一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

车辆的车辆诊断方法与流程

2022-12-07 02:11:31 来源:中国专利 TAG:

车辆的车辆诊断方法
1.本技术是国家申请号为201880006668.3,国际申请日为2018年1月22日,进入国家日期为2019年7月11日,发明名称为“诊断系统和无级变速器的方法”的申请的分案申请。
2.相关申请
3.本技术要求于2017年1月20日提交的题为“diagnostic systems and methods of a continuously variable transmission(诊断系统和无级变速器的方法)”的美国临时申请第62/448,875号的权益,其全部公开内容通过引用明确合并到本文中。
技术领域
4.本公开内容一般地涉及车辆诊断系统,并且更具体地涉及用于无级变速器(cvt)中的传动带的诊断系统。


背景技术:

5.包括多用途车辆和并排式车辆的传统车辆具有生成传动扭矩的内燃发动机。为了驱动发动机的活塞,空气/燃料混合物在汽缸内燃烧,并且经由进气阀和排气阀调节空气/燃料混合物。选择性地打开进气阀以将空气吸入汽缸,并且空气与燃料混合以形成空气/燃料混合物。为了在燃烧后允许废气从汽缸排出,排气阀在特定时间选择性地被打开。
6.无级变速器(cvt)通常安装在诸如雪地车和全地形车辆的休闲车辆中。cvt提供在将扭矩从发动机传递到变速器的输出传动系方面有效的无数个不同的齿轮。输出传动系可操作地将变速器联接到至少一个地面接合构件。
7.然而,由于cvt的带状结构,缺点之一是当传动带没有被适当地破坏或在不期望的状况下过度地使用时,cvt的传动带趋于磨损并且变得过早地损坏。因为传动带仅将发动机动力从cvt的传动滑轮传递到从动滑轮,所以传动带是cvt的重要部件。通常,cvt传动带是v形带,并且由橡胶制成,通常是纤维增强的,其是刚性的但是沿其长度是柔性的。在操作期间,传动带承受极大的压力和摩擦。
8.当传动带在高负载或过载状况下在cvt的滑轮之间失去压力时,可能发生滑动引起诸如旋转燃烧或计时沙漏(hour-glassing)事件的带损坏。例如,在旋转燃烧事件期间,带温度可以在没有任何警告的情况下迅速达到超过200华氏度(℉),并且如果不采取补救行动,带温度可以持续上升至400℉。在那时,传动带不可修复地被损坏,并且在不更换损坏的传动带的情况下,车辆不能操作,从而招致增加的维护成本和维修时间。
9.因此,有机会开发可以在潜在的带损坏之前自动检测或预测传动带的故障的改进的诊断系统和方法。


技术实现要素:

10.如以下更详细讨论的,示例性诊断系统提供用于使用各种电路和其他相关系统来检测cvt传动带的故障的增强的诊断功能。在示例性诊断系统和方法中,自动地执行操作参数的监测和cvt传动带的故障检测。
11.本公开内容还包括系统和方法,其被配置用于基于比较逻辑或算法的历史信息监测预定时间段期间的操作参数变化的模式。此外,本诊断系统实时提供增强的显示以及操作参数的关系。此外,在没有大量手动中断的情况下,自动地显示操作参数。因此,在没有招致附加操作费用和维护成本的情况下,增强了发动机系统的整体操作时间。
12.在一个示例性实施方式中,提供一种车辆的车辆诊断方法,该车辆包括内燃发动机和可操作地联接到内燃发动机的无级变速器(cvt)。所述方法包括以下步骤:使用检测电路来检测车辆的至少一个发动机曲轴加速度变化事件;使用监测电路来确定从与cvt的操作相关联的一个或更多个传感器接收的至少一个操作参数;以及使用警报电路基于至少一个操作参数来确定至少一个检测到的发动机曲轴加速度变化何时与cvt的传动带的故障有关。在一个示例中,该诊断方法还包括将环境状况参数包括为至少一个操作参数,其中,环境状况参数包括燃料状态信号、发动机冷却剂温度信号、传动带温度信号和离合器状态信号中至少之一。