一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

功率转换器控制器、功率转换器及操作功率转换器的方法与流程

2023-02-19 14:25:04 来源:中国专利 TAG:


1.本技术涉及功率转换器控制器、功率转换器以及用于操作功率转换器的方法。


背景技术:

2.功率转换器在许多应用中用于将输入功率转换成输出功率,该输出功率相对于电压、电流或两者适合于相应的电器或设备。例如,用于智能电话或平板电脑的充电器设备或者用于计算机、膝上型电脑和多个其他设备的电源将输入功率(通常是主功率)转换成适当的输出功率(电压和电流)。例如,主功率通常是其中电压范围取决于国家而在100v至300v之间的ac(交流电)功率,并且所需的输出电压取决于应用可以在从3v至20v dc(直流电)范围内。
3.功率转换器有时被实现为两级功率转换器,其中第一级将输入电压转换成中间电压,该中间电压在本文中称为总线电压,并且第二级将中间电压转换成输出电压。第一级可以包括功率因数校正,该功率因数校正增大由功率转换器和连接至功率转换器的待供应设备构成的负载的功率因数,其中功率因数被定义为由负载吸收的实际功率与流动的视在功率的比率。对于具有较高功率消耗的设备,可能需要接近1的功率因数以符合调整要求,因此需要功率因数校正。另一方面,功率因数校正级本身消耗功率。因此,对于不存在或存在宽松的调节要求的较低的输出功率,可以关闭功率因数校正。
4.除了对功率因数的要求之外,还存在与设备的平均效率和待机功率相关的若干调节,因此也期望或甚至需要降低的功率消耗。
5.此外,在功率转换器的工作要求中,例如必须考虑用作上述第二级的输入的最小所需中间电压。
6.在一些常规解决方案中,在功率转换器的次级侧(即输出侧),当输出电压或功率下降到阈值以下时,使用例如光耦合器通过初级侧与次级侧之间的隔离势垒发送信号,以停用功率因数校正。然而,这仅能够实现对功率因数校正的非常基本的控制,并且需要用于经由隔离势垒发送相应控制信号的类似光耦合器的设备。


技术实现要素:

