一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

具有碰撞接近度指示器的机器人医疗系统的制作方法

2023-03-18 23:46:43 来源:中国专利 TAG:

具有碰撞接近度指示器的机器人医疗系统
1.相关申请
2.本技术要求于2020年6月30日提交的名称为“具有碰撞接近度指示器的机器人医疗系统(robotic medical system with collison proximity indicators)”的美国临时专利申请序列号63/046,054的权益和优先权,其全文以引用方式并入本文。
技术领域
3.本文所公开的系统和方法涉及外科或医疗机器人,并且更具体地,涉及包括或使用碰撞接近度指示器的外科或医疗机器人系统、装置和方法,该碰撞接近度指示器被配置成向用户提供关于各种部件之间的潜在碰撞、近距离碰撞和/或实际碰撞的信息。


背景技术:

4.医疗规程诸如腹腔镜手术可涉及进入患者的内部区域并使患者的内部区域可视化。在腹腔镜规程中,医疗工具可通过腹腔镜插管插入内部区域中。
5.机器人使能的医疗系统可用于控制一个或多个医疗工具的插入和/或操纵。机器人使能的医疗系统可包括操纵医疗工具的多个机器人臂。在定位医疗工具的过程中,一个机器人臂的部分可朝向另一机器人臂或环境中的其他对象运动,这可能导致碰撞。
6.在一些机器人使能的医疗系统中,用户使用例如可作为用户控制台的一部分提供的控制器来远程控制一个或多个医疗工具。用户控制台还可包括显示器,该显示器可允许用户查看患者的内部区域内的一个或多个医疗工具。


技术实现要素:

7.本公开的系统、方法和装置各自具有若干创新方面,这些创新方面中没有一个独自负责本文所公开的期望属性。
8.在第一方面,描述了一种机器人医疗系统,该机器人医疗系统包括:第一机器人臂;输入装置,该输入装置被配置成接收用于控制该第一机器人臂的一个或多个用户输入;和显示器,该显示器被配置成提供与该机器人医疗系统相关的信息,该显示器包括表示该第一机器人臂的第一图标,该第一图标至少包括第一状态和第二状态。该系统还包括处理器和至少一个计算机可读存储器,该至少一个计算机可读存储器与该处理器通信并且具有存储在其上的计算机可执行指令,该计算机可执行指令致使该处理器:基于在该输入装置处所接收的该一个或多个用户输入来控制该第一机器人臂的运动;在该第一机器人臂的该运动期间,确定该第一机器人臂与该机器人系统的第二部件之间的距离;以及基于该距离,将该第一图标设定为该第一状态或该第二状态。
9.该系统可包括以下特征中的一个或多个特征的任何组合:(a)其中该第一图标的该第一状态指示该第一机器人臂与该第二部件之间的该距离超过第一碰撞接近度阈值距离,并且该第一图标的该第二状态指示该第一机器人臂与该第二部件之间的该距离小于该碰撞接近度阈值距离;(b)其中该第一图标包括该第一状态、中间状态和该第二状态,并且
该计算机可执行指令致使该处理器基于该第一机器人臂与该第二部件之间的该距离来将该第一图标设定为该第一状态、该中间状态或该第二状态;(c)其中该第一图标的该第一状态指示该第一机器人臂与该第二部件之间的该距离超过第一碰撞接近度阈值距离,该第一图标的该中间状态指示该第一机器人臂与该第二部件之间的该距离介于该第一碰撞接近度阈值距离与第二接近度阈值距离之间,并且该第一图标的该第二状态指示该第一机器人臂与该第二部件之间的该距离小于该第二碰撞接近度阈值距离;(d)其中在该第一状态,该第一图标是静态的,在该中间状态,该第一图标逐渐改变以提供该第一机器人臂与该第二部件之间的该距离的指示,并且在该第二状态,该第一图标是静态的;(e)其中,在该中间状态,该第一图标被配置成通过基于该第一机器人臂与该第二部件之间的该距离逐渐填充或改变该第一图标的边界的颜色来逐渐改变以提供该第一机器人臂与该第二部件之间的该距离的该指示;(f)其中,在该中间状态,该第一图标被配置成通过基于该第一机器人臂与该第二部件之间的该距离逐渐改变该第一图标的不透明度来逐渐改变以提供该第一机器人臂与该第二部件之间的该距离的该指示;(g)其中该第一碰撞接近度阈值距离包括该第一图标从该第一状态改变为该中间状态的触发距离,并且该第二碰撞接近度阈值距离包括该第一图标从该中间状态改变为该第二状态并且该第一机器人臂的运动受到限制以防止与该第二部件碰撞的截止距离;(h)其中该第二部件包括以下中的一者:该机器人医疗系统的第二机器人臂、该机器人医疗系统的患者平台或该机器人医疗系统的附件;和/或贯穿本技术描述的其他特征。
10.在另一方面,描述了一种机器人医疗系统,该机器人医疗系统包括第一机器人臂和被配置成提供与该机器人医疗系统相关的信息的显示器,该显示器包括表示该第一机器人臂的第一图标,该第一图标至少包括第一状态和第二状态。该系统还包括处理器和至少一个计算机可读存储器,该至少一个计算机可读存储器与该处理器通信并且具有存储在其上的计算机可执行指令,该计算机可执行指令致使该处理器:检测该第一机器人臂处于以下状态中的一种状态:近距离碰撞状态,其中该第一机器人臂与该机器人医疗系统的第二部件之间的距离介于第一碰撞接近度阈值距离与第二接近度阈值距离之间,以及碰撞状态,其中该第一机器人臂与该第二部件之间的该距离小于该第二接近度阈值距离;以及在检测到该第一机器人臂处于该碰撞状态或该近距离碰撞状态时,将该第一图标从该第一状态转变到该第二状态。
11.该系统可包括以下特征中的一个或多个特征的任何组合:(a)其中该第一图标的该第一状态指示该第一机器人臂处于无碰撞状态,其中该第一机器人臂与该第二部件之间的该距离大于该第一接近度阈值距离,并且该第一图标的该第二状态指示该第一机器人臂处于该碰撞状态;(b)其中该第一图标包括该第一状态、中间状态和该第二状态,并且该计算机可执行指令被配置成致使该处理器:在检测到该近距离碰撞状态时将该第一图标从该第一状态转变到该中间状态,并且在检测到该碰撞状态时,将该第一图标从该中间状态转变到该第二状态;(c)其中该计算机可执行指令被配置成致使该处理器通过以下操作检测该第一机器人臂与该机器人医疗系统的该第二部件处于该碰撞状态或该近距离碰撞状态:确定该第一机器人臂与该第二部件之间的该距离,当该距离介于该第一接近度阈值距离与该第二接近度阈值距离之间时,检测到该第一机器人臂处于该近距离碰撞状态,并且当该距离小于该第二接近度阈值距离时,检测到该第一机器人臂处于该碰撞状态;(d)其中该第
一碰撞接近度阈值距离包括该第一图标从该第一状态改变为该中间状态的触发距离,并且该第二碰撞接近度阈值距离包括该第一图标从该中间状态改变为该第二状态并且该第一机器人臂的运动受到限制以防止与该第二部件碰撞的截止距离;(e)其中在该第一状态,该第一图标是静态的,在该中间状态,该第一图标逐渐改变以提供该第一机器人臂与该第二部件之间的该距离的指示,并且在该第二状态,该第一图标是静态的;(f)其中,在该中间状态,该第一图标被配置成通过基于该第一机器人臂与该第二部件之间的该距离逐渐填充或改变该第一图标的边界的颜色来逐渐改变以提供该第一机器人臂与该第二部件之间的该距离的该指示;(g)其中,在该中间状态,该第一图标被配置成通过基于该第一机器人臂与该第二部件之间的该距离逐渐改变该第一图标的不透明度来逐渐改变以提供该第一机器人臂与该第二部件之间的该距离的该指示;(h)其中该第二部件包括以下中的一者:该机器人医疗系统的第二机器人臂、该机器人医疗系统的患者平台或该机器人医疗系统的附件;(i)其中该至少一个计算机可读存储器存储该机器人医疗系统的至少该第一机器人臂和该第二部件的计算机模型,并且该计算机可执行指令致使该处理器基于该计算机模型检测该第一机器人臂与该机器人医疗系统的该第二部件处于该碰撞状态或该近距离碰撞状态;和/或贯穿本技术描述的其他特征。
12.在另一方面,公开了一种用于指示机器人医疗系统的第一机器人臂与第二部件之间的碰撞的方法。该方法包括:在显示器上提供指示该第一机器人臂的第一图标;确定该第一机器人臂与该第二部件之间的距离;基于所确定的距离更新该第一图标的状态,其中该第一图标的该状态包括以下中的至少一者:指示该距离超过第一接近度阈值距离的第一状态;以及指示该距离小于该第一接近度阈值距离的第二状态。
13.该方法可包括以下特征中的一个或多个特征的任何组合:(a)其中确定该第一机器人臂与该第二部件之间的该距离是基于该第一机器人臂与该第二部件的计算机模型;(b)其中该第一图标的该状态还包括中间状态,该中间状态指示该距离介于该第一接近度阈值距离与第二接近度阈值距离之间,并且该第二状态指示该距离小于该第二接近度阈值距离;(c)其中,在该中间状态,该第一图标逐渐改变以提供该第一机器人臂与该第二部件之间的该距离的指示;(d)在该显示器上提供控制该第一机器人臂的用户输入装置可运动以避免与该第二部件碰撞的方向的指示;(e)其中该用户输入装置可运动以避免该碰撞的该方向的该指示包括以下中的一者或多者:二维指示器、三维指示器、热图和接触点;(f)其中该第二部件包括以下中的一者:该机器人医疗系统的第二机器人臂、该机器人医疗系统的患者平台或该机器人医疗系统的附件;(g)在该显示器上提供指示该机器人医疗系统的该第二部件的第二图标,并基于所确定的距离来更新该第二图标的状态;(h)使用输入装置命令附接到该第一机器人臂的第一工具的运动;(i)其中确定该第一机器人臂与该第二部件之间的该距离并基于所确定的距离更新该第一图标的该状态在该第一工具的运动期间重复发生;(j)在该显示器上提供该第一机器人臂与该第二部件之间的碰撞的弹出指示;和/或贯穿本技术描述的其他特征。
附图说明
14.下文将结合附图描述所公开的方面,该附图被提供以说明而非限制所公开的方面,其中类似的标号表示类似的元件。
15.图1示出了被布置用于诊断性和/或治疗性支气管镜检查的基于推车的机器人系统的实施方案。
16.图2描绘了图1的机器人系统的另外方面。
17.图3示出了被布置用于输尿管镜检查的图1的机器人系统的实施方案。
18.图4示出了被布置用于血管规程的图1的机器人系统的实施方案。
19.图5示出了被布置用于支气管镜检查规程的基于台的机器人系统的实施方案。
20.图6提供了图5的机器人系统的另选视图。
21.图7示出了被配置成收起机器人臂的示例性系统。
22.图8示出了被配置用于输尿管镜检查规程的基于台的机器人系统的实施方案。
23.图9示出了被构造用于腹腔镜检查规程的基于台的机器人系统的实施方案。
24.图10示出了图5至图9的具有俯仰和倾斜调节的基于台的机器人系统的实施方案。
25.图11提供了图5至图10的台和基于台的机器人系统的柱之间的接口的详细图示。
26.图12示出了基于台的机器人系统的另选实施方案。
27.图13示出了图12的基于台的机器人系统的端视图。
28.图14示出了其上附接有机器人臂的基于台的机器人系统的端视图。
29.图15示出了示例性器械驱动器。
30.图16示出了具有成对器械驱动器的示例性医疗器械。
31.图17示出了器械驱动器和器械的另选设计,其中驱动单元的轴线平行于器械的细长轴的轴线。
32.图18示出了具有基于器械的插入架构的器械。
33.图19示出了示例性控制器。
34.图20描绘了根据示例性实施方案的框图,该框图示出了估计图1至图10的机器人系统的一个或多个元件的位置(诸如图16至图18的器械的位置)的定位系统。
35.图21示出了根据本公开的各方面的机器人系统的模型的示例性视图。
36.图22示出了根据本公开的各方面的使用几何形式近似的机器人系统的模型。
37.图23示出了根据本公开的各方面的可使用机器人系统的模型检测的不可避免碰撞的示例。
38.图24示出了根据本公开的各方面的可使用机器人系统的模型检测的可避免碰撞的示例。
39.图25是示出根据本公开的各方面的可由机器人系统或其部件操作以用于检测和避免碰撞的示例性方法的流程图。
40.图26a和图26b示出了根据本公开的各方面的当达到触发距离时的示例性动作序列。
41.图27示出了根据本公开的各方面的建模连接件的截止距离和触发距离。
42.图28是示出根据本公开的各方面的可由机器人系统或其部件操作以使用截止距离来检测和避免碰撞的示例性方法的流程图。
43.图29示出了被配置用于与机器人医疗系统一起使用的用户控制台的实施方案。
44.图30示出了根据一个实施方案的机器人医疗系统的显示器的输出,包括外科部位的视图和可被配置成提供碰撞接近度指示器的多个图标。在例示的实施方案中,图标被示
为处于指示无碰撞条件的第一状态。
45.图31示出了图30的显示器的图标显示部分,其中两个图标在指示或接近碰撞条件的中间状态的实施方案中示出。
46.图32示出了配置为碰撞接近度指示器的图标的中间状态的六个阶段。
47.图33a、图33b和图33c示出了被配置为碰撞接近度指示器的图标的中间状态的附加实施方案。
48.图34示出了图30的显示器的图标显示部分,其中两个图标在指示碰撞或近距离碰撞条件的第二状态的实施方案中示出。
49.图35示出了根据一个实施方案的机器人医疗系统的显示器的输出,包括外科部位的视图和可被配置成提供碰撞接近度指示器的多个图标。图35示出碰撞接近度指示器可提供当前受控的机器人臂与当前未受控的机器人臂之间的碰撞信息。
50.图36示出了根据一个实施方案的机器人医疗系统的显示器的输出,包括外科部位的视图和可被配置成提供碰撞接近度指示器的多个图标。图36示出碰撞接近度指示器可提供当前受控的机器人臂与该系统的另一部件之间的碰撞信息。
51.图37示出了根据一个实施方案的机器人医疗系统的显示器的输出,包括外科部位的视图、多个图标以及右手碰撞避免或解决指示器和左手碰撞避免或解决指示器。
52.图38a示出了仅包括左手碰撞避免或解决指示器的显示器的示例性输出。
53.图38b示出了包括左手碰撞避免或解决指示器和右手碰撞避免或解决指示器的显示器的示例性输出。
54.图39a至图39e提供了碰撞避免或解决指示器的示例。
55.图39a提供了被配置为三维方向覆盖图的碰撞避免或解决指示器的示例。
56.图39b提供了被配置为二维方向覆盖图的碰撞避免或解决指示器的示例。
57.图39c提供了被配置为相对于用户手臂示出的接触点的碰撞避免或解决指示器的示例。
58.图39d提供了被配置为相对于当前受控的医疗工具示出的接触点的碰撞避免或解决指示器的示例。
