸酯全固态电解质中,锂盐可以为固态电解质领域常规采用的各种锂盐,包括但不限于双三氟甲基磺酸亚胺锂、六氟磷酸锂、双氟代磺酰亚胺锂、高氯酸锂、四氟磷酸锂、二氟磷酸锂、双草酸硼酸锂和二氟草酸硼酸锂中的一种或多种;优选为六氟磷酸锂和/或双三氟甲基磺酸亚胺锂。
33.本发明的第二方面进一步提供一种聚碳酸酯全固态电解质复合膜,该聚碳酸酯全固态电解质复合膜包括聚碳酸酯全固态电解质膜和多孔支撑材料层;所述聚碳酸酯全固态电解质膜的材质为上述聚碳酸酯全固态电解质。
34.由于本发明的聚碳酸酯全固态电解质质地较软,在使用时,可将其与支撑层复合使用。优选地,所述多孔支撑材料层为植物纤维素膜、聚对苯二甲酸乙二醇酯薄膜和玻璃纤维膜中的一种或多种,更优选为植物纤维素薄膜和/或聚对苯二甲酸乙二醇酯薄膜,进一步优选为聚对苯二甲酸乙二醇酯薄膜。
35.根据本发明,所述聚碳酸酯全固态电解质复合膜的厚度可根据需要确定,通常可为80-350μm,所述聚碳酸酯全固态电解质膜的厚度可以为60-200μm。
36.本发明的第三方面提供上述聚碳酸酯全固态电解质的制备方法,包括以下步骤:
37.1)将所述聚碳酸酯和所述锂盐与有机溶剂混合,得到混合溶液;
38.2)向所述混合溶液中加入所述无机陶瓷快离子导体填料,形成悬浊液;
39.3)将所述悬浊液进行干燥,得到所述聚碳酸酯全固态电解质。
40.根据本发明一种优选实施方式,步骤3)包括:
41.3-1)使用溶液浇铸法将所述悬浊液涂覆在载体上,形成液态薄膜;
42.3-2)将所述液态薄膜进行真空干燥,得到所述聚碳酸酯全固态电解质。
43.通过上述方法制得的聚碳酸酯全固态电解质为膜状。所述膜的厚度可根据需要控制在60-200μm范围内。
44.本发明聚碳酸酯全固态电解质的制备方法中,具体地,步骤1)中,所述混合溶液中溶质的质量浓度为10-40%。步骤1)采用的所述有机溶剂可以为n,n-二甲基甲酰胺、n,n-二甲基乙酰胺、乙腈和丙酮中的一种或多种,优选为乙腈和/或n,n-二甲基甲酰胺,进一步优选为n,n-二甲基甲酰胺。
45.优选地,步骤1)包括:将所述聚碳酸酯和所述锂盐与有机溶剂混合,充分搅拌使聚碳酸酯和锂盐完全溶解,得到混合溶液。其中,所述搅拌优选在40℃-75℃下进行;所述搅拌的时间可以为6-12h。
46.根据本发明一种具体实施方式,步骤2)包括:向所述混合溶液中加入所述无机陶瓷快离子导体填料,超声分散,搅拌均匀,形成悬浊液。所述搅拌优选在40℃-75℃下进行;搅拌的时间可以为8-12h。所述超声分散可采用本领域常规工艺条件和设备,例如时间可以为10min-20min。
47.根据本发明,所述真空干燥也可采用常规的条件,具体地,温度可以为25-80℃,时间可以为12-48小时。
48.本发明的第四方面提供上述聚碳酸酯全固态电解质复合膜的制备方法,包括以下步骤:
49.1)将所述聚碳酸酯和所述锂盐与有机溶剂混合,得到混合溶液;
50.2)向所述混合溶液中加入所述无机陶瓷快离子导体填料,形成悬浊液;
51.3)将所述悬浊液涂覆在所述多孔支撑材料上,然后进行真空干燥,得到所述聚碳酸酯全固态电解质复合膜。
52.与聚碳酸酯全固态电解质的制备方法类似地,本发明聚碳酸酯全固态电解质复合膜的制备方法中,具体地,步骤1)中,所述混合溶液中溶质的质量浓度为10-40%。步骤1)采用的所述有机溶剂可以为n,n-二甲基甲酰胺、n,n-二甲基乙酰胺、乙腈和丙酮中的一种或多种,优选为乙腈和/或n,n-二甲基甲酰胺,进一步优选为n,n-二甲基甲酰胺。