7.根据实施方式,提供了一种用于功率转换器的控制器,该功率转换器包括第一功率级和第二功率级,该第一功率级被配置成接收输入电压并且输出中间电压,该第二功率级被配置成在第二功率级的初级侧处接收中间电压并且将功率传输至次级侧以生成输出电压,其中,初级侧和次级侧通过电流隔离而隔开,该控制器包括:
8.第一端子,其被配置成接收在初级侧处测量的输出电压的指示,其中,控制器被配置成基于指示执行与中间电压相关的控制。
9.根据另一实施方式,提供了一种功率转换器,包括上述控制器、第一功率级以及第二功率级。
10.根据又另一实施方式,提供了一种用于功率转换器的方法,该功率转换器包括第
一功率级和第二功率级,该第一功率级被配置成接收输入电压并且输出中间电压,该第二功率级被配置成在第二功率级的初级侧处接收中间电压并且将功率传输至次级侧以生成输出电压,其中,初级侧和次级侧通过电流隔离而隔开,该方法包括:
11.接收在初级侧处测量的输出电压的指示,以及
12.基于指示执行与中间电压相关的控制。
13.以上概述仅旨在给出对一些实施方式的简要概述,并且不应被解释为以任何方式进行限制,因为其他实施方式可以包括除了以上明确提及的特征之外的其他特征。
附图说明
14.图1是根据实施方式的功率转换器的框图。
15.图2是示出根据实施方式的方法的流程图。
16.图3a和图3b是根据实施方式的功率转换器的框图。
17.图4是示出根据实施方式的功率转换器的电路图。
18.图5是示出根据实施方式的功率转换器的电路图。
19.图6是示出一些实施方式的操作的信号图。
20.图7是示出根据实施方式的功率转换器的电路图。
21.图8是示出一些实施方式的操作的信号图。
具体实施方式
22.在下文中,将参照附图详细描述各种实施方式。这些实施方式仅通过示例的方式给出并且不被解释为限制。
23.虽然描述了包括多个特征(元件、部件、步骤、动作、事件、信号等)的实施方式,但是在其他实施方式中,这些特征中的一些可以被省略,或者可以被替选特征替换。除了明确示出和描述的特征之外,还可以提供另外的特征,例如常规功率转换器和相关联方法的特征。例如,本技术聚焦于功率转换器的特定控制方面,并且如功率转换器的一般硬件设置或功率转换器的输出电压的调节的其他方面可以以任何常规方式来实现。此外,虽然作为示例示出了特定类型的功率转换器,但是本文中讨论的技术也可以应用于其他类型的功率转换器。
24.来自不同实施方式的特征可以被组合以形成另外的实施方式。关于实施方式中的一个描述的变化、修改或细节也适用于其他实施方式,并且因此将不进行重复描述。
25.除非另有说明,否则本文中所描述的耦接或连接是指电连接或耦接。只要基本上保持了连接或耦接的一般功能,例如提供某种信号、提供电压、提供功率等,则可以例如通过添加或去除部件来修改如附图所示或本文中所述的这样的连接或耦接。
26.现在转向附图,图1是根据实施方式的功率转换器的框图。
27.图1的功率转换器包括第一功率级10,该第一功率级10被配置成接收输入电压vin并且将输入电压vin转换成中间电压,该中间电压在下文中称为总线电压vbus。
28.此外,图1的功率转换器包括在隔离势垒13的初级侧上的第二功率级11,该第二功率级11被配置成选择性地将功率传输至隔离势垒13的次级侧上的输出级12,该输出级12提供输出电压vout。在下文中,旨在提及第二功率级,特别是其初级侧。
29.隔离势垒13提供电流隔离,并且在一些实施方式中可以由变压器实现。在其他实施方式中,例如电容器装置可以用于提供电流隔离。例如,提供这样的电流隔离以确保保护接收输出电压vout的设备免受输入电压vin的影响,该输入电压vin可能显著更高。例如,在一些实现中,vin可以是在100v至300v ac范围内的市电电压,并且输出电压vout可以在3v至20v dc范围内,但是不限于此。
30.在一些实施方式中,第二功率级11和输出级12可以被配置为某种类型的反激式转换器,其示例将在下面进一步讨论,但是也可以使用其他类型的功率转换器。
31.由控制器14控制第一功率级10和第二功率级11。虽然控制器14被描绘为单个框,但是如以下将进一步说明的,控制器也可以使用彼此通信的两个或更多个实体来实现,例如控制第一功率级10的第一控制器实体和控制第二功率级11的第二控制器实体,第一控制器和第二控制器彼此通信。因此,在本文中使用的术语“控制器”还旨在涵盖具有彼此通信的两个或更多个实体的这样的实现。控制器14可以例如被实现为专用电路(asic)、微控制器或被编程为执行本文中所讨论的控制的其他类型的处理器,或者以任何其他合适的方式来实现。控制器14可以使用一个或更多个芯片来实现,一个或更多个芯片可以设置在单独的封装中或公共封装中。