59.图39e提供了被配置为热图的碰撞避免或解决指示器的示例。
具体实施方式
60.1.概述。
61.本公开的各方面可集成到机器人使能的医疗系统中,该机器人使能的医疗系统能够执行多种医疗规程,包括微创规程诸如腹腔镜检查,以及非侵入规程诸如内窥镜检查两者。在内窥镜检查规程中,系统可能能够执行支气管镜检查、输尿管镜检查、胃镜检查等。
62.除了执行广泛的规程之外,系统可以提供附加的益处,诸如增强的成像和指导以帮助医师。另外,该系统可以为医师提供从人体工程学方位执行规程的能力,而不需要笨拙的臂运动和位置。另外,该系统可以为医师提供以改进的易用性执行规程的能力,使得系统的器械中的一个或多个器械可由单个用户控制。
63.出于说明的目的,下文将结合附图描述各种实施方案。应当理解,所公开的概念的许多其他具体实施是可能的,并且利用所公开的具体实施可实现各种优点。标题包括在本
文中以供参考并且有助于定位各个节段。这些标题并非旨在限制相对于其所述的概念的范围。此类概念可在整个说明书中具有适用性。
64.a.机器人系统

推车。
65.机器人使能的医疗系统可以按多种方式配置,这取决于特定规程。图1示出了被布置用于诊断性和/或治疗性支气管镜检查的基于推车的机器人使能的系统10的实施方案。在支气管镜检查期间,系统10可包括推车11,该推车具有一个或多个机器人臂12,以将医疗器械诸如可操纵内窥镜13(其可以是用于支气管镜检查的规程特定的支气管镜)递送至自然孔口进入点(即,在本示例中定位在台上的患者的口),以递送诊断和/或治疗工具。如图所示,推车11可被定位在患者的上躯干附近,以便提供到进入点的通路。类似地,可致动机器人臂12以相对于进入点定位支气管镜。当利用胃镜(用于胃肠道(gi)规程的专用内窥镜)执行gi规程时,也可利用图1中的布置。图2更详细地描绘了推车的示例性实施方案。
66.继续参考图1,一旦推车11被正确定位,机器人臂12就可以机器人地、手动地或以其组合将可操纵内窥镜13插入患者体内。如图所示,可操纵内窥镜13可包括至少两个伸缩部分,诸如内引导件部分和外护套部分,每个部分联接到来自一组器械驱动器28的单独的器械驱动器,每个器械驱动器联接到单独的机器人臂的远侧端部。有利于将引导件部分与护套部分同轴对准的器械驱动器28的这种线性布置产生“虚拟轨道”29,该“虚拟轨道”可以通过将一个或多个机器人臂12操纵到不同角度和/或位置而在空间中被重新定位。本文所述的虚拟轨道在附图中使用虚线描绘,并且因此虚线未描绘系统的任何物理结构。器械驱动器28沿着虚拟轨道29的平移使内引导件部分相对于外护套部分伸缩,或者使内窥镜13从患者推进或回缩。虚拟轨道29的角度可基于临床应用或医师偏好来调节、平移和枢转。例如,在支气管镜检查中,如图所示的虚拟轨道29的角度和位置代表了在向医师提供到内窥镜13的通路同时使由内窥镜13弯曲到患者的口腔中引起的摩擦最小化之间的折衷。
67.在插入之后,内窥镜13可以使用来自机器人系统的精确命令向下导向患者的气管和肺,直到到达目标目的地或手术部位。为了增强通过患者的肺网络的导航和/或到达期望的目标,可操纵内窥镜13以从外部护套部分伸缩地延伸内引导件部分,以获得增强的关节运动和更大的弯曲半径。使用单独的器械驱动器28还允许引导件部分和护套部分彼此独立地被驱动。
68.例如,可引导内窥镜13以将活检针递送到目标,诸如例如患者肺内的病变或结节。针可沿工作通道向下部署,该工作通道延伸内窥镜的长度以获得待由病理学家分析的组织样本。根据病理结果,可沿内窥镜的工作通道向下部署附加工具以用于附加活检。在识别出结节是恶性的之后,内窥镜13可以通过内窥镜递送工具以切除潜在的癌组织。在一些情况下,诊断和治疗处理可在单独的规程中递送。在这些情况下,内窥镜13也可用于递送基准以“标记”目标结节的位置。在其他情况下,诊断和治疗处理可在相同的规程期间递送。
69.系统10还可包括可动塔30,该可动塔可经由支撑缆线连接到推车11以向推车11提供控制、电子、流体、光学、传感器和/或电力的支持。将这样的功能放置在塔30中允许可由操作医师和他/她的工作人员更容易地调节和/或重新定位的更小形状因子的推车11。另外,在推车/台与支撑塔30之间划分功能减少了手术室混乱并且有利于改善临床工作流程。虽然推车11可被定位成靠近患者,但是塔30可以在远程位置中被收起以在规程过程期间不挡道。
70.为了支持上述机器人系统,塔30可包括基于计算机的控制系统的部件,该基于计算机的控制系统将计算机程序指令存储在例如非暂态计算机可读存储介质诸如永磁存储驱动器、固态驱动器等内。无论执行是发生在塔30中还是发生在推车11中,这些指令的执行都可控制整个系统或其子系统。例如,当由计算机系统的处理器执行时,指令可致使机器人系统的部件致动相关托架和臂安装件,致动机器人臂,并且控制医疗器械。例如,响应于接收到控制信号,机器人臂的接头中的马达可将臂定位成特定姿势。
71.塔30还可包括泵、流量计、阀控制器和/或流体通路,以便向可通过内窥镜13部署的系统提供受控的冲洗和抽吸能力。这些部件也可使用塔30的计算机系统来控制。在一些实施方案中,冲洗和抽吸能力可通过单独的缆线直接递送到内窥镜13。
72.塔30可包括电压和浪涌保护器,该电压和浪涌保护器被设计成向推车11提供经滤波和保护的电力,从而避免在推车11中放置电力变压器和其他辅助电力部件,从而得到更小,更可运动的推车11。
73.塔30还可包括用于在整个机器人系统10中部署的传感器的支撑设备。例如,塔30可包括用于在整个机器人系统10中检测、接收和处理从光学传感器或相机接收的数据的光电设备。结合控制系统,此类光电设备可用于生成实时图像,以用于在整个系统中部署的任何数量的控制台中显示(包括在塔30中显示)。类似地,塔30还可包括用于接收和处理从部署的电磁(em)传感器接收的信号的电子子系统。塔30还可用于容纳和定位em场发生器,以便由医疗器械中或医疗器械上的em传感器进行检测。
74.除了系统的其余部分中可用的其他控制台(例如,安装在推车顶部上的控制台)之外,塔30还可包括控制台31。控制台31可包括用于医师操作者的用户界面和显示屏,诸如触摸屏。系统10中的控制台通常设计成提供机器人控制以及规程的术前信息和实时信息两者,诸如内窥镜13的导航和定位信息。当控制台31不是医师可用的唯一控制台时,其可由第二操作者(诸如护士)使用以监测患者的健康状况或生命体征和系统10的操作,以及提供规程特定的数据,诸如导航和定位信息。在其他实施方案中,控制台31被容纳在与塔30分开的主体中。
75.塔30可通过一个或多个缆线或连接件(未示出)联接到推车11和内窥镜13。在一些实施方案中,可通过单根缆线向推车11提供来自塔30的支撑功能,从而简化手术室并消除手术室的混乱。在其他实施方案中,特定功能可联接在单独的布线和连接中。例如,虽然可以通过单个缆线向推车11提供电力,但也可以通过单独的缆线提供对控件、光学器件、流体和/或导航的支持。
76.图2提供了来自图1所示的基于推车的机器人使能的系统的推车11的实施方案的详细图示。推车11通常包括细长支撑结构14(通常称为“柱”)、推车基部15以及在柱14的顶部处的控制台16。柱14可包括一个或多个托架,诸如用于支持一个或多个机器人臂12(图2中示出三个)的部署的托架17(另选地为“臂支撑件”)。托架17可包括可单独配置的臂安装件,该臂安装件沿垂直轴线旋转以调节机器人臂12的基部,以相对于患者更好地定位。托架17还包括托架接口19,该托架接口允许托架17沿着柱14竖直地平移。
77.托架接口19通过狭槽诸如狭槽20连接到柱14,该狭槽被定位在柱14的相对侧上以引导托架17的竖直平移。狭槽20包括竖直平移接口以将托架17相对于推车基部15定位并保持在各种竖直高度处。托架17的竖直平移允许推车11调节机器人臂12的到达范围以满足多
种台高度、患者尺寸和医师偏好。类似地,托架17上的可单独配置的臂安装件允许机器人臂12的机器人臂基部21以多种配置成角度。
78.在一些实施方案中,狭槽20可补充有狭槽盖,该狭槽盖与狭槽表面齐平且平行,以防止灰尘和流体在托架17竖直平移时进入柱14的内部腔以及竖直平移接口。狭槽盖可通过被定位在狭槽20的竖直顶部和底部附近的成对弹簧卷轴部署。盖在卷轴内盘绕,直到在托架17竖直地上下平移时被部署成从盖的盘绕状态延伸和回缩。当托架17朝向卷轴平移时,卷轴的弹簧加载提供了将盖回缩到卷轴中的力,同时在托架17平移远离卷轴时也保持紧密密封。可使用例如托架接口19中的支架将盖连接到托架17,以确保在托架17平移时盖的适当延伸和回缩。
79.柱14可在内部包括机构诸如齿轮和马达,其被设计成使用竖直对准的导螺杆以响应于响应用户输入(例如,来自控制台16的输入)生成的控制信号来以机械化方式平移托架17。
80.机器人臂12通常可包括由一系列连杆23分开的机器人臂基部21和端部执行器22,该一系列连杆由一系列接头24连接,每个接头包括独立的致动器,每个致动器包括可独立控制的马达。每个可独立控制的接头表示机器人臂12可用的独立自由度。机器人臂12中的每个机器人臂可具有七个接头,并且因此提供七个自由度。多个接头导致多个自由度,从而允许“冗余”的自由度。具有冗余自由度允许机器人臂12使用不同的连接件位置和接头角度将其相应的端部执行器22定位在空间中的特定方位、取向和轨迹处。这允许系统从空间中的期望点定位和导向医疗器械,同时允许医师使臂接头运动到远离患者的临床有利方位,以产生更大的接近,同时避免臂碰撞。
81.推车基部15在地板上平衡柱14、托架17和机器人臂12的重量。因此,推车基部15容纳较重的部件,诸如电子器件、马达、电源以及使得推车11能够运动和/或固定的部件。例如,推车基部15包括允许推车11在规程之前容易地围绕房间运动的可滚动的轮形脚轮25。在到达适当方位之后,脚轮25可以使用轮锁固定,以在规程期间将推车11保持在适当方位。
82.定位在柱14的竖直端部处的控制台16允许用于接收用户输入的用户界面和显示屏(或两用装置,诸如例如触摸屏26)两者向医师用户提供术前和术中数据两者。触摸屏26上的潜在术前数据可以包括从术前计算机化断层摄影(ct)扫描导出的术前计划、导航和标测数据和/或来自术前患者面谈的记录。显示器上的术中数据可以包括从工具、传感器提供的光学信息和来自传感器的坐标信息以及重要的患者统计,诸如呼吸、心率和/或脉搏。控制台16可以被定位和倾斜成允许医师从柱14的与托架17相对的侧面进入控制台16。从该方位,医师可以在从推车11后面操作控制台16的同时观察控制台16、机器人臂12和患者。如图所示,控制台16还包括用以帮助操纵和稳定推车11的柄部27。
83.图3示出了被布置用于输尿管镜检查的机器人使能的系统10的实施方案。在输尿管镜规程中,推车11可被定位成将输尿管镜32(被设计成横穿患者的尿道和输尿管的规程特定的内窥镜)递送到患者的下腹部区域。在输尿管镜检查中,可以期望输尿管镜32直接与患者的尿道对准以减少该区域中的敏感解剖结构上的摩擦和力。如图所示,推车11可在台的脚部处对准,以允许机器人臂12定位输尿管镜32,以用于直接线性进入患者的尿道。机器人臂12可从台的脚部沿着虚拟轨道33将输尿管镜32通过尿道直接插入患者的下腹部中。
84.在插入尿道中之后,使用与支气管镜检查中类似的控制技术,输尿管镜32可被导
航到膀胱、输尿管和/或肾中以用于诊断和/或治疗应用。例如,可以将输尿管镜32引导到输尿管和肾中以使用沿输尿管镜32的工作通道向下部署的激光或超声碎石装置来打碎积聚的肾结石。在碎石完成之后,可以使用沿输尿管镜32向下部署的篮移除所得的结石碎片。
85.图4示出了类似地布置用于血管规程的机器人使能的系统10的实施方案。在血管规程中,系统10可被配置成使得推车11可将医疗器械34(诸如可操纵导管)递送到患者的腿部的股动脉中的进入点。股动脉呈现用于导航的较大直径以及到患者的心脏的相对较少的迂回且曲折的路径两者,这简化了导航。如在输尿管镜规程中,推车11可被定位成朝向患者的腿部和下腹部,以允许机器人臂12提供直接线性进入患者的大腿/髋部区域中的股动脉进入点的虚拟轨道35。在插入到动脉中之后,可通过平移器械驱动器28来导向和插入医疗器械34。另选地,推车可以被定位在患者的上腹部周围,以到达另选的血管进入点,诸如肩部和腕部附近的颈动脉和臂动脉。
86.b.机器人系统

台。
87.机器人使能的医疗系统的实施方案还可结合患者的台。结合台通过移除推车减少了手术室内的资本设备的量,这允许更多地接近患者。图5示出了被布置用于支气管镜检查规程的这样的机器人使能的系统的实施方案。系统36包括用于将平台38(示出为“台”或“床”)支撑在地板上的支撑结构或柱37。与基于推车的系统非常相似,系统36的机器人臂39的端部执行器包括器械驱动器42,其被设计成通过或沿着由器械驱动器42的线性对准形成的虚拟轨道41来操纵细长医疗器械,诸如图5中的支气管镜40。在实践中,用于提供荧光镜成像的c形臂可通过将发射器和检测器放置在台38周围而定位在患者的上腹部区域上方。
88.图6提供了用于讨论目的的没有患者和医疗器械的系统36的另选视图。如图所示,柱37可包括在系统36中示出为环形的一个或多个托架43,该一个或多个机器人臂39可基于该托架。托架43可以沿着沿柱37的长度延伸的竖直柱接口44平移,以提供不同的有利点,机器人臂39可以从这些有利点被定位以到达患者。托架43可使用被定位在柱37内的机械马达围绕柱37旋转,以允许机器人臂39进入台38的多个侧面,诸如患者的两侧。在具有多个托架的实施方案中,托架可单独地定位在柱上,并且可独立于其他托架平移和/或旋转。虽然托架43不需要环绕柱37或甚至是圆形的,但如图所示的环形形状有利于托架43围绕柱37旋转,同时保持结构平衡。托架43的旋转和平移允许系统36将医疗器械诸如内窥镜和腹腔镜对准到患者上的不同进入点中。在其他实施方案(未示出)中,系统36可包括具有可调式臂支撑件的病人检查台或病床,该可调式臂支撑件呈在病人检查台或病床旁边延伸的杆或导轨的形式。一个或多个机器人臂39(例如,经由具有肘接头的肩部)可附接到可调式臂支撑件,该可调式臂支撑件可被竖直调节。通过提供竖直调节,机器人臂39有利地能够紧凑地存放在病人检查台或病床下方,并且随后在规程期间升高。