53.优选地,步骤1)包括:将所述聚碳酸酯和所述锂盐与有机溶剂混合,充分搅拌使聚碳酸酯和锂盐完全溶解,得到混合溶液。其中,所述搅拌优选在40℃-75℃下进行;所述搅拌的时间可以为6-12h。
54.根据本发明一种具体实施方式,步骤2)包括:向所述混合溶液中加入所述无机陶瓷快离子导体填料,超声分散,搅拌均匀,形成悬浊液。所述搅拌优选在40℃-75℃下进行;搅拌的时间可以为8-12h。所述超声分散可采用本领域常规工艺条件和设备。
55.根据本发明,步骤3)中,优选地,使用溶液浇铸法将所述悬浊液涂覆在所述多孔支撑材料上。所述真空干燥可采用常规的条件,具体地,温度可以为25-80℃,时间可以为12-48小时。
56.本发明的第五方面提供一种锂离子电池,该锂离子电池包括正极、负极和电解质,所述电解质为上述聚碳酸酯全固态电解质和/或上述聚碳酸酯全固态电解质复合膜。
57.下面结合实施例对本发明作进一步说明,但本发明的范围并不局限于这些实施例。
58.实施例1
59.将3g聚碳酸丙烯酯,10g n,n-二甲基甲酰胺,2.1g双三氟甲基磺酸亚胺锂加入到100ml烧瓶中,在40℃下搅拌8h,得到均一溶液,再将0.15g li
6.4
la3zr
1.4
ta
0.6
o
12
和0.15g li
1.5
al
0.5
ge
1.5
(po4)3加入到上述溶液中,超声分散15min,60℃搅拌12h,得到均匀混合溶液,将混合溶液浇铸在聚对苯二甲酸乙二醇酯薄膜上,在60℃真空烘箱中干燥24h,得到聚碳酸丙烯酯全固态电解质复合膜。所述聚碳酸酯全固态电解质复合膜的厚度为90μm,其中聚碳酸酯全固态电解质膜的厚度为60μm。
60.实施例2
61.将5g聚碳酸丙烯酯,18g乙腈,3g双三氟甲基磺酸亚胺锂加入到250ml烧瓶中,在50℃下搅拌10h,得到均一溶液,再将0.6g li
6.4
la3zr
1.4
ta
0.6
o
12
和0.4g li
1.5
al
0.5
ge
1.5
(po4)3加入到上述溶液中,超声分散20min,80℃搅拌16h,得到均匀混合溶液,将混合溶液浇铸在植物纤维素膜上,在80℃真空烘箱中干燥24h,得到聚碳酸丙烯酯全固态电解质复合膜。所述聚碳酸酯全固态电解质复合膜的厚度为120μm,其中聚碳酸酯全固态电解质膜的厚度为80μm。
62.实施例3
63.将2g聚碳酸丙烯酯,6g n,n-二甲基乙酰胺,1.0g双氟代磺酰亚胺锂加入到100ml烧瓶中,在40℃下搅拌6h,得到均一溶液,再将0.24g li
6.4
la3zr
1.4
ta
0.6
o
12
和0.06g li
1.5
al
0.5
ge
1.5
(po4)3加入到上述溶液中,超声分散10min,50℃搅拌8h,得到均匀混合溶液,将混合溶液浇铸在玻璃纤维膜上,在70℃真空烘箱中干燥24h,得到聚碳酸丙烯酯全固态电
解质复合膜。所述聚碳酸酯全固态电解质复合膜的厚度为110μm,其中聚碳酸酯全固态电解质膜的厚度为80μm。
64.实施例4
65.将4g聚碳酸丙烯酯,16g丙酮,1.6g双氟代磺酰亚胺锂加入到250ml烧瓶中,在70℃下搅拌7h,得到均一溶液,再将0.1g li
6.4
la3zr
1.4
ta
0.6
o
12
和0.2g li
1.5
al
0.5
ge
1.5