32.控制器14接收(例如测量)来自第二功率级11的初级侧的指示(例如一些测量值),其指示输出电压vout。如以下将进一步说明的,这样的指示例如可以是实现隔离13的变压器装置中的反射电压或者谐振电容器处的电压。通常,可以使用初级侧上指示输出电压vout的任何量。基于该指示,控制器14执行与总线电压vbus相关的控制。与总线电压vbus相关的控制涉及影响总线电压vbus或使用总线电压vbus作为用于调节的输入值的任何控制方案。以下将参照图2和其他附图进一步讨论示例。与总线电压vbus相关的这种控制可以控制第一功率级10、第二功率级11或两者。
33.除了上述与总线电压vbus相关的控制之外,控制器14可以执行功率转换器中的任何常规控制,例如控制第二功率级11的初级侧开关晶体管以调节输出电压vout,或者控制第一功率级10以调整功率因数。
34.图2是示出根据一些实施方式的方法的流程图。图2的方法可以使用图1的功率转换器或以下讨论的功率转换器中的任何来实现。为了避免重复,将参照先前关于图1的说明。
35.在20处,图2的方法包括测量功率转换器的初级侧(例如,如参照图1所讨论的第二功率级11的初级侧)的功率转换器的输出电压的指示。
36.在21处,该方法包括基于所测量的指示并且因此基于输出电压vout(如也参照图1所说明的)来执行与总线电压相关的控制。
37.在一些实施方式中,除了测量初级侧上的输出电压的指示之外,还可以测量输出功率或输出电流的指示,并且可以基于输出电流或输出功率的指示另外执行21处的控制。应当注意,一旦输出电压的指示是已知的并且因此输出电压是至少近似已知的,则测量输出电流的指示或测量输出功率的指示基本上是等同的,因为输出功率是输出电压与输出电流的乘积,并且因此,如果三个量(输出电压、输出电流、输出功率)中的两个是已知的,则可以计算第三个量。
38.图2的22至24示出了21处的控制的各种示例。可以组合实现22至24处的各种可能
性,或者在特定实施方式中可以仅实现可能性中的一种或两种。
39.在图2中的22处,该方法包括根据指示接通和关断第一功率级(例如图1的第一功率级10),第一功率级可以是功率因数校正或包括功率因数校正。例如,当指示指示输出电压小于预定义阈值时,以及/或者可选地,在指示输出功率小于阈值的情况下,可以关断第一功率级。
40.与次级侧控制器决定接通和关断第一功率级并且在隔离势垒上发送对应控制信号的常规方案相比,在这样的实施方式中,不需要用于在隔离势垒上发送信号的附加光耦合器或类似设备。
41.在23处,该方法包括控制第一功率级以调节vbus,例如将vbus调节至下阈值与上阈值之间的值的某个范围,其中下阈值和上阈值可以取决于由指示所确定的vout。
42.在24处,执行与vbus相关的控制可以包括基于指示和总线电压vbus(例如根据vbus与指示所给出的输出电压vout之间的关系)来关断或接通第二功率级。这可以出于保护的原因来实现,例如,在试图保持某个输出电压vout时避免对部件的过应力。当关断第二功率级时,可以附加地关断第一功率级。
43.以下将针对功率转换器的各种示例进一步讨论用于测量指示和用于22至24处的控制的示例。
44.如上所述,类似控制器14的控制器可以实现为单个实体,但是也可以使用两个或更多个单独的实体来实现。将在图3a和图3b中示出示例,图3a和图3b各自示出了根据相应实施方式的功率转换器。在图3a和图3b中,与已经参照图1描述的元件相对应的元件具有相同的附图标记,并且将不再详细描述。
45.在图3a和图3b的功率转换器中,如参照图3a所说明的,提供了第一功率级10、第二功率级11和隔离13。虽然在图3a和图3b中未明确示出图1的输出级12,但是也可以提供输出级12。
46.在次级侧,次级侧控制器30在所示的示例中是比例微分usb(通用串行总线)pd(功率递送)。次级侧控制器可以耦接至控制/反馈网络,因此实现类似pid(比例积分微分)的控制器功能或者提供其他例如更简单的控制器功能。控制器30可以将电压vout与目标值进行比较,并且给出相应的反馈(例如当vout低于目标值时的第一值以及当vout高于目标值时的第二值),反馈经由光耦合器31返回至初级侧。在图3a的情况下,控制器32接收反馈并且控制第二功率级11,例如其一个或更多个初级侧开关,以将vout调节至目标值。
47.此外,虽然未在图3a中示出,但是控制器32在初级侧获得输出电压vout的指示并且可选地获得输出功率pout的指示(或输出电流iout的指示,如以上所说明的,其实际上是等同的),并且执行所说明的vbus相关的控制,例如使得vbus被提供为输出电压vout、输入电压vin和输出功率pout的函数。与一些常规解决方案相比,不需要用于接通和关断第一功率级的第二光耦合器(其是vbus相关的控制的特定情况),而是仅使用用于vout调节的光耦合器31。