89.机器人臂39可通过包括一系列接头的一组臂安装件45安装在托架43上,该接头可单独地旋转和/或伸缩地延伸以向机器人臂39提供附加的可配置性。另外,臂安装件45可定位在托架43上,使得当托架43适当地旋转时,臂安装件45可定位在台38的同一侧上(如图6所示)、台38的相对侧上(如图9所示)或台38的相邻侧上(未示出)。
90.柱37在结构上为台38提供支撑,并且为托架43的竖直平移提供路径。在内部,柱37可配备有用于引导托架的竖直平移的导螺杆,以及用以机械化基于导螺杆的托架43的平移的马达。柱37还可将功率和控制信号传送到托架43和安装在其上的机器人臂39。
91.台基部46具有与图2所示的推车11中的推车基部15类似的功能,容纳较重的部件以平衡台/床38、柱37、托架43和机器人臂39。台基部46还可结合刚性脚轮以在规程期间提供稳定性。从台基部46的底部部署的脚轮可在基部46的两侧沿相反方向延伸,并且当系统36需要运动时回缩。
92.继续图6,系统36还可以包括塔(未示出),该塔使系统36的功能在台与塔之间进行划分以减小台的形状因子和体积。如在先前所公开的实施方案中,塔可以向台提供多种支持功能,诸如处理、计算和控制能力、电力、流体和/或光学以及传感器处理。塔还可以是可运动的,以远离患者定位,从而改善医师的接近并且消除手术室的混乱。另外,将部件放置在塔中允许在台基部46中有更多的储存空间,以用于机器人臂39的潜在收起。塔还可以包括主控制器或控制台,其提供用于用户输入的用户界面(诸如键盘和/或挂件)以及用于术前和术中信息(诸如实时成像、导航和跟踪信息)的显示屏(或触摸屏)两者。在一些实施方案中,塔还可包括用于待用于注气的气罐的夹持器。
93.在一些实施方案中,台基部可以在不使用时收起和储存机器人臂。图7示出了在基于台的系统的实施方案中收起机器人臂的系统47。在系统47中,托架48可以竖直平移到基部49中以使机器人臂50、臂安装件51和托架48收起在基部49内。基部盖52可以平移和回缩打开以围绕柱53部署托架48、臂安装件51和机器人臂50,并且闭合以收起该托架、臂安装件和机器人臂,以便在不使用时保护它们。基部盖52可利用膜54沿着其开口的边缘密封,以防止在闭合时灰尘和流体进入。
94.图8示出了被配置用于输尿管镜检查规程的机器人使能的基于台的系统的实施方案。在输尿管镜检查中,台38可以包括用于将患者定位成与柱37和台基部46成偏角的旋转部分55。旋转部分55可围绕枢转点(例如,位于患者的头部下方)旋转或枢转,以便将旋转部分55的底部部分定位成远离柱37。例如,旋转部分55的枢转允许c形臂(未示出)定位在患者的下腹部上方,而不与台38下方的柱(未示出)竞争空间。通过围绕柱37旋转托架(未示出),机器人臂39可沿着虚拟轨道57将输尿管镜56直接插入患者的腹股沟区域中以到达尿道。在输尿管镜检查中,镫58也可以固定至台38的旋转部分55,以在规程期间支撑患者的腿部的方位,并且允许完全通向患者的腹股沟区域。
95.在腹腔镜检查规程中,通过患者的腹壁中的一个或多个小切口,可将微创器械插入患者的解剖结构中。在一些实施方案中,微创器械包括用于进入患者内的解剖结构的细长刚性构件,诸如轴。在患者腹腔充气之后,可以引导器械执行外科或医疗任务,诸如抓握、切割、消融、缝合等。在一些实施方案中,器械可以包括镜,诸如腹腔镜。图9示出了被配置用于腹腔镜检查规程的机器人使能的基于台的系统的实施方案。如图9所示,系统36的托架43可以被旋转并且竖直调整,以将成对的机器人臂39定位在台38的相对侧上,使得可以使用臂安装件45将器械59定位成穿过患者两侧上的最小切口以到达他/她的腹腔。
96.为了适应腹腔镜检查规程,机器人使能的台系统还可将平台倾斜到期望的角度。图10示出了具有俯仰或倾斜调整的机器人使能的医疗系统的实施方案。如图10所示,系统36可以适应台38的倾斜,以将台的一部分定位在比另一部分距底板更远的距离处。另外,臂安装件45可以旋转以匹配倾斜,使得机器人臂39与台38保持相同的平面关系。为了适应更陡的角度,柱37还可以包括伸缩部分60,该伸缩部分允许柱37的竖直延伸以防止台38接触地板或与台基部46碰撞。
97.图11提供了台38与柱37之间的接口的详细图示。俯仰旋转机构61可被配置成以多个自由度改变台38相对于柱37的俯仰角。俯仰旋转机构61可以通过将正交轴线1、2定位在柱台接口处来实现,每条轴线由单独的马达3、4响应于电俯仰角命令而致动。沿着一个螺钉5的旋转将使得能够在一条轴线1中进行倾斜调整,而沿着另一个螺钉6的旋转将使得能够沿着另一个轴线2进行倾斜调节。在一些实施方案中,可使用球形接头来在多个自由度上改变台38相对于柱37的俯仰角。
98.例如,当试图将台定位在头低脚高位(即,将患者的下腹部定位在比患者的上腹部距地板更高的方位)以用于下腹部手术时,俯仰调节特别有用。头低脚高位致使患者的内部器官通过重力滑向他/她的上腹部,从而清理出腹腔以使微创工具进入并且执行下腹部外科或医疗规程,诸如腹腔镜前列腺切除术。
99.图12和图13示出了基于台的外科机器人系统100的另选实施方案的等轴视图和端视图。外科机器人系统100包括可被构造成相对于台101支撑一个或多个机器人臂(参见例如图14)的一个或多个可调式臂支撑件105。在例示的实施方案中,示出了单个可调式臂支撑件105,但是附加的臂支撑件105可设置在台101的相对侧上。可调式臂支撑件105可被配置成使得其可相对于台101运动,以调节和/或改变可调式臂支撑件105和/或安装到该可调式臂支撑件的任何机器人臂相对于台101的位置。例如,可调式臂支撑件105可相对于台101被调节一个或多个自由度。可调式臂支撑件105为系统100提供高灵活性,包括容易地将该一个或多个可调式臂支撑件105和附接到其的任何机器人臂收起在台101下方的能力。可调式臂支撑件105可从收起位置升高到台101的上表面下方的位置。在其他实施方案中,可调式臂支撑件105可从收起位置升高到台101的上表面上方的位置。
100.可调式臂支撑件105可提供若干自由度,包括提升、侧向平移、倾斜等。在图12和图13的例示实施方案中,臂支撑件105被构造成具有四个自由度,这些自由度在图12中用箭头示出。第一自由度允许在z方向上(“z提升”)调节可调式臂支撑件105。例如,可调式臂支撑件105可包括托架109,该托架被配置成沿着或相对于支撑台101的柱102向上或向下运动。第二自由度可允许可调式臂支撑件105倾斜。例如,可调式臂支撑件105可包括旋转接头,该旋转接头可允许可调式臂支撑件105在头低脚高位与床对准。第三自由度可允许可调式臂支撑件105“向上枢转”,这可用于调节台101的一侧与可调式臂支撑件105之间的距离。第四自由度可允许可调式臂支撑件105沿着台的纵向长度平移。
101.图12和图13中的外科机器人系统100可包括由安装到基部103的柱102支撑的台。基部103和柱102相对于支撑表面支撑台101。地板轴线131和支撑轴线133在图13中示出。
102.可调式臂支撑件105可安装到柱102。在其他实施方案中,臂支撑件105可安装到台101或基部103。可调式臂支撑件105可包括托架109、杆或轨道连接件111以及杆或轨道107。在一些实施方案中,安装到轨道107的一个或多个机器人臂可相对于彼此平移和运动。
103.托架109可通过第一接头113附接到柱102,该第一接头允许托架109相对于柱102运动(例如,诸如沿第一轴线或竖直轴线123上下运动)。第一接头113可向可调式臂支撑件105提供第一自由度(“z提升”)。可调式臂支撑件105可包括第二接头115,该第二接头为可调式臂支撑件105提供第二自由度(倾斜)。可调式臂支撑件105可包括第三接头117,该第三接头可为可调式臂支撑件105提供第三自由度(“向上枢转”)。可提供附加接头119(在图13中示出),该附加接头机械地约束第三接头117以在导轨连接件111围绕第三轴线127旋转时
保持导轨107的取向。可调式臂支撑件105可包括第四接头121,该第四接头可沿着第四轴线129为可调式臂支撑件105提供第四自由度(平移)。
104.图14示出了根据一个实施方案的具有安装在台101的相对侧上的两个可调式臂支撑件105a、105b的外科机器人系统140a的端视图。第一机器人臂142a附接到第一可调式臂支撑件105b的杆或导轨107a。第一机器人臂142a包括附接到导轨107a的基部144a。第一机器人臂142a的远侧端部包括可附接到一个或多个机器人医疗器械或工具的器械驱动机构146a。类似地,第二机器人臂142b包括附接到导轨107b的基部144b。第二机器人臂142b的远侧端部包括器械驱动机构146b。器械驱动机构146b可被构造成附接到一个或多个机器人医疗器械或工具。
105.在一些实施方案中,机器人臂142a、142b中的一者或多者包括具有七个或更多个自由度的臂。在一些实施方案中,机器人臂142a、142b中的一者或多者可包括八个自由度,包括插入轴线(包括插入的1个自由度)、腕部(包括腕部俯仰、偏航和滚动的3个自由度)、肘部(包括肘部俯仰的1个自由度)、肩部(包括肩部俯仰和偏航的2个自由度)以及基部144a、144b(包括平移的1个自由度)。在一些实施方案中,插入自由度可由机器人臂142a、142b提供,而在其他实施方案中,器械本身经由基于器械的插入架构提供插入。
106.c.器械驱动器和接口。
107.系统的机器人臂的端部执行器可包括:(i)器械驱动器(另选地称为“器械驱动机构”或“器械装置操纵器”),该器械驱动器结合了用于致动医疗器械的机电装置;以及(ii)可移除或可拆卸的医疗器械,该医疗器械可以没有任何机电部件,诸如马达。该二分法可能是由以下所驱动的:对医疗规程中使用的医疗器械进行灭菌的需要;以及由于昂贵的资本设备的复杂机械组件和敏感电子器件而不能对昂贵的资本设备进行充分灭菌。因此,医疗器械可以被设计成从器械驱动器(以及因此从系统)拆卸、移除和互换,以便由医师或医师的工作人员单独灭菌或处置。相比之下,器械驱动器不需要被改变或灭菌,并且可以被覆盖以便保护。
108.图15示出了示例器械驱动器。定位在机器人臂的远侧端部处的器械驱动器62包括一个或多个驱动单元63,该一个或多个驱动单元以平行轴线布置以经由驱动轴64向医疗器械提供受控扭矩。每个驱动单元63包括用于与器械相互作用的单独的驱动轴64,用于将马达轴旋转转换成期望扭矩的齿轮头65,用于生成驱动扭矩的马达66,用以测量马达轴的速度并且向控制电路提供反馈的编码器67,以及用于接收控制信号并且致动驱动单元的控制电路68。每个驱动单元63被独立地控制和机动化,器械驱动器62可向医疗器械提供多个(例如,如图15所示为四个)独立的驱动输出。在操作中,控制电路68将接收控制信号,将马达信号传输至马达66,将由编码器67测量的所得马达速度与期望速度进行比较,并且调制马达信号以生成期望扭矩。
109.对于需要无菌环境的规程,机器人系统可以结合驱动接口,诸如连接至无菌覆盖件的无菌适配器,其位于器械驱动器与医疗器械之间。无菌适配器的主要目的是将角运动从器械驱动器的驱动轴传递到器械的驱动输入件,同时保持驱动轴与驱动输入件之间的物理分离并且因此保持无菌。因此,示例性无菌适配器可以包括旨在与器械驱动器的驱动轴和器械上的驱动输入部配合的一系列旋转输入部和旋转输出部。连接到无菌适配器的由薄的柔性材料(诸如透明或半透明塑料)组成的无菌覆盖件被设计成覆盖资本设备,诸如器械
驱动器、机器人臂和推车(在基于推车的系统中)或台(在基于台的系统中)。覆盖件的使用将允许资本设备被定位在患者附近,同时仍然位于不需要灭菌的区域(即,非无菌区)。在无菌覆盖件的另一侧上,医疗器械可以在需要灭菌的区域(即,无菌区)与患者对接。
110.d.医疗器械。
111.图16示出了具有成对器械驱动器的示例医疗器械。与被设计成与机器人系统一起使用的其他器械类似,医疗器械70包括细长轴71(或细长主体)和器械基部72。由于其用于由医师进行的手动交互的预期设计而也被称为“器械柄部”的器械基部72通常可以包括可旋转驱动输入部73(例如,插座、滑轮或卷轴),该驱动输入部被设计成与延伸通过机器人臂76的远侧端部处的器械驱动器75上的驱动接口的驱动输出部74配合。当物理连接、闩锁和/或联接时,器械基部72的配合的驱动输入件73可与器械驱动器75中的驱动输出件74共享旋转轴线,以允许扭矩从驱动输出件74传递到驱动输入件73。在一些实施方案中,驱动输出件74可包括花键,其被设计成与驱动输入件73上的插孔配合。
112.细长轴71被设计成通过解剖开口或内腔(例如,如在内窥镜检查中)或通过微创切口(例如,如在腹腔镜检查中)递送。细长轴71可以是柔性的(例如,具有类似于内窥镜的特性)或刚性的(例如,具有类似于腹腔镜的特性),或者包含柔性部分和刚性部分两者的定制组合。当被设计用于腹腔镜检查时,刚性细长轴的远侧端部可以连接到端部执行器,该端部执行器从由具有至少一个自由度的连接叉形成的接头腕和外科工具或医疗器械(诸如例如,抓握器或剪刀)延伸,当驱动输入部响应于从器械驱动器75的驱动输出部74接收到的扭矩而旋转时,该外科工具可以基于来自腱的力来致动。当设计用于内窥镜检查时,柔性细长轴的远侧端部可包括可操纵或可控制的弯曲节段,该弯曲节段以基于从器械驱动器75的驱动输出74接收到的扭矩而进行关节运动和弯曲。
113.使用沿着细长轴71的腱沿着细长轴71传递来自器械驱动器75的扭矩。这些单独的腱(例如,牵拉线)可单独地锚定至器械柄部72内的单独的驱动输入件73。从器械柄部72,沿着细长轴71的一个或多个牵拉腔向下引导腱并且将其锚定在细长轴71的远侧部分处,或者锚定在细长轴的远侧部分处的腕部中。在外科规程诸如腹腔镜、内窥镜或混合规程期间,这些腱可以联接到远侧安装的端部执行器,诸如腕部、抓握器或剪刀。在这样的布置下,施加在驱动输入部73上的扭矩将张力传递到腱,从而引起端部执行器以某种方式致动。在一些实施方案中,在外科规程期间,腱可以致使接头围绕轴线旋转,从而致使端部执行器沿一个方向或另一个方向运动。另选地,腱可以连接到细长轴71的远侧端部处的抓握器的一个或多个钳口,其中来自腱的张力致使抓握器闭合。