在另一示例中,该诊断方法还包括将基于发动机的参数包括为至少一个操作参数,其中,基于发动机的参数与曲轴加速度信号、发动机扭矩信号和变速器挡位信号中至少之一有关。在再一示例中,该诊断方法还包括将基于传动系的参数包括为至少一个操作参数,其中,基于传动系的参数与车辆速度信号、发动机速度信号和轮速度信号中至少之一有关。在又一示例中,该诊断方法还包括通过测量曲轴加速度信号的加速率或减速率来检测至少一个发动机曲轴加速度变化事件。在又一示例中,该诊断方法还包括基于在预定时间段期间测量的操作参数的变化模式来检测至少一个发动机曲轴加速度变化事件。在其变型中,该诊断方法还包括确定变化模式的频率是否大于预定阈值。在其另一变型中,该诊断方法还包括确定变化模式的模式时间段是否大于预定时间段。在其变型的细化中,该诊断方法还包括确定是否变化模式的大小。在再一示例中,该诊断方法还包括执行第一校正方法,该第一校正方法用于基于至少一个发动机曲轴加速度变化事件的单次发生来确定发动机曲轴加速度变化事件是由带打滑事件还是由发动机燃烧失火事件引起。在又一示例中,该诊断方法还包括执行第二校正方法,该第二校正方法用于基于至少一个发动机曲轴加速度变化事件的多次发生来确定发动机曲轴加速度变化事件是由带打滑事件还是由发动机燃烧失火事件引起。
13.在另一示例性实施方式中,提供一种车辆的车辆诊断方法,该车辆包括内燃发动机和可操作地联接到内燃发动机的无级变速器(cvt)。所述方法包括以下步骤:使用监测电路来确定从与cvt的操作相关联的一个或更多个传感器接收的至少一个操作参数;使用检测电路来检测cvt的传动带的至少一个带打滑事件;使用警报电路基于至少一个操作参数来确定至少一个检测到的带打滑事件何时与cvt的传动带的即将发生的故障有关;以及使用警报电路在发生车辆的带或传动系损坏之前通知传动带的即将发生的故障。在一个示例中,诊断方法还包括生成与传动带的即将发生的故障有关的信息信号。在另一示例中,诊断方法还包括提供通过调节至少一个操作参数的至少一个值来超控用户输入的选项。在再一示例中,诊断方法还包括在追溯控制模式和主动控制模式中至少之一下由检测电路来检测至少一个带打滑事件。在又一示例中,诊断方法还包括使用监测电路来接收期望的车辆输入参数。在又一示例中,诊断方法还包括将环境状况参数包括为至少一个操作参数。在又一示例中,诊断方法还包括将基于发动机的参数包括为至少一个操作参数。在又一示例中,诊断方法还包括将基于传动系的参数包括为至少一个操作参数。在又一示例中,诊断方法还
包括在用于预测传动带的即将发生的故障的基于发动机的参数与基于传动系的参数的比较的基础上来检测带打滑事件。在其变型中,诊断方法还包括确定基于发动机的参数和基于传动系的参数中至少之一是否大于预定阈值。在另一示例中,诊断方法还包括使用显示器来通知至少一个检测到的带打滑事件;以及基于预定表来自动调节至少一个操作参数。
14.在另一示例性实施方式中,提供一种车辆的车辆诊断方法,该车辆包括内燃发动机和可操作地联接到内燃发动机的无级变速器(cvt)。所述方法包括以下步骤:使用监测电路来确定从与cvt的操作相关联的一个或更多个传感器接收的至少一个操作参数;使用检测电路来检测cvt的传动带的至少一个临界带寿命事件;使用警报电路基于至少一个操作参数来确定至少一个检测到的临界带寿命事件何时与cvt的传动带的故障有关;以及使用警报电路来生成与传动带的寿命有关的信息信号。在示例中,诊断方法还包括将环境状况参数包括为至少一个操作参数,其中,环境状况参数包括温度信号。在另一示例中,诊断方法还包括将基于发动机的参数包括为至少一个操作参数,其中,基于发动机的参数与发动机负载信号、节流阀位置信号、发动机扭矩信号和发动机功率信号中至少之一有关。在又一示例中,诊断方法还包括将基于传动系的参数包括为至少一个操作参数,其中,基于传动系的参数与车辆速度信号和发动机速度信号中至少之一有关。在又一示例中,诊断方法还包括在基于发动机的参数、基于传动系的参数与环境状况参数的比较的基础上来检测临界带寿命事件;以及基于比较来预测传动带的剩余寿命。在其变型中,诊断方法还包括确定传动带的剩余寿命是否小于预定阈值。在其另一变型中,诊断方法还包括使用与传动带的剩余寿命相关联的文本或图形指示在显示器上显示信息信号。在另一示例中,诊断方法还包括基于至少一个检测到的临界带寿命事件来调节基于发动机的参数、基于传动系的参数和环境状况参数中至少之一。