48.图3b的功率转换器对应于图3a的功率转换器,除了代替单个控制器32,提供用于控制第一功率级10的第一控制器32a和用于控制第二功率级11的第二控制器32b。控制器32a和控制器32b彼此通信。控制器32b基于经由光耦合器31接收的信号控制第二功率级11以将输出电压vout调节至目标值。此外,控制器32b可以测量第二功率级11中的输出电压
vout或输出功率pout的指示,并且可以将结果传送至控制器32a。然后,控制器32a可以相应地控制第一功率级10,仅给出控制器32a与控制器32b之间的通信的示例。
49.接下来,将说明功率转换器的具体示例,其测量输出电压、输出电流或输出功率的指示以及执行与总线电压vbus相关的相应控制。图4是根据实施方式的功率转换器的简化电路图,其包括非对称脉冲宽度调制(pwm)反激式转换器作为第二级。图5是这样的转换器的更详细的电路图。
50.在图4中,第一级40接收输入电压vin。第一级40可以包括功率因数校正(pfc)级、电磁干扰(emi)滤波器以及由二极管表示的整流器,并且输出已经讨论过的总线电压vbus。
51.在图4的转换器中,第二级的初级侧包括由控制器41控制的高侧开关s1和低侧开关s2。通过操作开关s1、s2,功率以电流i
hb
的形式被选择性地供应给变压器t1的初级侧绕组lm。转换器的初级侧谐振电路还包括电感l
lk
和电容器cr。开关s2两端的电压降指定为v
hb
。向变压器t1供电在次级侧上生成电流i
sec
,该电流被二极管d1整流并且被输出电容器c
out
滤波以提供输出电压vout和输出电流iout。
52.辅助绕组l
aux
耦接至控制器41的输入zcd。基于来自辅助绕组l
out
的反射电压,可以估计输出电压vout。因此,端子zcd处的电压用作输出电压的指示的示例。此外,电容器cr两端的电压也可以用作输出电压的指示。分流电阻器42用于测量控制器41的端子cs处的初级侧电流,该电流可以用作次级侧上的输出电流iout的指示(即,估计)。
53.图5示出了根据一些实施方式的非对称脉冲宽度调制反激式转换器的更详细的电路图。如图所示的用于接收输入电压vin并且生成如图所示的总线电压vbus的第一功率级50包括滤波器、整流二极管和可通过控制晶体管52来控制的功率因数校正。第二功率级的初级侧(即非对称脉冲宽度调制反激式转换器53)包括与图4的晶体管s1、s2对应的高侧开关晶体管54和低侧开关晶体管55。在次级侧,同步整流器(sr)控制器59控制整流,对应于图4的二极管d1的功能。如已经关于图4所提及的,输出电压vout的指示可以被测量为在控制器51的输入zcd处、从与图4的l
aux
对应的辅助绕组57反射的电压,或者可以被确定为电容器c
r 56上的电压。此外,可以使用控制器51的输入cs处的分流电阻器511来测量初级侧上的电流。
54.基于vout的调节器输出(该调节器至少部分地由所示的rc网络形成)可以经由光耦合器510反馈至控制器51,以调节输出电压。此外,控制器51可以基于在初级侧获得的输出电压的指示例如通过控制晶体管52来执行如上所述的vbus相关的控制。
55.图6示出了如图4和图5所示的非对称pwm反激式转换器中的各种信号。曲线60示出了高侧开关(即在控制器41或控制器51的端子hsgd处的信号输出)的切换,曲线61示出了低侧开关s2或55(即在控制器41或控制器51的端子lsgd处的信号输出)的切换。首先,在每个周期中,接通低侧开关以获得所谓的高侧开关的零电压切换。然后在充电阶段,接通高侧开关,随后是在能量传输阶段,再次接通低侧开关。曲线62示出了图4的电压v
hb
,并且曲线63示出了图4或图5的电容器cr上的电压v
cr
。曲线64示出了次级侧电流i
sec
,曲线65示出了磁化电流i
mag
,并且曲线66示出了具有局部极值i
hb_n
和i
hb_p
的电流i
hb
。可以将完整的切换周期t划分成当i
sec
、i
mag
和i
hb
返回至近似0时结束的第一部分ta和之后直到下一个周期开始的时间tw。也可以使用其他常规控制方案。
56.可以在上述控制器的zcd输入处测量时间ta。可以使用分流电阻器经由cs输入来
测量i
hb_p
和i
hb_n
。可以使用zcd输出来测量时间ta。如已经提及的,输出电压可以使用zcd输入处的反射电压来测量,或者可以采用cr上的电压降作为指示来测量。
57.然后,可以根据下式来估计输出电流i
out