114.在内窥镜检查中,腱可经由粘合剂、控制环或其他机械固定件联接到沿着细长轴71定位(例如,在远侧端部处)的弯曲或关节运动节段。当固定地附接到弯曲节段的远侧端部时,施加在驱动输入部73上的扭矩将沿腱向下传递,从而引起较软的弯曲节段(有时称为可关节运动节段或区域)弯曲或进行关节运动。沿着不弯曲节段,可以有利的是,使单独的牵拉腔螺旋或盘旋,该牵拉腔沿着内窥镜轴的壁(或在内部)导向单独的腱,以平衡由牵拉线中的张力引起的径向力。为了特定目的,可以改变或设计螺旋的角度和/或它们之间的间隔,其中更紧的螺旋在负载力下表现出较小的轴压缩,而较低的螺旋量在负载力下引起更大的轴压缩,但限制弯曲。在另一种情况下,可平行于细长轴71的纵向轴线来导向牵拉腔以允许在期望的弯曲或可关节运动节段中进行受控关节运动。
115.在内窥镜检查中,细长轴71容纳多个部件以辅助机器人规程。轴71可以在轴71的远侧端部处包括用于部署外科工具(或医疗器械)、对手术区域进行冲洗和/或抽吸的工作通道。轴71还可以适应线和/或光纤以向远侧末端处的光学组件/从远侧末端处的光学组件传递信号,该光学组件可以包括光学相机。轴71也可以适应光纤,以将来自位于近侧的光源(诸如,发光二极管)的光载送到轴71的远侧端部。
116.在器械70的远侧端部处,远侧末端还可包括用于将用于诊断和/或治疗、冲洗和抽吸的工具递送到手术部位的工作通道的开口。远侧末端还可以包括用于相机(诸如纤维镜或数码相机)的端口,以捕获内部解剖空间的图像。相关地,远侧末端还可以包括用于光源的端口,该光源用于在使用相机时照亮解剖空间。
117.在图16的示例中,驱动轴轴线以及因此驱动输入部轴线与细长轴71的轴线正交。然而,该布置使细长轴71的滚转能力复杂化。沿着细长轴71的轴线滚转该细长轴同时保持驱动输入件73静止会引起当腱从驱动输入件73延伸出去并且进入细长轴71内的牵拉腔时,腱的不期望的缠结。所得到的这样的腱的缠结可能破坏旨在在内窥镜规程期间预测柔性细长轴71的运动的任何控制算法。
118.图17示出了器械驱动器和器械的另选设计,其中驱动单元的轴线平行于器械的细长轴的轴线。如图所示,圆形器械驱动器80包括四个驱动单元,其驱动输出81在机器人臂82的端部处平行对准。驱动单元和它们各自的驱动输出81容纳在由组件83内的驱动单元中的一个驱动单元驱动的器械驱动器80的旋转组件83中。响应于由旋转驱动单元提供的扭矩,旋转组件83沿着圆形轴承旋转,该圆形轴承将旋转组件83连接到器械驱动器80的非旋转部分84。可以通过电接触将电力和控制信号从器械驱动器80的非旋转部分84传送至旋转组件83,该电接触可以通过电刷滑环连接(未示出)的旋转来保持。在其他实施方案中,旋转组件83可以响应于集成到不可旋转部分84中的单独的驱动单元,并且因此不平行于其他驱动单元。旋转机构83允许器械驱动器80允许驱动单元及其相应的驱动输出81作为单个单元围绕器械驱动器轴线85旋转。
119.与先前所公开的实施方案类似,器械86可以包括细长轴部分88和器械基部87(出于讨论的目的,示出为具有透明的外部表层),该器械基部包括被构造成接收器械驱动器80中的驱动输出部81的多个驱动输入部89(诸如插座、滑轮和卷轴)。与先前公开的实施方案不同,器械轴88从器械基部87的中心延伸,该器械基部的轴线基本上平行于驱动输入件89的轴线,而不是如图16的设计中那样正交。
120.当联接到器械驱动器80的旋转组件83时,包括器械基部87和器械轴88的医疗器械86与旋转组件83组合地围绕器械驱动器轴线85旋转。由于器械轴88被定位在器械基部87的中心处,因此当附接时器械轴88与器械驱动器轴线85同轴。因此,旋转组件83的旋转致使器械轴88围绕其自身的纵向轴线旋转。此外,当器械基部87与器械轴88一起旋转时,连接到器械基部87中的驱动输入件89的任何腱在旋转期间都不缠结。因此,驱动输出部81、驱动输入部89和器械轴88的轴线的平行允许轴在不会使任何控制腱缠结的情况下旋转。
121.图18示出了根据一些实施方案的具有基于器械的插入架构的器械150。器械150可联接到上文所述的器械驱动器中的任一个器械驱动器。器械150包括细长轴152、连接到轴152的端部执行器162和联接到轴152的柄部170。细长轴152包括管状构件,该管状构件具有近侧部分154和远侧部分156。细长轴152沿着其外表面包括一个或多个通道或凹槽158。凹
槽158被构造成接纳通过该凹槽的一根或多根线材或缆线180。因此,一根或多根缆线180沿着细长轴152的外表面延伸。在其他实施方案中,缆线180也可穿过细长轴152。所述一根或多根缆线180的操纵(例如,经由器械驱动器)使得端部执行器162的致动。
122.器械柄部170(也可称为器械基部)通常可包括附接接口172,该附接接口具有一个或多个机械输入件174,例如插孔、滑轮或卷轴,所述一个或多个机械输入件被设计成与器械驱动器的附接表面上的一个或多个扭矩联接器往复地配合。
123.在一些实施方案中,器械150包括使得细长轴152能够相对于柄部170平移的一系列滑轮或缆线。换句话讲,器械150本身包括基于器械的插入架构,该架构适应器械的插入,从而使对机器人臂的依赖最小化以提供器械150的插入。在其他实施方案中,机器人臂可以很大程度上负责器械插入。
124.e.控制器。
125.本文所述的机器人系统中的任一个机器人系统可包括用于操纵附接到机器人臂的器械的输入装置或控制器。在一些实施方案中,控制器可与器械(例如,通信地、电子地、电气、无线地和/或机械地)耦合,使得控制器的操纵例如经由主从控制而致使器械对应操纵。
126.图19是控制器182的实施方案的透视图。在本实施方案中,控制器182包括可具有阻抗和导纳控制两者的混合控制器。在其他实施方案中,控制器182可仅利用阻抗或被动控制。在其他实施方案中,控制器182可仅利用导纳控制。通过作为混合控制器,控制器182有利地在使用时可具有较低的感知惯性。
127.在例示的实施方案中,控制器182被配置成允许操纵两个医疗器械,并且包括两个柄部184。柄部184中的每个柄部连接到万向支架186。每个万向支架186连接到定位平台188。
128.如图19所示,每个定位平台188包括通过棱柱接头196联接到柱194的选择顺应性装配机器人臂(scara)198。棱柱接头196被配置成沿着柱194(例如,沿着轨道197)平移,以允许柄部184中的每个柄部在z方向上平移,从而提供第一自由度。scara 198被构造成允许柄部184在x-y平面中运动,从而提供两个附加自由度。
129.在一些实施方案中,一个或多个负荷传感器定位在控制器中。例如,在一些实施方案中,负荷传感器(未示出)被定位在万向支架186中的每个万向支架的主体中。通过提供负荷传感器,控制器182的部分能够在导纳控制下操作,从而在使用时有利地减小控制器的感知惯性。在一些实施方案中,定位平台188被配置用于导纳控制,而万向支架186被配置用于阻抗控制。在其他实施方案中,万向支架186被配置用于导纳控制,而定位平台188被配置用于阻抗控制。因此,对于一些实施方案,定位平台188的平移自由度或位置自由度可依赖于导纳控制,而万向支架186的旋转自由度依赖于阻抗控制。
130.f.导航和控制。
131.传统的内窥镜检查可以涉及使用荧光透视(例如,如可以通过c形臂递送的)和其他形式的基于辐射的成像模态,以向操作医师提供腔内指导。相比之下,本公开所设想的机器人系统可以提供基于非辐射的导航和定位装置,以减少医师暴露于辐射并且减少手术室内的设备的量。如本文所用,术语“定位”可以指确定和/或监测对象在参考坐标系中的方位。诸如术前标测、计算机视觉、实时em跟踪和机器人命令数据的技术可以单独地或组合地
使用以实现无辐射操作环境。在仍使用基于辐射的成像模态的其他情况下,可以单独地或组合地使用术前标测、计算机视觉、实时em跟踪和机器人命令数据,以改进仅通过基于辐射的成像模态获得的信息。
132.图20是示出了根据示例性实施方案的估计机器人系统的一个或多个元件的位置(诸如器械的位置)的定位系统90的框图。定位系统90可以是被配置成执行一个或多个指令的一组一个或多个计算机装置。计算机装置可以由上文讨论的一个或多个部件中的处理器(或多个处理器)和计算机可读存储器来体现。通过示例而非限制,计算机装置可以位于图1所示的塔30、图1至图4所示的推车11、图5至图14所示的床等中。
133.如图20所示,定位系统90可包括定位模块95,该定位模块处理输入数据91-94以生成用于医疗器械的远侧末端的位置数据96。位置数据96可以是表示器械的远侧端部相对于参考系的位置和/或取向的数据或逻辑。参考系可以是相对于患者解剖结构或已知对象(诸如em场发生器)的参考系(参见下文对于em场发生器的讨论)。
134.现在更详细地描述各种输入数据91-94。定位模块95可使用术前标测来生成模型数据91。术前标测可以通过使用低剂量ct扫描的集合来完成。术前ct扫描被重建为三维图像,该三维图像被可视化,例如作为患者的内部解剖结构的剖面图的“切片”。当总体上分析时,可以生成用于患者的解剖结构(诸如患者肺网络)的解剖腔、空间和结构的基于图像的模型。可以从ct图像确定和近似诸如中心线几何形状的技术,以形成患者解剖结构的三维体积,其被称为模型数据91(当仅使用术前ct扫描生成时也称为“术前模型数据”)。中心线几何形状的使用在美国专利申请14/523,760中有所讨论,其内容全文并入本文中。网络拓扑模型也可以从ct图像中导出,并且特别适合于支气管镜检查。
135.在一些实施方案中,器械可以配备有相机以向定位模块95提供视觉数据(或图像数据)92。定位模块95可处理视觉数据92以实现一个或多个基于视觉的(或基于图像的)位置跟踪模块或特征部。例如,术前模型数据91可以与视觉数据92结合使用,以实现对医疗器械(例如,内窥镜或推进通过内窥镜的工作通道的器械)的基于计算机视觉的跟踪。例如,使用术前模型数据91,机器人系统可以基于内窥镜的行进预期路径根据模型生成预期内窥镜图像的库,每个图像连接到模型内的位置。在外科手术进行时,机器人系统可以参考该库,以便将在相机(例如,在内窥镜的远侧端部处的相机)处捕获的实时图像与图像库中的那些图像进行比较,以辅助定位。
136.其他基于计算机视觉的跟踪技术使用特征跟踪来确定相机的运动,并且因此确定内窥镜的运动。定位模块95的一些特征可以识别术前模型数据91中的与解剖腔对应的圆形几何结构并且跟踪那些几何结构的变化以确定选择了哪个解剖腔,以及跟踪相机的相对旋转和/或平移运动。拓扑图的使用可以进一步增强基于视觉的算法或技术。
137.光流(另一种基于计算机视觉的技术)可以分析视觉数据92中的视频序列中的图像像素的位移和平移以推断相机运动。光流技术的示例可以包括运动检测、对象分割计算、亮度、运动补偿编码、立体视差测量等。通过多次迭代的多帧比较,可以确定相机(以及因此内窥镜)的运动和位置。
138.定位模块95可以使用实时em跟踪和em数据93来生成内窥镜在全局坐标系中的实时位置,该全局坐标系可以被配准到由术前模型表示的患者的解剖结构。在em跟踪中,包括嵌入在医疗器械(例如,内窥镜工具)中的一个或多个位置和取向中的一个或多个传感器线
圈的em传感器(或跟踪器)测量由定位在已知位置处的一个或多个静态em场发生器产生的em场的变化。由em传感器检测的位置信息被存储为em数据93。em场发生器(或发射器)可以靠近患者放置,以产生嵌入式传感器可以检测到的低强度磁场。磁场在em传感器的传感器线圈中感应出小电流,可以对该小电流进行分析以确定em传感器与em场发生器之间的距离和角度。这些距离和取向可以在外科手术进行时“配准”到患者解剖结构(例如,术前模型),以确定将坐标系中的单个位置与患者的解剖结构的术前模型中的方位对准的几何变换。一旦配准,医疗器械的一个或多个方位(例如,内窥镜的远侧末端)中的嵌入式em跟踪器可以提供医疗器械通过患者的解剖结构的进展的实时指示。
139.机器人命令和运动学数据94也可以由定位模块95使用以提供用于机器人系统的位置数据96。可以在术前校准期间确定从关节运动命令得到的装置俯仰和偏航。在外科手术进行时,这些校准测量可以与已知的插入深度信息结合使用,以估计器械的方位。另选地,这些计算可以结合em、视觉和/或拓扑建模进行分析,以估计医疗器械在网络内的方位。
140.图20所示,定位模块95可使用多个其他输入数据。例如,尽管图20中未示出,但利用形状感测纤维的器械可提供形状数据,定位模块95可使用该形状数据来确定器械的位置和形状。
141.定位模块95可以组合地使用输入数据91-94。在一些情况下,这样的组合可以使用概率方法,其中定位模块95向根据输入数据91-94中的每个输入数据确定的位置分配置信度权重。因此,在em数据可能不可靠(如可能存在em干扰的情况)的情况下,由em数据93确定的位置的置信度可能降低,并且定位模块95可能更重地依赖于视觉数据92和/或机器人命令和运动学数据94。
142.如上所讨论的,本文讨论的机器人系统可以被设计成结合以上技术中的一种或多种技术的组合。位于塔、床和/或推车中的机器人系统的基于计算机的控制系统可将计算机程序指令存储在例如非暂态计算机可读存储介质(诸如永久性磁存储驱动器、固态驱动器等)内,该计算机程序指令在执行时致使系统接收并且分析传感器数据和用户命令,生成整个系统的控制信号并且显示导航和定位数据,诸如器械在全局坐标系内的位置、解剖图等。
143.2.配置用于碰撞检测和避免的机器人医疗系统和方法。
144.机器人医疗系统(诸如上文和贯穿本公开描述的机器人医疗系统)可被配置成包括用于碰撞避免的各种技术。机器人臂可用于实现医疗工具的端部执行器的期望位姿(例如,位置和取向)。在一些具体实施中,医疗工具可以包括医疗器械或相机。在操纵机器人臂以实现期望的端部执行器位姿时,可能存在机器人臂的一些部分运动成将与另一个附近对象(例如,另一个机器人臂、患者、支撑患者的平台、附接到平台的医疗附件等)碰撞的位姿的风险。