15.在本公开内容的另一示例性实施方式中,提供一种车辆的车辆诊断方法,该车辆包括内燃发动机和可操作地联接到内燃发动机的无级变速器(cvt)。所述方法包括以下步骤:确定由内燃发动机向cvt提供的输入能量的量;确定离开cvt的输出热能的量;基于输入能量的量和输出热能的量来确定cvt中累积能量的量;将累积能量的量与阈值进行比较;以及响应于累积能量的量满足阈值来减少输入能量的量。在其示例中,减少输入能量的量的步骤包括减少由内燃发动机向cvt提供的功率的步骤。在另一示例中,基于cvt的机械输入特性来确定输入能量的量。在又一示例中,基于cvt的流体特性来确定输出热能的量。在又一示例中,确定由内燃发动机向cvt提供的输入能量的量的步骤包括以下步骤:确定内燃发动机的输出功率;基于确定的输出功率来确定cvt离合器效率;以及基于确定的输出功率和确定的cvt离合器效率来确定向cvt提供的输入能量的量。在其变型中,基于确定的输出功率来确定cvt离合器效率的步骤包括从数据库检索确定的cvt离合器效率的步骤。在又一示例中,确定离开cvt的输出热能的步骤包括以下步骤:确定进入cvt的内部的空气的空气温度;以及基于cvt离合器气流模型、传热系数和确定的空气温度来确定离开cvt的输出热能的量。
16.在本公开内容的又一示例性实施方式中,提供一种车辆的车辆诊断方法,该车辆包括内燃发动机和可操作地联接到内燃发动机的无级变速器(cvt)。所述方法包括以下步骤:检测多个发动机曲轴加速度变化事件;确定多个发动机曲轴加速度变化事件的频率;确定cvt的传动带的cvt带相互作用频率;以及基于频率与cvt带相互作用频率的比较,将多个
发动机曲轴加速度变化事件归类为发动机失火事件和cvt带损坏事件中的一个。在其示例中,确定cvt的传动带的cvt带相互作用频率的步骤包括以下步骤:确定cvt的传动离合器的节圆直径;基于传动离合器的确定的节圆直径和cvt的传动轴的旋转速度来确定cvt的传动带的线速度;以及基于cvt的传动带的确定的线速度和带的长度来确定传动带的cvt带相互作用频率。
17.在本公开内容的再一示例性实施方式中,提供一种用于诊断无级变速器的传动带的车辆的诊断系统。诊断电路基于在预定诊断时段期间从与车辆相关联的传感器接收的操作参数来检测或预测传动带的故障。
18.在考虑以下对示例性实施方式的详细描述时,本公开内容的附加特征和优点对于本领域技术人员将变得明显,示例性实施方式举例说明了目前所认识到的实现本发明的最佳模式。
附图说明
19.鉴于下面结合以下附图时的描述将更容易理解实施方式,并且其中相似的附图标记表示相似的元素,其中:
20.图1示出了示例性并排式车辆的传动系的代表性图;
21.图2示出了示例性无级变速器(cvt)的初始空气流的代表性图;
22.图3示出了具有发动机控制电路和诊断电路的诊断系统的一个说明性实施方式的示例性框图和示意图。
23.图4示出了执行用于在追溯控制模式下检测带打滑事件的本诊断系统的示例性处理序列;
24.图5示出了执行用于在前瞻控制模式下检测带打滑事件的本诊断系统的示例性处理序列;
25.图6示出了执行用于检测临界带寿命事件的本诊断系统的示例性处理序列;
26.图7示出了执行用于检测发动机失火事件的本诊断系统的示例性处理序列;
27.图8示出了执行用于检测发动机失火事件或损坏的带事件的本诊断系统的示例性处理序列;
28.图9示出了确定cvt带的相互作用频率的示例性处理序列;
29.图10示出了基于cvt中的累积能量来调节动力源的峰值输出功率的示例性处理序列;