[0058][0059]
根据vout的指示和由此确定的iout,可以将输出功率pout计算为vout与iout的乘积。
[0060]
图7示出了根据实施方式的功率转换器的另一示例,在这种情况下是简单的反激式转换器。初级40与以上参照图4所说明的初级相同。在第二功率级中,控制器70控制初级侧开关s1以向变压器71提供电流i
p
,从而生成次级电流i
sec
。可以基于来自控制器70的zcd端子处的辅助绕组l
aux
的反射电压来估计输出电压vout。此外,可以使用分流电阻器72在控制器70的cs端子处测量通过开关s1的初级侧电流。特别地,其测量i
p

[0061]
图8示出了图7的转换器的示例信号。曲线80示出了开关s1的控制信号。当开关s1接通时,如曲线81所示,电流i
p
(例如,如在控制器70的cs端子处测量的)上升,直到当开关s1关断时达到最大峰值i
p
。曲线82示出了控制器70的zcd端子处的电压v
zcd

[0062]fsw
是开关频率,并且其倒数对应于周期。输出功率可以被估计为:
[0063]
pout=1/2l
mip2fsw
[0064]
可以由v
zcd
测量电压vout。特别地,v
zcd
=vout(naux/ns),其中naux是l
aux
的绕组的数目,并且ns是次级侧上的绕组的数目。如果需要,则可以根据pout和vout计算输出电流iout。
[0065]
因此,只有通过对控制器的初级侧的测量,才可以确定vout、iout和pout。
[0066]
对于所示出的控制器,图2(图2的22至24)中提及的用于vbus相关的控制的各种可能性例如可以按照如下来实现:
[0067]
例如,在图2中的22处,如果输出功率pout小于阈值功率pth并且电压vbus超过k1×
vout δv1,则可以关断第一功率级。如果pout》pth或者如果vbus《k2×
vout δv2,则可以接通第一功率级。常数pth、k1、k2、δv1和δv2可以根据要求和应用来配置。例如,可以基于用于功率因数校正的调节来选择pth。例如,pth可以是75w。
[0068]
为了接通和关断,另外代替上述基于调节的vbus,也可以使用输入峰值电压vin,peak,例如,如果vin,peak》n
×
vout δv3,则关断,并且如果vin,peak《n
×
vout δv3,则接通,其中n可以对应于变压器的匝数比,并且δv3是预定义的裕度。还可以基于所需的输出电压vout、输入功率和输出功率来选择δv1、δv2和δv3。
[0069]
在23处,例如可以通过控制图5的晶体管52例如来执行总线调节以将vbus调节至预定义的值或预定义的范围。在一些实现中,在非对称半桥反激式转换器中,可以将vbus调节至vout的约2n倍,其中n是变压器匝数比。例如,可以将vbus调节至2n vout
±
δv4的范围,其中δv4确定范围的大小。
[0070]
在24处,如果vbus《n vout δv5,则可以关断第二功率级,其中δv5可以再次是针对应用的所需输出电压、输入功率和输出功率的函数。
[0071]
也可以基于占空比或者基于未达到的峰值电流来执行关断第二级,因为占空比或未达到的峰值电流是所示出的vbus和电容器cr两端的电压vcr的函数。特别地,占空比d=n
(vout/vin)=vcr/vin,并且峰值电流ipeak=ton(vin-vcr)/lp,其中ton是开关54的接通时间,并且lp是变压器初级侧的电感。
[0072]
一些实施方式由以下示例限定。
[0073]
示例1.一种用于功率转换器的控制器,功率转换器包括第一功率级和第二功率级,第一功率级被配置成接收输入电压并且输出中间电压,第二功率级被配置成在第二功率级的初级侧处接收中间电压并且将功率传输至次级侧以生成输出电压,其中,初级侧和次级侧通过电流隔离隔开,控制器包括:
[0074]
第一端子,其被配置成接收在初级侧处测量的输出电压的指示,其中,控制器被配置成基于指示执行与中间电压相关的控制。
[0075]
示例2.根据示例1的控制器,其中,与中间电压相关的控制包括基于指示选择性地接通和关断第一功率级。