(po4)3加入到上述溶液中,超声分散20min,70℃搅拌12h,得到均匀混合溶液,将混合溶液浇铸在聚对苯二甲酸乙二醇酯薄膜上,在80℃真空烘箱中干燥24h,得到聚碳酸丙烯酯全固态电解质复合膜。所述聚碳酸酯全固态电解质复合膜的厚度为320μm,其中聚碳酸酯全固态电解质膜的厚度为200μm。
66.实施例5
67.将5g聚碳酸丙烯酯,18g乙腈,3g双三氟甲基磺酸亚胺锂加入到250ml烧瓶中,在50℃下搅拌10h,得到均一溶液,再将0.8g li
6.4
la3zr
1.4
ta
0.6
o
12
和0.2g li
1.5
al
0.5
ge
1.5
(po4)3加入到上述溶液中,超声分散20min,80℃搅拌16h,得到均匀混合溶液,将混合溶液浇铸在植物纤维素膜上,在80℃真空烘箱中干燥24h,得到聚碳酸丙烯酯全固态电解质复合膜。所述聚碳酸酯全固态电解质复合膜的厚度为120μm,其中聚碳酸酯全固态电解质膜的厚度为80μm。
68.实施例6
69.将5g聚碳酸丙烯酯,18g乙腈,3g双三氟甲基磺酸亚胺锂加入到250ml烧瓶中,在50℃下搅拌10h,得到均一溶液,再将0.3g li
6.4
la3zr
1.4
ta
0.6
o
12
和0.7g li
1.5
al
0.5
ge
1.5
(po4)3加入到上述溶液中,超声分散20min,80℃搅拌16h,得到均匀混合溶液,将混合溶液浇铸在植物纤维素膜上,在80℃真空烘箱中干燥24h,得到聚碳酸丙烯酯全固态电解质复合膜。所述聚碳酸酯全固态电解质复合膜的厚度为120μm,其中聚碳酸酯全固态电解质膜的厚度为80μm。
70.实施例7
71.将5g聚碳酸乙烯酯,18g乙腈,3g双三氟甲基磺酸亚胺锂加入到250ml烧瓶中,在50℃下搅拌10h,得到均一溶液,再将0.6g li
6.4
la3zr
1.4
ta
0.6
o
12
和0.4g li
1.5
al
0.5
ge
1.5
(po4)3加入到上述溶液中,超声分散20min,80℃搅拌16h,得到均匀混合溶液,将混合溶液浇铸在植物纤维素膜上,在80℃真空烘箱中干燥24h,得到聚碳酸丙烯酯全固态电解质复合膜。所述聚碳酸酯全固态电解质复合膜的厚度为220μm,其中聚碳酸酯全固态电解质膜的厚度为160μm。
72.实施例8
73.将3g聚碳酸丙烯酯,10g n,n-二甲基甲酰胺,2.1g双三氟甲基磺酸亚胺锂加入到100ml烧瓶中,在40℃下搅拌8h,得到均一溶液,再将0.15g li
6.4
la3zr
1.4
ta
0.6
o
12
和0.15g li
1.5
al
0.5
ge
1.5
(po4)3加入到上述溶液中,超声分散10min,70℃搅拌12h,得到均匀混合溶液,将混合溶液浇铸在聚对苯二甲酸乙二醇酯薄膜上,在50℃真空烘箱中干燥24h,得到聚碳酸丙烯酯全固态电解质复合膜。所述聚碳酸酯全固态电解质复合膜的厚度为90μm,其中聚碳酸酯全固态电解质膜的厚度为60μm。
74.对比例1
75.将3g聚碳酸丙烯酯,10g n,n-二甲基甲酰胺,2.1g双三氟甲基磺酸亚胺锂加入到
100ml烧瓶中,在40℃下搅拌8h,得到均一溶液,再将0.30g li
1.5
al
0.5
ge
1.5
(po4)3加入到上述溶液中,超声分散15min,60℃搅拌12h,得到均匀混合溶液,将混合溶液浇铸在聚对苯二甲酸乙二醇酯薄膜上,在60℃真空烘箱中干燥24h,得到聚碳酸丙烯酯全固态电解质复合膜。所述聚碳酸酯全固态电解质复合膜的厚度为90μm,其中聚碳酸酯全固态电解质膜的厚度为60μm。
76.对比例2