30.图11示出了用于确定在cvt的操作期间输入cvt的能量的量的示例性处理序列;以及
31.图12示出了用于确定在cvt的操作期间离开cvt的能量的量的示例性处理序列。
32.贯穿这几个图,相应的附图标记指示相应的部分。尽管附图表示本公开内容的实施方式,但是附图不一定按比例绘制,并且某些特征可能被夸大以便于更好地说明和解释本公开内容。这里阐述的示例以一种形式示出了本公开内容的示例性实施方式,并且这样的示例不应被解释为以任何方式限制本公开内容的范围。
具体实施方式
33.以下公开的实施方式并非旨在穷举或将本发明限制为以下详细描述中公开的精确形式。而是,这些实施方式被选择和描述,使得本领域其他技术人员可以利用它们的教导。虽然本公开内容主要涉及无级变速器(“cvt”),但是应该理解的是,本文公开的特征可以结合到一个或更多个车辆中。示例性车辆包括全地形车辆、并排式utv、多用途车辆、摩托车、雪地车、高尔夫球车以及结合无级变速器的其他车辆或装置。
34.现在参照图1,示出了车辆100的代表性图。如图所示的车辆100包括多个地面接合构件102。说明性地,地面接合构件102是具有相关轮胎的轮104。其他示例性地面接合构件包括滑雪板和轨道。在一个实施方式中,轮中的一个或更多个可以用轨道代替,诸如位于明尼苏达州麦地那55340的55号高速公路2100号的可从北极星工业公司获得的勘探者ⅱ轨道。
35.地面接合构件102中的一个或更多个可操作地联接到用于为车辆100的运动提供动力的可换挡变速器130。还设想了诸如不可换挡的齿轮组的其他合适类型的变速器。示例性动力源106包括内燃发动机和电动机。在所示出的实施方式中,动力源106是内燃发动机。
36.内燃动力源106如图1所示。动力源106接收来自燃料源108的燃料和来自进气系统110的环境空气。例如,环境空气被选择性地供应到动力源106以与用于内燃的燃料混合。排气通过排气系统112从动力源106排出。动力源106的输出轴120联接到无级变速器(“cvt单元”)122的传动构件。cvt单元122的从动构件通过传动带可操作地联接到cvt单元122的传动构件。cvt单元122通过进气系统124接收环境空气,并且通过排气系统126从cvt单元122的内部排出空气。从动构件联接到输出轴128,该输出轴128可操作地联接到可换挡变速器130的输入端。
37.可换挡变速器130的第一输出轴132联接到后驱动单元134。后驱动单元134通过半轴138联接到后轴136的相应的轮104。后驱动单元134可以是差速器。可换挡变速器130的第二输出轴140联接到前驱动单元142。前驱动单元142通过半轴138联接到前轴144的相应的轮104。前驱动单元142可以是差速器。
38.设想后驱动单元134和前驱动单元142的各种配置。关于后驱动单元134,在一个实施方式中,后驱动单元134是锁定的差速器,其中,动力通过输出轴150被提供至轴136的两个轮。在一个实施方式中,后驱动单元134是相对于输出轴150的可锁定/可解锁的差速器。当后驱动单元134在锁定配置中时,动力通过输出轴150被提供至轴136的两个轮。当后驱动单元134在解锁配置中时,动力通过输出轴150被提供至轴136的轮中的一个诸如相对于地面具有较小阻力的轮。关于前驱动单元142,在一个实施方式中,前驱动单元142具有:第一配置,其中,动力被提供至前轴144的两个轮;以及第二配置,其中,动力被提供至轴144的轮中的一个诸如相对于地面具有较小阻力的轮。
39.在一个实施方式中,前驱动单元142包括主动下降控制(“adc”)。adc是如下驱动系统:当后轴136的轮104中的一个失去牵引力时向前轮提供按需扭矩传递,以及向前轴144的轮104提供发动机制动扭矩。前驱动单元142的按需扭矩传递和发动机制动特征两者可以是主动的或不主动的。在按需扭矩传递的情况下,当主动时,向前轴144的两个轮提供动力,并且当不主动时,向前轴144的轮中的一个提供动力。在发动机制动的情况下,当主动时,向前轴144的轮提供发动机制动,并且当不主动时,不向前轴144的轮提供发动机制动。其他合适