145.避免机器人臂碰撞的一种方式是例如在执行医疗规程之前定位机器人臂和接入点,以使得机器人臂不太可能被放置成将导致与其他对象碰撞的位姿。然而,规程前放置或定位可能限制机器人臂放置和/或接入点放置的选项。例如,机器人臂和接入点可以间隔最小距离,以便减小其间碰撞的可能性。然而,机器人臂和/或接入点的此类间隔可以降低用户以一个或多个期望位姿将一个或多个医疗工具定位的能力。例如,某些大小的患者(例如,较小的患者)的某些规程可能涉及关闭端口间隔以形成进入患者的解剖结构的接入点。在这些情况下,可能无法将机器人臂和/或接入点放置在降低机器人臂碰撞的可能性的位
置。
146.在某些医疗规程期间,例如,当接入点紧密接近地放置时,使多个机器人臂非常紧密接近可能是有益的。还可能有益的是向临床医生提供改变他们正在工作的解剖象限的能力,同时还提供尽可能多的操作空间。在根据以上约束中的一个或多个来控制机器人臂时,机器人臂之间的碰撞可能更可能发生,这可以中断工作流。因此,可能期望减轻机器人臂之间碰撞的可能性,从而降低工作流中断的可能性。
147.手动减轻机器人臂和/或其它对象之间的碰撞对于临床医生来说可能存在挑战。临床医生可能在查看器中在他们低下头部的情况下操作系统,这可能阻止临床医生看到患者身体外部的机器人臂。此外,由于在一个或多个机器人臂中包括冗余dof,每个机器人臂可以具有实现相同的端部执行器位姿的多个可能的位置。因此,临床医生可能不会立即显而易见由命令端部执行器在身体内部的运动将导致身体外部什么样的机器人臂运动。结果是,机器人臂可能与其他对象碰撞而无需临床医生能够预测碰撞,并且临床医生可能需要时间和精神努力来确定将使机器人臂定位回到良好工作位置的端部执行器的可能运动。如果临床医生无法使机器人臂重新定位回到良好工作位置,则临床医生可能需要暂停医疗规程,以便使机器人臂重新定位到将不会导致机器人臂碰撞的位置和端口放置。
148.对于包括沉重且大体积的机器人臂的一些机器人系统,可以允许某些碰撞。然而,对于具有由套管和优雅设计制成的机器人臂的机器人系统,诸如图14的机器人臂142a、142b,期望在它们发生之前检测和避免碰撞,以防止对机器人臂的过早磨损和/或损坏。
149.a.用于碰撞检测和避免的系统建模。
150.本公开的各方面涉及用于碰撞检测和避免的系统和方法。具体地,本文所述的机器人系统的具体实施可被配置成对机器人系统(例如,计算机或软件模型)建模以用于碰撞检测和避免。虽然作为示例,机器人系统的建模的某些方面涉及机器人臂的建模,但本公开的各方面还可用于对具有可测量尺寸的其他对象建模,诸如支撑患者的平台、可调式臂支撑件、轨道、在外科期间使用的一个或多个附件等。
151.在某些具体实施中,该系统可通过将机器人系统分解成一组刚性节段来形成机器人系统的模型,该组刚性节段在本文被称为连接件。连接件可通过马达连接,马达在运动学上被称为连接接头。在这些接头中的每一个接头处,所述系统可以包括编码器,所述编码器被配置成生成指示两个相邻链路之间的关系的信号。存在可以使用的许多不同类型的编码器,包括旋转编码器、线性编码器、磁性编码器、基于电阻的编码器和/或光学编码器。系统可以通过将交替的链路和接头连接来构建机器人系统的模型,从机器人系统的固定基部开始到平台的每个工具末端位置或位姿。因此,系统可以在医疗规程期间使用每个链路的物理形状/大小以及从编码器中的每个编码器接收的信号来构建机器人系统在任何给定时间处看起来的完整模型。
152.图21示出了根据本公开的各方面的机器人系统的模型的示例性视图。模型200包括对平台205、一个或多个可调式臂支撑件210和多个机器人臂215建模的多个链路。模型200可包括对机器人系统的其他部件建模的未详细示出的附加连接件,诸如一个或多个医疗器械、基部、在规程期间使用的附件等。在一些具体实施中,模型200是基于连接件205-215中的每个连接件的一系列刚性变换(例如,基于每个连接件的相对大小)以及连接件205-215中的每个连接件之间的距离或角度(例如,从编码器读取的接头角度)而形成的。图
21中模型200的图示是模型200的人类可视表示,其可使用例如针对每个连接件绘制的cad模型与用于使连接件旋转的软件来生成,使得连接件与对应的接头角度成一直线。模型200的计算机生成的图像可以看起来非常像机器人系统在给定时间点处的实际硬件。在一些具体实施中,由机器人系统维护的模型200可能不以人类可视的格式存储。
153.在一些具体实施中,系统可以生成人类可视的模型并且提供待由临床医生查看的模型(例如,在临床医生控制台或临床医生助理控制台的查看器中)。在其它具体实施中,模型不能被临床医生查看,但是可以在系统中的后台运行。当模型从视图中隐藏时,临床医生可能能够拉出模型的视图。
154.使用机器人系统的模型,系统可能能够基于机器人系统的当前配置来执行某些动作。有利地,系统可以执行的一个动作是检测两个硬件部件何时即将碰撞并防止硬件部件碰撞。在某些具体实施中,模型还可以包括不是机器人系统的一部分的对象(例如,医疗附件、患者等)的建模表示,以便防止机器人臂与建模对象之间的碰撞。
155.使用模型提供碰撞检测和避免的一个方面可能涉及系统确定每个链路与系统中的每个其它链路碰撞的接近度。存在可用于确定每个链路与每个其它链路的接近度的许多不同技术。在一个具体实施中,系统可以直接使用cad模型来确定这些距离。在另一个具体实施中,系统可以基于cad模型来生成模型的近似物,所述cad模型可以用于加速链路之间的距离的计算。用于近似cad模型的一种技术涉及使用每个链路的几何形式近似物来生成每个链路的近似物。在一个具体实施中,链路可以近似为“胶囊”。在其它具体实施中,近似物中使用的一个或多个几何形式可以包括使用圆柱体、矩形、立方体等。系统可以使用几何近似物来有效地确定近似模型中每个胶囊之间的最小距离。
156.图22示出了根据本公开的各方面的使用几何形式近似的机器人系统的模型。在图22的模型300中,使用一个或多个胶囊来近似每个连接件,以简化连接件之间的距离的计算。例如,可使用两个胶囊310、315来对形成机器人臂305的两个连接件进行建模。胶囊310、315重叠并且可根据对应连接件之间的距离的变化而相对于彼此纵向运动,该距离的变化使用布置在连接件之间的编码器来测量。类似地,平台320可以使用多个胶囊325来建模,所述多个胶囊可以重叠并且可能能够相对于彼此运动,以对平台320的运动建模。
157.图23示出了根据本公开的各方面的可使用机器人系统的模型检测的不可避免碰撞的示例。不可避免的碰撞通常是指系统无法采取任何行动来实现命令运动而不发生碰撞的碰撞。在一些实施方案中,在主动手术期间,可能存在两个不能被改变的限定点。第一个点是远程运动中心(rcm),其可以在机器人臂对接到接入点(例如,插管)时被限定。rcm可以是插管穿过体壁的点,并且系统通常不允许rcm的运动,因为这可能对患者导致创伤(除非在明确的用户命令下)。
158.第二个点是医疗工具端部执行器末端位置和取向,其可以基于从驱动系统的用户接收的命令来限定。在这两个点被限定的情况下,系统控制adm的运动,以便满足这两个点。为了满足所有可能的端部执行器位置,系统可以使adm运动通过以端口位置为中心的半球。通常,端口被放置成使得这些半球中的两个或更多个半球将彼此相交,从而导致某些命令端部执行器位姿的不可避免地碰撞的可能性。
159.在图23所示的示例性不可避免碰撞400中,第一组建模连接件405形成第一机器人臂并且第二组模型连接件410形成第二机器人臂。第一链路405的第一子组406已经在多个
碰撞点415处与第二链路410的第二子组411碰撞。图23所示的碰撞400是不可避免碰撞,因为第一机器人臂和第二机器人臂不存在将实现相同端部执行器位姿而不在第一连接件405的一些部分与第二连接件410之间产生碰撞的其他位姿。
160.图24示出了根据本公开的各方面的可使用机器人系统的模型检测的可避免碰撞的示例。虽然可能仅存在一个限定每个医疗器械端部执行器位置的adm位置,但是每个adm位置常常存在许多机器人臂位置。一个或多个机器人臂可以包括至少六个接头以实现由用户命令的任何空间和旋转位姿。在某些具体实施中,一个或多个机器人臂各自具有至少七个接头,其中超过六个的附加接头被称为一个或多个冗余接头,因为由冗余接头提供的运动可以通过其它接头的运动的组合来完成。一个或多个冗余接头可与其它接头组合使用以抵消冗余接头上的任何运动。例如,系统可独立地或组合地使用adm滚动和线性杆运动两者,以便在不运动医疗器械的端部执行器的情况下摆动机器人臂的肘部。在没有医疗器械端部执行器运动的情况下,机器人臂的这种重新定位被称为零空间运动。系统可以控制零空间运动,同时还完全控制医疗器械端部执行器,并且因此在用户驱动时主动地对机器人臂进行有利的重新定位,这可以用于避免碰撞。
161.在图24的可避免碰撞500中,第一组建模连接件505形成第一机器人臂并且第二组建模连接件510形成第二机器人臂。第一链路505的第一子组506已经在碰撞点处与第二链路510的第二子组511碰撞。图24示出的碰撞500是可避免碰撞,因为第一连接件505和/或第二连接件510可在维持相同端部执行器位姿的同时运动成不同的位姿。因此,在某些具体实施中,系统可以检测到可避免的碰撞,诸如碰撞500,即将发生并且使第一链路505和第二链路510中的一者或多者运动以避免碰撞。下文详细描述了用于避免此类碰撞的系统和方法的示例。
162.图25是示出根据本公开的各方面的可由机器人系统或其部件操作以用于检测和避免碰撞的示例性方法的流程图。例如,图25所示的方法600的某些步骤可由医疗机器人系统(例如,机器人使能的系统10)或相关联系统的处理器和/或其他部件执行。为方便起见,方法600被描述为由“系统”结合方法600的描述来执行。
163.方法600在框601处开始。在框605处,系统访问机器人医疗系统的第一组链路和第二组链路的模型。例如,模型可类似于图21的模型200或者可以是几何近似模型,诸如图22的模型300。在一些具体实施中,所述第一组链路包括第一机器人臂,并且所述第二组链路包括第二机器人臂。然而,在其它具体实施中,第一组链路和/或第二组链路可以包括可运动的患者平台、可调式臂支撑件等。
164.在框610处,系统基于由所述机器人医疗系统的控制台接收的输入来控制所述第一组链路和所述第二组链路的运动。在某些具体实施中,控制台可包括控制器,诸如图19的控制器182。在框615处,系统基于模型来确定第一组连接件与第二组连接件之间的距离。所确定的距离可以是第一组链路与第二组链路之间的最小距离。在一些具体实施中,系统可以确定第一组链路和第二组链路中的每对链路之间的最小距离。
165.在框620处,系统基于所确定的距离来检测和避免所述第一组链路与所述第二组链路之间的碰撞。例如,系统可通过执行防止碰撞的动作来避免碰撞,这可包括系统防止第一组连接件和第二组连接件的进一步运动。动作还可以涉及经由第一组链路和/或第二组链路的零空间运动来主动避免碰撞。方法600在框625处结束。
166.在一些情况下,机器人系统可以被配置成在“零空间”内使机器人臂的一个或多个链路运动,以避免与附近对象(例如,其它机器人臂)碰撞,同时机器人臂的adm和/或rcm被维持在它们的相应位姿/位置。零空间可被视为机器人臂可在其中运动而不会导致adm和/或rcm运动的空间,从而维持医疗工具的位置和/或取向。在一些具体实施中,机器人臂可以具有可用于adm的每个位姿的多个位置和/或配置,从而允许机器人臂的零空间运动而不影响端部执行器位姿。例如,当没有医疗器械联接到adm时,在零空间中使机器人臂运动的同时,机器人臂可以维持ads位姿/位置。作为另一个示例,当医疗器械联接到adm时,在零空间中使机器人臂运动的同时,机器人臂可以维持adm和rcm两者。
167.b.碰撞检测和避免-截止距离。
168.在某些具体实施中,系统可以通过将两个链路之间的距离与阈值距离进行比较来防止机器人系统的两个链路的碰撞,并且防止在链路之间的距离小于阈值距离时,两个链路朝向彼此运动。例如,系统中的每个连接件可具有被称为截止距离的最小距离,使得如果两个连接件在截止距离内运动,则系统将命令与两个连接件相关联的硬件(例如,控制连接件的运动的马达)停止运动。截止距离825的示例示出于图27中,其在下文详细描述。
169.在一些具体实施中,系统可以检测机器人臂中任一者的命令运动何时将使机器人臂置于截止距离内并防止命令运动发生。系统可以基于从接头编码器接收到的信号而连续地更新模型,并且因此,系统可以连续地测量建模链路之间的距离的变化。因此,根据具体实施,系统可以检测建模链路之间的距离的变化,而不测量链路的实际运动(例如,速度的变化)。通过检测原本将导致两个链路处于截止距离内的命令运动,系统可以有利地防止链路接触,并将系统置于故障状态。当包括运动远离碰撞的命令运动的输入时,系统可允许用户命令具有正常运动硬件的连接件的进一步运动。
170.在系统已经确定两个链路处于截止距离内或者将基于命令运动在截止距离内运动时,系统可以经由临床医生控制台来向用户提供反馈。在一些具体实施中,反馈可包括触觉反馈,该触觉反馈例如可经由控制器提供,诸如图19的控制器182。例如,系统可以经由控制器向用户的手施加触觉力,所述控制器将阻止用户进一步运动而导致碰撞。系统还可以在临床医生控制台的查看器上显示碰撞即将发生或已经发生的警告。通过经由查看器提供反馈,系统可以有利地向用户提供碰撞的指示,而无需用户不得不从临床医生控制台查看器挪开他/她的头部。在一些具体实施中,视觉反馈还可以指示用户可实施的一个或多个动作以校正或避免碰撞。通过向用户提供触觉和/或视觉反馈,系统可以提供可以有利地诱导用户自然而然地远离碰撞点并返回到用户可以自由操作机器人臂的区域中的反馈。通过经由控制器提供触觉反馈和/或经由查看器提供视觉反馈,系统可以向用户提供关于意外碰撞的信息,而无需用户从控制台脱离。这可以使得用户能够继续控制机器人系统,而无需中断注意力,并且继续进行工作空间内部的任何工作。下文更详细地描述碰撞接近度指示器的各种示例。
171.c.碰撞检测和避免

触发距离。
172.除了确定一个或多个臂是否已经进入截止距离之外,系统还可以使用建模的机器人系统来确定一个或多个链路是否已经进入触发距离,所述触发距离大于截止距离。与防止机器人臂的运动相反,臂处于截止距离内,系统可以采取一个或多个动作以避免响应于臂被分开小于触发距离的碰撞,从而减轻碰撞的风险。例如,在进入触发距离时,一个或多