[0076]
示例3.根据示例1或2的控制器,还包括第二端子,第二端子被配置成接收在功率转换器的初级侧处测量的功率转换器的输出功率或输出电流的至少之一的另外的指示,其中,控制器被配置成另外基于输出功率或输出电流的至少之一来执行与中间电压相关的控制。
[0077]
示例4.根据示例3的控制器,其中,另外的指示包括初级侧电流的测量。
[0078]
示例5.根据示例2以及示例3或4中任一项的控制器,其中,控制器被配置成:
[0079]
如果输出功率小于功率阈值并且中间电压大于第一电压阈值,则关断初级侧,第一电压阈值是输出电压的函数,并且
[0080]
如果输出功率超过功率阈值或者中间电压小于第二电压阈值,则接通第一功率级,第二电压阈值是输出电压的函数。
[0081]
示例6.根据示例1至5中任一项的控制器,其中,控制包括基于指示调节中间电压。
[0082]
示例7.根据示例6的控制器,其中,调节中间电压包括将中间电压调节至输出电压的约2n倍的范围,其中,n是提供电流隔离的变压器的变压器匝数比。
[0083]
示例8.根据示例1至7中任一项的控制器,其中,控制包括:当中间电压下降至由输出电压的n倍加上裕度值而给出的值之下时,关断第二功率级,其中,n是提供电流隔离的变压器的匝数比。
[0084]
示例9.根据示例1至8中任一项的控制器,其中,指示是从变压器的辅助绕组接收的反射电压和谐振电容器两端的电压之一。
[0085]
示例10.一种功率转换器,包括:
[0086]
示例1至9中的任一项的控制器,
[0087]
第一功率级,以及
[0088]
第二功率级。
[0089]
示例11.根据示例10的功率转换器,其中,第二功率级是反激式转换器。
[0090]
示例12.一种用于功率转换器的方法,功率转换器包括第一功率级和第二功率级,第一功率级被配置成接收输入电压并且输出中间电压,第二功率级被配置成在第二功率级的初级侧处接收中间电压并且将功率传输至次级侧以生成输出电压,其中,初级侧和次级侧通过电流隔离隔开,控制器,方法包括:
[0091]
接收在初级侧处测量的输出电压的指示,以及
[0092]
基于指示执行与中间电压相关的控制。
[0093]
示例13.根据示例12的方法,其中,与中间电压相关的控制包括基于指示选择性地接通和关断第一功率级。
[0094]
示例14.根据示例12或13的方法,还包括接收在功率转换器的初级侧处测量的功率转换器的输出功率或输出电流的至少之一的另外的指示。
[0095]
示例15.根据示例14的方法,其中,另外的指示包括初级侧电流的测量。
[0096]
示例16.根据示例15以及示例14或15中任一项的方法,包括:
[0097]
如果输出功率小于功率阈值并且中间电压大于第一电压阈值,则关断初级侧,第一电压阈值是输出电压的函数,并且
[0098]
如果输出功率超过功率阈值或中间电压小于第二电压阈值,则接通第一功率级,第二电压阈值是输出电压的函数。
[0099]
示例17.根据示例12至16中任一项的方法,其中,控制包括基于指示调节中间电压。
[0100]
示例18.根据示例17的方法,其中,调节中间电压包括将中间电压调节至输出电压2n倍加上或减去相应的预定义电压值的范围,其中n是提供电流隔离的变压器的变压器匝数比。
[0101]
示例19.根据示例12至18中任一项的方法,其中,控制包括:当中间电压下降到低于由输出电压的n倍加上裕度值而给出的值时,关断第二功率级,其中n是提供电流隔离的变压器的匝数比。
[0102]
虽然本文中已经示出和描述了特定实施方式,但是本领域的普通技术人员将理解,在不脱离本发明的范围的情况下,可以用各种替选和/或等同的实现方式来替换所示出和描述的特定实施方式。本技术旨在覆盖本文中所讨论的特定实施方式的任何修改或变化。因此,本发明旨在仅由权利要求及其等同物限定。
再多了解一些

本文用于创业者技术爱好者查询,仅供学习研究,如用于商业用途,请联系技术所有人。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献