77.将3g聚碳酸丙烯酯,10g n,n-二甲基甲酰胺,2.1g双三氟甲基磺酸亚胺锂加入到100ml烧瓶中,在40℃下搅拌8h,得到均一溶液,再将0.15g li
1.5
al
0.5
ge
1.5
(po4)3和0.15g li7la3zr2o
12
加入到上述溶液中,超声分散15min,60℃搅拌12h,得到均匀混合溶液,将混合溶液浇铸在聚对苯二甲酸乙二醇酯薄膜上,在60℃真空烘箱中干燥24h,得到聚碳酸丙烯酯全固态电解质复合膜。所述聚碳酸酯全固态电解质复合膜的厚度为90μm,其中聚碳酸酯全固态电解质膜的厚度为60μm。
78.对比例3
79.将5g聚碳酸丙烯酯,18g乙腈,3g双三氟甲基磺酸亚胺锂加入到250ml烧瓶中,在50℃下搅拌10h,得到均一溶液,再将1.0g li
6.4
la3zr
1.4
ta
0.6
o
12
加入到上述溶液中,超声分散20min,80℃搅拌16h,得到均匀混合溶液,将混合溶液浇铸在植物纤维素膜上,在80℃真空烘箱中干燥24h,得到聚碳酸丙烯酯全固态电解质复合膜。所述聚碳酸酯全固态电解质复合膜的厚度为120μm,其中聚碳酸酯全固态电解质膜的厚度为80μm。
80.对比例4
81.将5g聚碳酸丙烯酯,18g乙腈,3g双三氟甲基磺酸亚胺锂加入到250ml烧瓶中,在50℃下搅拌10h,得到均一溶液,再将0.6g li
6.4
la3zr
1.4
ta
0.6
o
12
和0.4g li
1.3
al
0.3
ti
1.7
(po4)3加入到上述溶液中,超声分散20min,80℃搅拌16h,得到均匀混合溶液,将混合溶液浇铸在植物纤维素膜上,在80℃真空烘箱中干燥24h,得到聚碳酸丙烯酯全固态电解质复合膜。所述聚碳酸酯全固态电解质复合膜的厚度为120μm,其中聚碳酸酯全固态电解质膜的厚度为80μm。
82.对比例5
83.将5g聚碳酸丙烯酯,18g乙腈,3g双三氟甲基磺酸亚胺锂加入到250ml烧瓶中,在50℃下搅拌10h,得到均一溶液,再将0.6g li
6.5
la3zr
1.4
ta
0.6
o
12
和0.4g li
1.42
al
0.4
ge
1.6
(po4)3加入到上述溶液中,超声分散20min,80℃搅拌16h,得到均匀混合溶液,将混合溶液浇铸在植物纤维素膜上,在80℃真空烘箱中干燥24h,得到聚碳酸丙烯酯全固态电解质复合膜。所述聚碳酸酯全固态电解质复合膜的厚度为120μm,其中聚碳酸酯全固态电解质膜的厚度为80μm。
84.测试
85.根据电化学交流阻抗谱,测试各实施例和对比例所制得的全固态电解质复合膜的室温(25℃)电导率,结果如图1和表1所示。
86.表1
[0087][0088][0089]
由表1和图1可以看出,相较于采用单一无机陶瓷快离子导体填料或其他组成的复配无机陶瓷快离子导体填料得到的全固态电解质,本发明采用li
6.4
la3zr
1.4
ta
0.6
o
12
和li
1.5
al
0.5
ge
1.5
(po4)3作为复配无机陶瓷快离子导体填料得到的全固态电解质具有更高的室温电导率。
[0090]
此外,控制两种无机陶瓷快离子导体填料的比例在优选范围可以进一步提高所得全固态电解质的室温电导率。
[0091]
以上已经描述了本发明的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。
[0092]
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献