个臂可以使用零空间运动,同时维持对应的医疗工具的远程运动中心,以便避免碰撞。换句话讲,在两个机器人臂进入触发距离时,系统可以自动重新定位臂中的一个或多个臂,使得命令运动仍然被执行,并且碰撞不会由于零空间中的运动而发生。触发距离可以是在系统采取避免动作之前两个链路之间的最小距离,诸如零空间运动。触发距离820的示例示出于图27中,其在下文详细描述。
173.图26a和图26b示出了根据本公开的各方面的当达到触发距离时的示例性动作序列。在图26a所示的初始时间点700处,系统正基于命令运动而使第一机器人臂705和相关联的第一医疗器械运动。例如,用户可为第一机器人臂705和具有左万向支架的第一医疗器械输入命令运动,并且为第二机器人臂710和具有右万向支架的相关联第二医疗器械输入命令运动。
174.如图26a所示,系统可能已接收到使第一机器人臂705运动的命令以执行特定功能,由此使第一机器人臂705和第二机器人臂710上的某些点彼此处于触发距离内。一旦第一机器人臂705和第二机器人臂710处于触发距离内,则第一机器人臂705和第二机器人臂710中的一者或多者可使用零空间运动(例如,经由其冗余接头)以用于碰撞避免,如在图26b中的后续时间点701的图像中所示。如图26b所示,第二机器人臂710的基部接头沿着可调式臂支撑件715滑动,由此经由零空间运动(例如,无需使与第二机器人臂710相关联的医疗器械的端部执行器运动)来提供碰撞避免。如图26b中所示,与第二机器人臂710相关联的第二医疗器械的端部执行器还没有运动

仅用于零空间运动和碰撞避免的近侧关节已经运动。
175.因此,通过检测到两个链路已经在彼此的触发距离内运动,系统可以通过采取某些动作(诸如零空间运动)来避免某些类型的碰撞,而不需要通知用户潜在碰撞。
176.触发距离可以被设置为大于截止距离,以确保可以在停止机器人链路的进一步运动之前触发避免。系统不仅可以使用模型来确定可能导致碰撞的两个链路之间的最小距离,而且可以确定两个链路将碰撞的点。使用距离和碰撞点,系统可以确定零空间运动是否将在碰撞点处增加两个链路之间的距离。如果存在此类零空间运动,则系统可以在两个链路进入截止距离之前执行零空间运动,从而完全避免碰撞。
177.图27示出了根据本公开的各方面的建模连接件的截止距离和触发距离。具体地,图27示出了由当前(最小)距离815分开的第一连接件805和第二连接件810的横截面。触发距离820和截止距离825示出于第一连接件805周围。尽管未示出,但是第二连接件810还可以具有触发距离和截止距离,其可以具有或者可以不具有与第一连接件805相关联的触发距离820和截止距离825相同的值。如本文所述,当另一个连接件(诸如第二连接件810)穿透第一连接件805的触发距离820时,系统可以采取动作以避免与其它连接件的碰撞。类似地,当另一链路穿透截止距离825时,系统可以采取动作以防止与另一链路碰撞,例如,通过防止朝向碰撞的进一步运动。例如,系统可以确定由控制台接收的命令输入将导致链路之间的距离减小,并且响应于该确定而防止进一步运动。相反,当系统确定由控制台接收的命令输入将导致链路之间的距离增加时,系统可以基于接收到的输入和所述确定来控制链路的运动,从而允许链路远离碰撞来运动。
178.在一些具体实施中,截止距离(例如,当机器人臂将停止时)可以是例如至多10mm、至多15mm、至多20mm或更大。在一些实施方案中,触发距离(例如,当可以发生零空间运动以
用于碰撞避免时)可以是例如至多5mm、至多10mm、至多15mm或更大。在某些具体实施中,当当前截止距离为15mm时,触发距离可以是20mm,使得在截止距离与触发距离之间建立5mm间隙。5mm间隙可以是足够的空间,以比典型命令使链路/机器人臂运动到一起更快地使链路/机器人臂远离彼此运动。然而,如果系统接收到比零空间运动可以使机器人臂运动分开更快地使机器人臂运动到一起的命令,则机器人臂可能超出引起机器人臂按照输入命令短暂停止的截止距离。然而,即使在机器人臂处于截止距离内时,系统也将经由零空间运动而继续碰撞避免,从而使臂运动分开。一旦机器人臂已经运动到被分开超过截止距离,则机器人臂将按照用户命令恢复运动到一起。当控制台臂感觉沉重且具有减慢的运动时,用户可能经历此运动的停止和开始。如果系统检测到臂具有两个相反碰撞,则系统可能无法避免与零空间运动的碰撞,并且一旦已经达到截止距离,系统将停止运动。当系统防止由于截止距离超出而引起的进一步运动时,系统可向用户提供触觉力反馈,以通知用户需要在相反方向上使工具中的一个工具运动以允许另一工具运动远离碰撞。
179.在一些具体实施中,系统可以被预编程有截止距离和/或触发距离。在其它具体实施中,用户可以手动编程截止距离和/或触发距离。根据具体实施,截止距离和/或触发距离对于每个链路可以是相同的,或者可以基于逐个链路设置。
180.图28是示出根据本公开的各方面的可由机器人系统或其部件操作以使用截止距离来检测和避免碰撞的示例性方法的流程图。例如,图29所示的方法900的某些步骤可由医疗机器人系统(例如,机器人使能的系统10)或相关联系统的处理器和/或其他部件执行。为方便起见,方法900被描述为由“系统”结合方法900的描述来执行。
181.方法900在框901处开始。在框905处,系统基于由控制台接收的输入来控制所述第一组链路和所述第二组链路的运动。系统可包括第一组连接件、第二组连接件和控制台,该控制台被配置成接收第一组连接件和第二组连接件的输入命令运动。
182.在框910处,系统基于所述模型来确定所述第一组链路与所述第二组链路之间的距离。模型可以被存储在存储器中,并且可以对第一组链路和第二组链路建模。
183.在框915处,系统确定所述第一组链路与所述第二组链路之间的距离小于截止距离。在框920处,系统响应于确定所述第一组链路与所述第二组链路之间的距离小于所述截止距离而防止碰撞。方法900在框925处结束。
184.根据本公开的各种具体实施,存在可以实现的许多优点。例如,通过使用如本文所定义的截止距离和触发距离,系统可以控制机器人臂在触发距离外部时不采取不必要的运动,从而在一个或多个碰撞不会发生时最小化机器人臂的运动量。在触发距离的内部,但在截止距离的外部,系统可以使用零空间运动来尝试使链路运动远离碰撞,而无需增加用户的认知负荷。通过将触发距离设置为足够小,由系统命令的机器人臂运动将是自然而然的,并且手术室内的人员将能够可视化动作的原因(例如,潜在碰撞)。用户将倾向于了解,这些零空间运动将发生以避免碰撞。当到达截止距离时,系统可以停止机器人臂朝向碰撞的进一步运动,在视觉上通知用户,并且提供触觉效应,以在最小程度上分散对用户工作流的注意力的情况下朝向解决碰撞来引导用户。例如,系统可以确定由控制台接收的命令输入将导致链路之间的距离减小,并且响应于该确定而提供触觉反馈。
185.d.碰撞检测和避免

全局优化。
186.在其它具体实施中,系统可以在不使用如本文所述的截止距离和触发距离的情况
下检测和避免碰撞。特别地,系统可以实施全局优化算法。全局优化可以涉及将所有链路和接头添加到单个运动学模型中,并且向运动学模型应用度量,所述运动学模型以最佳配置保持所有链路。在一个具体实施中,可以限定度量以维持所有链路尽可能远离所有碰撞。例如,度量可以包括其中第一组链路和第二组链路处于最大距离的配置。根据具体实施,最佳配置算法还可以考虑其它优化目标,诸如确保机器人臂的位姿具有足够的稳定性。因此,全局优化算法可以尝试找到优化多个不同度量的最佳配置,包括维持链路尽可能远离彼此。
187.在其它具体实施中,可以通过将虚拟固定装置添加到建模的链路上来限定度量,所述建模的链路是系统应该努力避免的理论点。在一些具体实施中,系统还可以使用确定的速度或能量和链路的距离来确定两个或更多个链路朝向碰撞运动并避免碰撞。如果系统无法使用全局优化算法以会聚在确实避免所有碰撞的解决方案上,则系统可停止系统的连接件的运动,由此防止碰撞。
188.解决此类全局优化算法的具体实施可以涉及与基于截止距离和/或触发距离的具体实施相比使用附加的计算复杂性。全局优化解决方案还可以涉及即使在相对远离碰撞时也添加零空间运动,使得当臂不接近碰撞时难以最小化机器人臂的运动。可能期望在可能的情况下具有基本上静止的机器人臂,例如,使得机器人臂的运动对于手术室中的人来说可预测。
189.3.包括碰撞接近度指示器的机器人医疗系统和方法。
190.如上所述并且具体地在前面部分中详细描述的,机器人医疗系统可被配置成包括用于检测、避免和/或降低机器人医疗系统的机器人臂与机器人医疗系统的其他部件(诸如第二机器人臂、患者平台、机器人医疗系统的附件等)之间甚至与患者发生碰撞的可能性的功能。
191.用于检测、避免和/或降低碰撞可能性的功能可包括通过开发机器人医疗系统的计算机模型来检测和避免碰撞。机器人医疗系统的计算机模型可用于甚至在直接或实际碰撞发生之前提供警报,从而允许系统防止、限制或降低碰撞发生的可能性。计算机模型可包括例如机器人臂、臂支撑件、患者平台、附件等及其机动化接头的表示。上面描述的图21和图22提供了此类模型及其在检测和避免碰撞的过程中的使用的示例。机器人医疗系统(例如,与其相关联的处理器)可使用该模型来确定机器人医疗系统的部件之间的距离(例如,基于模型的运动学)。
192.当机器人医疗系统的部件被确定为彼此处于接近度阈值距离(例如,上文参考图27描述的触发距离或截止距离)内时,机器人医疗系统可采取步骤来避免或防止碰撞。这些可包括执行机器人臂的零空间运动(这允许调节机器人臂的位姿而无需使用机器人臂的冗余dof改变医疗器械或附接到该医疗器械的工具的位置和取向)和/或停止或限制机器人臂的运动以便避免碰撞。例如,如上所述,当部件被确定为(例如,使用模型)在另一部件的触发距离820(参见图27)内时,系统可确定是否可执行将避免碰撞的零空间运动。如果此类运动是可能的,则它们可自动执行,使得操作机器人医疗系统的用户(例如,临床医生或医师)甚至可能不知道机器人臂正在经历零空间运动。相比之下,当机器人臂达到截止距离825(参见图27)时,机器人臂可停止或减慢。在这种情况下,当用户输入或控制台感觉沉重和缓慢时,用户可能体验到这一点。
193.除了这些碰撞检测和避免技术之外(或者有时取代这些碰撞检测和避免技术),机
器人医疗系统还可被配置成向操作机器人医疗系统的用户提供碰撞接近度指示器,以便使用户知道机器人医疗系统的各个部件之间的潜在碰撞、近距离碰撞或实际碰撞的可能性。此外,机器人医疗系统可被配置成向用户提供碰撞解决指示器,以向用户提供有关如何避免或补救碰撞的信息。如下文将更详细地描述的,碰撞接近度指示器和/或碰撞解决指示器可为视觉指示器、听觉指示器或触觉指示器,其提供机器人医疗系统的部件之间的潜在碰撞、近距离碰撞或实际碰撞的指示。此外,在一些实施方案中,可基于机器人医疗系统的部件之间的距离(例如,使用上述模型和阈值距离)来触发指示器。
194.碰撞接近度指示器可以多种方式配置,以便向用户提供不同类型的信息。碰撞接近度指示器可提供有关哪些部件正在经历碰撞或近距离碰撞的信息。例如,碰撞接近度指示器可用于指示某个机器人臂正在接近另一机器人臂、患者平台、外科附件等或与另一机器人臂、患者平台、外科附件等处于近距离碰撞状态。附加地或另选地,碰撞接近度指示器可提供关于近距离碰撞的接近程度的信息。例如,碰撞接近度指示器可用于指示某个机器人臂在另一部件的特定距离内,并且可更新(例如,实时更新)该指示器以允许用户了解部件正朝向彼此运动还是远离彼此运动和/或提供部件之间的距离或部件彼此接近程度的指示。附加地或另选地,碰撞接近度指示器可被配置成向用户提供关于如何运动以便避免、解决、减轻碰撞的信息。此类碰撞接近度指示器在本文中也称为碰撞避免或解决指示器。例如,碰撞接近度指示器可向用户提供他们可安全运动以避免或解决碰撞的方向的指示。下文将更详细地描述包括碰撞接近度指示器的机器人医疗系统的这些和其他特征。
195.作为主要示例,碰撞接近度指示器可以是在机器人医疗系统的显示器上提供给用户的视觉指示器。在一些实施方案中,此类碰撞接近度指示器可显示在用户控制台(例如,如例如图29所示)的查看器中和/或其他位置,例如,包括塔查看器或手术室中的直播电视馈送。
196.图29是示出配置用于与机器人医疗系统(诸如本文所述的那些系统和其他系统)一起使用的用户控制台1000的实施方案的透视图。用户控制台1000可被配置成允许用户提供用于控制机器人医疗系统的用户输入,并且允许用户查看来自与机器人医疗系统相关联的一个或多个相机的图像以便于对机器人医疗系统进行控制。在一些实施方案中,碰撞接近度指示器可连同相机图像一起(例如,覆盖在相机图像上或显示在相机图像附近)提供给用户。在例示的实施方案中,用户控制台1000包括壳体1001、查看器1002和一个或多个控制器或输入装置1003。
197.壳体1001被设置成支撑用户控制台1000的各种部件并对这些部件取向,使得它们可由用户操作。在优选实施方案中,壳体1001将查看器1001和输入装置1003定位成使得用户可同时或独立地访问和操作这些装置中的每个装置,同时维持符合人体工程学的身体姿势。壳体1001的各种配置是可能的。
198.用户控制台1000的查看器1001可被配置成允许用户查看来自机器人医疗系统的一个或多个相机的图像,以便于控制系统执行机器人医疗规程。如上所述,机器人系统的一个或多个部件可包括一个或多个成像装置,诸如一个或多个相机。例如,机器人系统可包括通过腹腔镜插入患者体内的一个或多个相机。用户可查看来自通过腹腔镜插入的相机的图像,以便于控制一个或多个附加的机器人控制的医疗器械或工具,诸如一个或多个附加的通过腹腔镜插入的医疗工具。查看器1000可包括用于查看来自一个或多个相机的图像的显
示器1004。此外,显示器1004可用于显示视觉碰撞指示器,如下文更详细描述。
199.在一些实施方案中,例如,如图所示,显示器1004包括立体照相或立体影像查看器。查看器1002可定位在壳体1001上,使得用户在坐在用户控制台1000的前面时可查看显示器1004。在一些实施方案中,壳体1001被配置成使得用户将他或她的头插入查看器1002以便挡住环境光,使得可更容易地看到显示器1004上的图像。然而,并非在所有实施方案中都需要如此,并且用户控制台1000上的查看器1002的其他布置也是可能的。
200.在图29所示的实施方案中,一个或多个输入装置1003被配置成用用户的手来操作,以便提供对机器人医疗系统的各个方面或部件的控制。在例示的实施方案中,输入装置1003包括两个输入件,每个输入件被配置成用用户的一只手来抓握和操作。上文已参考图19描述了此类输入装置1003的示例(例如,控制器182的两个柄部184)。在一些实施方案中,输入装置1003可以主从配置选择性地联接到附接有机器人医疗系统的工具的机器人臂,使得输入装置1003的运动引起如上所述联接的附接工具的对应运动。因此,通过操纵输入装置1003,用户可控制机器人医疗器械或工具的对应操纵。因此,在一些实施方案中,输入装置1003可被称为系统的主控制器。
201.由于机器人医疗系统可包括比输入装置1003更多的机器人臂,因此输入装置1003可根据用户的需要选择性地联接到机器人臂以促进该规程。例如,用户输入装置1003可选择性地联接到附接到一个机器人臂的腹腔镜相机,以允许用户控制并定位腹腔镜相机,以便提供患者的治疗部位内的一个或多个附加腹腔镜工具的视图。然后,用户可选择性地将输入装置1003联接到一个或多个附加机器人臂,其他腹腔镜工具附接到该一个或多个附加机器人臂,以便直接控制它们。上文已参考图19描述了输入装置1003的附加特征和功能,图19示出其一个实施方案。输入装置1003的其他实施方案也是可能的,包括控制器,该控制器包括键盘、触摸板、按钮、操纵杆、鼠标等。
202.图30至图36示出了可例如在用户控制台1000的显示器1004上和/或在机器人医疗系统的其他显示器(和/或与机器人医疗系统相关联或通信的其他显示器)上示出的碰撞接近度指示器的实施方案。如下文将更详细地描述的,这些碰撞接近度指示器可被配置成指示某一机器人臂正在接近另一机器人臂、患者平台、外科附件等或与另一机器人臂、患者平台、外科附件等处于近距离碰撞状态,和/或提供关于近距离碰撞的接近程度的信息等。图37至图39e示出了用于促进碰撞避免或解决的碰撞解决指示器的实施方案,其中指示器可例如显示在用户控制台1000的显示器1004上或显示在与机器人医疗系统相关联的其他显示器上。这些碰撞解决指示器可向用户提供安全运动机器人臂或其部件以便避免或解决碰撞的方向的指示。
203.a.碰撞接近度指示器的实施方案。
204.图30示出了被配置成提供碰撞接近度指示器的显示器1100的示例性输出。显示器1100的输出可例如显示在用户控制台1000的显示器1004上或显示在与机器人医疗系统相关联的其他显示器上。在例示的实施方案中,显示器1100包括外科部位1102的视图和图标显示部分1104。
205.外科部位1102的视图可包括来自插入(例如,通过腹腔镜插入)患者体内的相机的视图。在例示的实施方案中,第一医疗工具1106a和第二医疗工具1106b在外科部位1102的视图内是可见的。外科部位1102的视图允许用户可视化外科部位,以便控制医疗工具来执
行医疗规程。
206.在例示的实施方案中,图标显示部分1104定位在外科部位1102的视图下方。并非在所有实施方案中都需要如此。例如,图标显示部分1104可定位在外科部位1102的视图上方或附近(例如,左侧或右侧)。在一些实施方案中,图标显示部分1104覆盖在外科部位1102的视图上(诸如覆盖在外科部位1102的视图的底部、顶部、右部、左部或中心部分上)。
207.图标显示部分1104可包括多个图标1108(例如,图标1108a、图标1108b、图标1108c、图标1108d、图标1108e、图标1108f)。图标1108中的每个图标可与机器人医疗系统的机器人臂中的一个机器人臂相关联。例如,在例示的实施方案中,机器人医疗系统包括六个机器人臂,并且因此提供图标1108a、1108b、1108c、1108d、1108e、1108f,其中每个图标1108与六个机器人臂中的一个机器人臂相关联。每个机器人臂可与医疗工具(例如,附接到机器人臂的医疗工具)相关联,使得机器人臂可用于控制或操纵医疗工具。因此,图标1108a、1108b、1108c、1108d、1108e、1108f中的每个图标也可与医疗工具中的一个医疗工具相关联。
208.图标显示部分1104和图标1108可被配置成向用户提供各种类型的信息。例如,每个图标1108可提供机器人臂标识符1110、医疗工具标识符1112以及该特定机器人臂当前是否正由用户输入装置(诸如上文参考图29描述的用户控制台1000的用户输入装置1003或其他用户输入装置中的一个用户输入装置)控制的指示。机器人臂标识符1110被配置成识别机器人医疗系统的特定机器人臂。工具标识符1112被配置成识别当前附接到特定机器人臂的工具。
209.例如,如针对图标1108a所示,机器人臂标识符1110指示“l1”,以便识别出图标1108a与第一机器人臂相关联,该第一机器人臂与可用左侧用户输入装置1003控制的工具相关联。然而,例示的实施方案并非旨在进行限制,并且机器人臂标识符1110可以多种不同的方式提供信息。例如,“l1”可用“臂1”、“臂a”、“左侧1”以及许多其他类型的机器人臂标识符替代。在一些实施方案中,机器人臂可与颜色相关联,并且机器人臂标识符1110可显示相关联机器人臂的颜色。例如,如果图标1108a与“蓝色”机器人臂相关联,则机器人臂标识符1110可为蓝色。在相关方面,机器人臂标识符1110的颜色可被配置成与led或机器人臂上的其他指示器本身的颜色匹配或相关。在一些实施方案中,可在机器人臂上设置对应的标识符,使得可快速且容易地识别机器人臂。例如,可在与图标1108a相关联的机器人臂上显示“1”,如图所示,该图标包括“l1”机器人臂标识符1100。
210.继续图标1108a,工具标识符1112识别哪个工具当前与机器人臂相关联(例如,附接到机器人臂)。如图所示,“mp曲线剪切”工具当前附接到相关联机器人臂。在例示的实施方案中,工具标识符1112包括识别该工具的文本。用于识别工具的其他方法也是可能的。例如,工具标识符1112可显示工具的图像。
211.继续参考图30的示例,图标1108b的机器人臂标识符1110指示“l2”,其可指示图标1108b与医疗系统的第二机器人臂相关联,该第二机器人臂可与可使用左侧用户输入装置1103控制的工具相关联。图标1108b的工具指示器1112指示第二机器人臂当前附接到“抓握器”工具。
212.此外,在例示的实施方案中,图标1108b示为比图标1108a更大且更亮。这是指示与图标1108b相关联的机器人臂和工具当前处于控制下的许多方式中的一种方式。换句话讲,
通过将图标1108b示为比图标1108a更大且更亮,系统可向用户提供左侧用户输入装置1003当前联接到(例如,以主从布置方式)与图标1108b相关联的机器人臂和工具的视觉指示。以这种方式,系统可在视觉上提供左侧用户输入装置1003当前正在控制哪个机器人臂和工具的指示。在例示的示例中,左侧用户输入装置1003当前正在控制附接到第二机器人臂“l2”的“抓握器”,并且这通过将图标1108b在视觉上描绘为比图标1108a更大且更亮来指示,图标1108a被示为更小且变暗以显示其当前未被选择。当然,用于在视觉上指示哪些机器人臂和工具当前被选择且可控的其他方法和技术也是可能的,包括以特定颜色显示所选择的和当前控制的机器人臂和工具的图标1108和/或突出显示这些图标1108等。
213.在图30的例示的实施方案中,图标1108c与第三机器人臂相关联,该第三机器人臂用于控制由图标1108c的机器人臂标识符1110和工具指示器1112所指示的相机。如图所示,图标1108c被示为更小且变暗(例如,与图标1108b相比),以示出第三机器人臂和相机当前未被控制。如果需要,用户可选择将与图标1108c相关联的相机联接到用户输入装置1103中的一个或两个用户输入装置以重新定位相机。一旦被选择,图标1108c可改变(例如,通过放大和变亮或其他方法)以指示第三机器人臂上的相机现在处于控制下。
214.图标1108d、1108e、1108f可类似于先前描述的图标1108a、1108b、1108c。在一些实施方案中,图标1108d、1108e、1108f与机器人臂和工具相关联,这些机器人臂和工具可选择性地联接到右侧用户输入装置1003以便用用户的右手控制。在例示的实施方案中,图标1108d指示“针驱动器”工具联接到第四机器人臂,并且第四机器人臂和针驱动器工具当前未被选择用于控制(如通过将图标1108d以更小且变暗的状态呈现来指示)。图标1108e指示“抓握器”工具联接到第五机器人臂并且当前被选择用于控制(如通过将图标1108e以放大且变亮的状态呈现来指示)。最后,图标1108f指示“施夹器”工具联接到第六机器人臂,并且第六机器人臂和施夹器工具当前未选择用于控制(如铜鼓将图标1108f以更小且变暗的状态呈现来指示)。
215.图标1108还可被配置为碰撞接近度指示器。例如,图标1108可被配置成具有不同的状态,这些状态向用户提供关于与特定图标1108相关联的机器人臂是否正在接近或正在经历碰撞或近距离碰撞状态的信息。作为初始示例,图标1108可包括两个状态:第一状态,该第一状态被配置成指示相关联的机器人臂未在经历碰撞状态或近距离碰撞状态;和第二状态,该第二状态被配置成指示相关联的机器人臂正在经历碰撞状态或近距离碰撞状态。因此,通过查看图标1108,用户可简单地通过查看图标1108的状态来容易地确定哪些机器人臂正在经历碰撞状态或近距离碰撞状态。作为附加示例,图标可包括三个状态:如先前描述的第一状态和第二状态以及中间状态,该中间状态被配置成逐渐改变以便提供相关联的机器人臂距经历碰撞近距离碰撞的接近程度的实时指示。如下所述,中间状态可提供机器人臂如何接近碰撞或近距离碰撞状态的指示。
216.如本文所用,图标的“状态”是指可呈现给用户以便传达信息的图标的若干不同表示中的一个表示。例如,如上所述,图标1108中的每个图标可具有指示相关联的机器人臂和工具当前未被选择用于控制的状态(例如,图标1108a的更小、变暗状态)和指示相关联的机器人臂和工具当前被选择用于控制的状态(例如,图标1108b的放大、变亮状态)。每个图标1108可在这些状态之间改变以向用户传达关于某个机器人臂和工具当前是否被选择用于控制的信息。作为另一示例,可通过改变图标的状态来向用户指示机器人臂的碰撞状态。现
在将详细描述该示例。
217.图标1108可被配置为具有各种状态的碰撞接近度,这些状态被配置成指示相关联的机器人臂的碰撞状态。在例示的实施方案中,可以围绕图标1108的边界1114(例如,在图30中针对图标1108所识别)的改变的形式示出各种状态。在该示例中,接近度指示器可具有三个主要状态。第一状态可为非活动状态。图30示出其中图标1108以第一状态示出的示例。如图所示,图标的边界1114保持不变或未填充,以指示图标1108处于第一状态。第一状态可被配置成向用户传达与图标1108相关联的机器人臂距任何其他部件至少某一可配置距离。换句话说,第一状态可被配置成指示与图标1108相关联的机器人臂与机器人系统的另一部件之间的最小距离大于第一接近度阈值距离,诸如以上描述的触发距离。在一些实施方案中,第一接近度阈值距离为约10mm、约20mm、约30mm、约40mm或更大。在图30中,所有图标1108的所有边界1114被示为处于第一状态,以便指示机器人臂中没有一个机器人臂与机器人医疗系统的任何其他臂或任何部件处于第一接近度阈值距离内。如上所述,部件之间的距离可使用上一章节中描述的模型来确定。
218.当用户例如使用图29的用户输入装置1003命令机器人医疗系统的医疗工具的运动时,医疗工具所附接到的机器人臂也运动。随着它们的运动,它们可能进入其他部件的第一接近度阈值内,使得相关联的图标1108转变为中间状态。中间状态也可称为接近最小距离状态或接近近距离碰撞状态。在这种状态下,图标1108向用户提供与图标1108相关联的机器人臂正在接近碰撞或近距离碰撞的指示。图31中示出仅示出图标显示部分1104的示例。在该示例中,图标1108b和1108e的边界1114被示为处于中间状态,以指示第二机器人臂和第五机器人臂正在接近碰撞或近距离碰撞。如图31所示,图标1108b和1108e的边界1114已开始填充,以指示提供碰撞的接近程度的指示。
219.如上所述,中间状态可以是图标1108逐渐改变以提供两个部件之间的距离的指示的状态。图32示出根据一个实施方案的示出单个图标1108的中间状态的逐渐转变中的不同阶段(a)-(f)的示例。如该示例中所示,在达到第一接近度阈值(例如,如上所述的触发距离)时,围绕图标1108示出的边界1114可随着相关联的机器人臂与另一部件之间的距离的减小而从边界的底部(例如,6点钟位置)转变到边界的顶部(例如,12点钟位置)。例如,如阶段(a)所示,边界1114开始填充。经过阶段(b),几乎已填充边界1114的整个底部边缘。在阶段(c),边界1114开始填满图标1108的边,而在阶段(d),几乎填满沿着图标1108的边的边界1114。在阶段(e),边界1114的顶部开始填充,并且在阶段(f),示出边界1114完全充满。如上所述,边界1114的填充可对应于与图标1108相关联的机器人臂与机器人医疗系统的另一部件之间的距离的减小。以这种方式,通过观察边界1114填充,用户可了解他们是否正在朝向或远离碰撞运动以及他们离碰撞的接近程度的一般感觉。
220.可以广泛多种方式提供中间状态期间图标的逐渐转变。图33a至图33c提供若干示例。图33a示出其中图标1108的边界1114如上所述逐渐填充的示例。图33b示出其中机器人臂标识符1110逐渐填充以提供转变的示例,而图33c示出其中工具标识符1112或图标1108本身的主体逐渐填充以提供转变的示例。用于显示逐渐转变的其他方法也是可能的。例如,在一些实施方案中,整个图标1108可逐渐改变颜色和/或不透明度以指示转变。
221.图34示出了被配置为碰撞接近度指示器的图标1108的第二状态的示例。第二状态可被认为是近距离碰撞或碰撞状态。当机器人臂被确定为距机器人医疗系统的另一部件的
距离小于第二接近度阈值距离时,可发生近距离碰撞状态。在一些实施方案中,第二接近度阈值距离可为上述截止距离或停止距离。在一些实施方案中,第二接近度阈值为约1mm、约2.5mm、约5mm、约7.5mm、约10mm、约15mm或约20mm。在一些实施方案中,一旦机器人臂已达到与系统的另一部件的近距离或碰撞状态,则可突出显示边界1114和图标1108的背景以向用户提供警报。例如,图34示出处于第二状态的图标1108b和图标1108e,以指示第二机器人臂和第五机器人臂处于碰撞或近距离碰撞状态(例如,第一机器人臂与第一机器人臂之间的距离小于第二接近度阈值)。此时,系统可停止或限制第二机器人臂和第五机器人臂的进一步运动,直到碰撞得到解决。
222.提供碰撞接近度指示器(例如,通过图标1108的各种状态)可能是有利的,因为它允许在通知机器人臂彼此的接近程度时具有可定制的粒度,而无需在工作空间之外对臂进行物理观察。通常,控制机器人医疗系统的用户不喜欢将他们的头从查看器1102移开,因为这样做会导致他们无法看到外科部位。因此,用户通常不希望将他们的头从查看器移开以检查机器人臂之间的潜在碰撞。本文描述的碰撞指示器允许用户将可能的碰撞可视化,同时让他们的头保持在查看器中。
223.尽管前面的示例已将碰撞接近度指示器描述为具有三个状态(第一状态、中间状态和第二状态),但在一些实施方案中,系统可仅被配置成具有两个状态(例如,第一状态和第二状态)。例如,一些用户可能不希望看到转变,因为这可能会使他们的注意力从手术中移开(至少暂时如此)。因此,在一些实施方案中,碰撞接近度指示器可以是二进制的。例如,当不存在碰撞时,图标1108可为第一颜色,当存在近距离碰撞时,图标1108可为第二颜色。在二进制示例中,第一状态或第二状态之间的转变可通过机器人臂与另一部件之间的距离减小到低于第一接近度阈值距离(例如,触发距离)或者通过机器人臂与另一部件之间的距离减小到低于第二接近度阈值距离(例如,截止距离)来触发。
224.此外,尽管前面的示例描述了两个当前受控的机器人臂之间的碰撞,但碰撞指示器也可被配置成指示其他部件之间的碰撞。例如,图35示出其中第五机器人臂(与图标1108e相关联)正在接近与第三机器人臂(与图标1108c相关联)碰撞的示例。在该示例中,图标1108c和1108e各自以中间状态示出,它们的边界1114被填充以指示接近的碰撞。此外,图标1108c与当前未受控制的第三机器人臂相关联。
225.图36示出表明碰撞接近度指示器也可设置在与图标1108相关联的机器人臂与机器人医疗系统的附加部件之间的示例。具体地,图36e示出表明第五机器人臂(与图标1108e相关联)正在接近与患者平台碰撞的实施方案。由于患者平台通常不由图标表示,因此患者平台图标1116可弹出以表示患者平台,并且边界1114可如上所述填充以表示中间状态。在一些实施方案中,如果机器人臂正在接近与机器人医疗系统的未由图标1108中的另一图标表示的另一部件近距离碰撞,则可为正在接近近距离碰撞的机器人臂仅提供单个碰撞接近度指示器。
226.b.配置用于碰撞避免或解决的指示器的实施方案。
227.上文参考图30至图36描述的指示器可向用户提供关于哪些机器人臂将要碰撞和/或机器人臂与其他部件之间的距离的信息。然而,一旦检测到近距离碰撞或碰撞,用户就能够采取某些动作来避免或解决碰撞。例如,用户可使用用户输入装置1003命令运动,这将使机器人臂运动远离碰撞。一般来讲,用户使用输入装置1003来控制附接到机器人臂的医疗
器械,而不是机器人臂本身。因此,有时难以确定哪些运动将解决臂之间的碰撞。本小节描述了配置用于碰撞避免或解决的指示器,这些指示器向用户提供有关如何运动以避免或解决碰撞的信息。
228.图37示出可在显示器1100上连同先前描述的各种显示部件一起设置碰撞避免或解决指示器1118(本文称为碰撞解决指示器1118)。碰撞解决指示器1118可被配置成向用户提供关于如何运动用户输入装置1003以避免或解决碰撞的信息。在图37中大致示出碰撞解决指示器1118,而图38a至图39e提供具体示例。在一些实施方案中,当系统确定机器人臂正在接近另一部件或与另一部件处于近距离碰撞或碰撞状态时,显示(例如,弹出)碰撞解决指示器1118。可使用参考上述第一接近度阈值和/或第二接近度阈值距离(例如,触发距离和/或截止距离)的计算机模型来进行该确定。例如,一旦机器人臂被确定为与另一部件的距离小于第一接近度阈值,则一个或多个解决指示器1118显示为具有关于如何解决或避免碰撞的信息。作为另一示例,当机器人臂与另一部件之间的距离被确定为小于第二接近度阈值距离时,可触发解决指示器1118。
229.在例示的实施方案中,显示器1100包括左手碰撞解决指示器1118a和右手碰撞解决指示器1118b。左手碰撞解决指示器1118可与当前由左侧用户输入装置1003控制的机器人臂相关联,并且右手碰撞解决指示器1118可与当前由右侧用户输入装置1003控制的机器人臂相关联。在例示的实施方案中,碰撞解决指示器1118示出在显示器1100上的外科部位1102的视图的左上角和右上角中。这些位置仅以举例的方式提供,并且碰撞解决指示器1118可显示在其他位置。例如,碰撞解决指示器1118可覆盖在外科部位的视图上的任何地方,其中不妨碍视图的位置是优选的,或者覆盖在外科部位1102的视图的上方、下方或附近的位置或其他地方。
230.此外,虽然图37的显示器1100被示为具有左手碰撞解决指示器1118a和右手碰撞解决指示器1118b两者,但这两个碰撞解决指示器1118不需要同时显示。例如,在一些实施方案中,仅显示左手碰撞解决指示器1118a和右手碰撞解决指示器1118b中的一者。在当前由左侧用户输入装置1003控制的第一机器人臂被确定为与当前未被选择用于控制的另一机器人臂碰撞的情况下,可仅显示左手碰撞解决指示器1118a。这可能是因为,在当前选择的机器人臂中,仅当前受控的左侧机器人臂的运动才能解决碰撞。如果用户将当前由右侧用户输入装置1003控制的机器人臂的选择切换到第一机器人臂当前与其碰撞的第二机器人臂,则可显示右侧碰撞解决指示器1118b,因为现在可通过运动由左手控制的第一机器人臂或通过运动由右手控制的第二机器人臂来解决碰撞。作为另一示例,如果当前受控的机器人臂正在与机器人医疗系统的另一部件(诸如在规程期间使用的患者平台或附件)碰撞,则可仅显示一个碰撞解决指示器。
231.图38a提供了仅包括左手碰撞解决指示器1118a的显示器1100的示例。在该示例中,左手碰撞解决指示器1118a被显示为指向碰撞方向的方向覆盖图,这将在下文参考图39a更详细地描述。在图38a所示的示例中,左手碰撞解决指示器1118a被配置成向用户指示沿由箭头指示的方向运动左侧用户输入装置1003将使相关联的机器人臂朝向碰撞运动。利用该信息,用户可沿相反方向导航左侧用户输入装置1003以解决碰撞。
232.图38b提供了包括左手碰撞解决指示器1118a和右手碰撞解决指示器1118b的显示器1100的示例。在该示例中,碰撞解决指示器1118a、1118b再次被配置为方向覆盖图,如下
文将参考图39更详细地描述的。每个碰撞解决指示器1118a、1118b提供指示相关联的用户输入装置1003的运动方向的方向,该运动方向将导致碰撞的。
233.碰撞接近度指示器1118可被配置成以各种方式传送关于如何解决或避免碰撞的信息。现在将参考图39a至图39e描述若干示例。然而,例示的实施方案仅以举例的方式提供,并且用于用碰撞接近度指示器1118呈现信息的其他方法是可能的。
234.图39a提供了被配置为三维方向覆盖图的碰撞接近度指示器1118的示例。碰撞接近度指示器1118包括指向三维方向的箭头。箭头可指示相关联的用户输入装置1003的运动方向,该运动方向将导致当前受控的机器人臂经历碰撞的。碰撞接近度指示器1118可向用户指示沿相反方向运动用户输入装置1003将解决碰撞。例如,如图所示,箭头通常向后指向查看器,并稍微向下和向右。由此,用户可以理解,将用户输入装置大致向后朝向他或她自己运动并稍微向下和向右运动可能导致碰撞。因此,用户可运动用户输入装置1003远离箭头的方向,诸如例如沿相反的方向(例如,大致远离他或她自己并稍微向上和向左)以解决或避免碰撞。在一些实施方案中,箭头可被配置成指向相反的方向(例如,箭头可指向远离碰撞的方向,而不是指向朝向碰撞的方向)。
235.图39b提供了被配置为二维方向覆盖图的碰撞接近度指示器1118的示例。该碰撞接近度指示器1118提供相对于两个二维平面(诸如包含z轴的竖直平面和包含x轴和y轴的水平平面)的碰撞方向(或另选地,运动以避免碰撞的方向)的指示。
236.可提供方向覆盖图,无论是三维的还是二维的。方向覆盖图指示碰撞的方向,并有助于引导医师远离碰撞的方向。在一些实施方案中,箭头表示单个潜在方向。在其他实施方案中,可提供多方向箭头或形状(例如,圆锥体)来为碰撞解决提供引导。
237.碰撞接近度指示器1118可提供信息以帮助用户避免或解决碰撞的另一种方法可以是通过提供接触点的指示。图39c和图39d提供示例。图39c示出了碰撞接近度指示器1118,其包括与用户手臂的接触点(在图中通过球示出)的图示。这可向用户表示,通过沿接触点的方向(例如,朝向球)运动他的手臂来操纵用户输入装置1003将导致当前受控的机器人臂朝向碰撞运动。通过沿远离接触点的方向运动他的手臂来操纵用户输入装置1003,用户可解决或避免碰撞。
238.图39d提供了碰撞接近度指示器1118的类似示例,不同的是接触点(再次示为球)相对于当前受控的工具示出。当控制系统时,用户通常在显示器上看到当前受控的工具的图像。因此,提供相对于工具的接触点可提供相对自然的解决方案。对于如图39d所示的碰撞接近度指示器1118,用户可以理解,运动用户输入装置1003以便将工具运动远离接触点将解决或避免工具所附接的机器人臂与工作空间中的另一对象(例如,系统的另一部件)之间的碰撞。
239.最后,图39e示出了作为热图提供的碰撞接近度指示器1118的示例。可提供热图以指示用户相对于运动远离碰撞是“热”还是“冷”。
240.c.非视觉碰撞接近度指示器。
241.前面的示例主要提供了碰撞接近度指示器和碰撞解决指示器的视觉示例。非视觉指示器可被配置成提供类似的功能。非视觉指示器可与视觉指示器一起使用或代替视觉指示器使用。
242.例如,上述任何实施方案都可伴随有触觉反馈。例如,可在用户输入装置1003处提
供触觉反馈。在触觉反馈的一个实施方案中,每当用户无法沿某个方向前进时,用户都可感觉到触觉(例如,振动、阻力或停止运动)。以这种方式,触觉可充当虚拟屏障以防止碰撞。在触觉反馈的第二实施方案中,触觉可用于引导用户避开碰撞。换句话讲,触觉反馈可用作指示将避免或解决碰撞的运动方向的引导。这种触觉反馈可用于基于上面讨论的任何建模对象的碰撞或近距离碰撞。因此,触觉(除了上述碰撞接近度指示器和/或碰撞解决指示器之外或取代看到上述碰撞接近度指示器和/或碰撞解决指示器)可提供附加的引导以沿远离碰撞或要避免的对象的方向上运动用户输入装置1003。在一些实施方案中,触觉反馈可为振动运动的形式。
243.在一些实施方案中,碰撞接近度指示器和/或碰撞避免指示器还可伴随有音频反馈。例如,在一个实施方案中,当接近度指示器指示已检测到近距离碰撞或碰撞时(例如,当接近度指示器完全不透明时),可提供音频声音。在另一示例中,可为音频声音提供关于如何运动用户输入装置以解决状况的指令(例如,语音可宣布“将您的左手移回您身边以解决碰撞”)。
244.4.实施系统和术语。
245.本文所公开的具体实施提供了用于碰撞检测和避免的系统、方法和设备,以及向用户提供关于近距离碰撞、潜在碰撞或实际碰撞的信息或警报的相关指示器。
246.应当指出的是,如本文所用,术语“联接”或词语联接的其他变型形式可以指示间接连接或直接连接。例如,如果第一部件“联接”到第二部件,则第一部件可经由另一个部件间接连接到第二部件或直接连接到第二部件。
247.本文所述的用于碰撞检测和避免的功能可以作为一个或多个指令存储在处理器可读或计算机可读的介质上。术语“计算机可读介质”是指可由计算机或处理器访问的任何可用介质。通过示例而非限制,此类介质可包括随机存取存储器(ram)、只读存储器(rom)、电可擦除可编程只读存储器(eeprom)、快闪存储器、致密盘只读存储器(cd-rom)或其他光盘存储装置、磁盘存储装置或其他磁存储装置,或可以用于存储呈指令或数据结构的形式的期望的程序代码并且可以由计算机访问的任何其他介质。应当指出的是,计算机可读介质可为有形的和非暂态的。如本文所用,术语“代码”可以指可由计算装置或处理器执行的软件、指令、代码或数据。
248.本文所公开的方法包括用于实现所述方法的一个或多个步骤或动作。在不脱离权利要求的范围的情况下,方法步骤和/或动作可彼此互换。换句话讲,除非正在描述的方法的正确操作需要步骤或动作的特定顺序,否则可以在不脱离权利要求的范围的情况下修改特定步骤和/或动作的顺序和/或使用。
249.如本文所用,术语“多个”表示两个或更多个。例如,多个部件指示两个或更多个部件。术语“确定”涵盖多种动作,并且因此,“确定”可包括计算、运算、处理、导出、调查、查找(例如,在表格、数据库或另一种数据结构中查找)、查明等。另外,“确定”可包括接收(例如,接收信息)、访问(例如,访问存储器中的数据)等。另外,“确定”可包括解析、选择、挑选、建立等。
250.除非另有明确指明,否则短语“基于”并不意味着“仅基于”。换句话讲,短语“基于”描述“仅基于”和“至少基于”两者。
251.提供对所公开的具体实施的前述描述以使得本领域的任何技术人员能够制作或
使用本发明。对这些具体实施的各种修改对于本领域的技术人员而言将是显而易见的,并且在不脱离本发明的范围的情况下,本文所定义的一般原理可应用于其他具体实施。例如,应当理解,本领域的普通技术人员将能够采用多个对应的替代和等同的结构细节,诸如紧固、安装、联接或接合工具部件的等同方式、用于产生特定致动运动的等同机构、以及用于递送电能的等同机构。因此,本发明并非旨在限于本文所示的具体实施,而是被赋予符合本文所公开的原理和新颖特征的最广范围。
再多了解一些

本文用于创业者技术爱好者查询,仅供学习研究,如用于商业用途,请联系技术所有人。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献