的布置被设想用于两轮驱动系统以适应该应用。示例性的前驱动单元在于2010年6月15日提交的题为“electric vehicle(电动车辆)”的美国专利申请序列第12/816,052号、美国专利第5,036,939号和美国专利re38,012e中被公开,上述申请的公开内容被明确地通过引用并入本文。
40.在一个实施方式中,cvt单元122、进气系统124和排气系统126中的一个或更多个包括监测相应的cvt单元122、进气系统124和排气系统126的内部的空气的特性的传感器160。在所示出的实施方式中,多个传感器160可操作地且可通信地连接到变速器130、轮104、进气系统124、排气系统126和cvt单元122用于接收来自连接的传感器中至少之一的信号。示例性传感器包括温度传感器、速度传感器和负载传感器。在一个实施方式中,传感器160向包括控制动力源106的操作的逻辑的发动机控制电路(ecc)162提供相应的cvt单元122、进气系统124和排气系统126内部的空气的温度的指示。当监测到的空气温度超过阈值量时,ecc162通过车辆100的操作员区域内的用户界面诸如仪表164或显示器165向车辆100的操作员通过限制动力源106的输出轴120的输出速度、限制车辆100的速度和指示过热状况中至少之一进行响应。示例性用户界面在于2016年5月23日提交的、题为“display systems and methods for a recreational vehicle(用于休闲车辆的显示系统和方法)”、案卷号为plr-12-27457-01p-us-e的美国专利申请第15/161,720号中被公开,其全部公开内容明确地通过引用并入本文。过热状况的示例性指示包括灯、显示器165上的警告消息和将状况传达给操作员的其他合适的方式。通过限制发动机速度或车辆速度,降低cvt单元122的内部的空气的温度,并且降低cvt单元122的内部的传动带的温度。这减少了传动带故障的风险。
41.参照图2,示出了示例性无级变速器200。无级变速器200包括可操作地联接到输出轴120的传动离合器202、可操作地联接到输出轴128的从动离合器204、以及可操作地联接到传动离合器202和从动离合器204以将动力从传动离合器202传递到从动离合器204的传动带206。传动离合器202包括第一传动离合器滑轮208和可相对于第一传动离合器滑轮208移动的第二传动离合器滑轮210。从动离合器204包括第一从动离合器滑轮212和可相对于第一从动离合器滑轮212移动的第二从动离合器滑轮214。
42.传动离合器202和从动离合器204两者都定位在具有内部222的壳体220内。壳体220可以包括配合以形成壳体220的多个部件。多个部件还可以包括引导空气流过壳体220的内部222的特征。在一个示例中,壳体220包括基部和联接到基部的盖子,该基部具有适于接纳传动轴120的第一开口和适于接纳从动轴128的第二开口。盖子和基部配合以限定壳体220的内部222。盖子和基部可以包括引导空气流过壳体220的内部222的特征。
43.如图2所示,一个或更多个空气供应管道230联接到壳体220。示例性空气供应管道包括软管。在一个实施方式中,每个空气供应管道230通过壳体220的外部234中的相应的空气供应开口232向壳体220的内部222提供空气。空气供应管道230向壳体220的内部222提供空气以冷却传动离合器202、从动离合器204和传动带206。因此,这种配置在传动带206上提供冷却效果。供应的空气被朝向第一传动离合器滑轮208、第二传动离合器滑轮210、第一从动离合器滑轮212和第二从动离合器滑轮214中的一个或更多个引导,其中,供应的空气将吸收热量以冷却相应的第一传动离合器滑轮208、第二传动离合器滑轮210、第一从动离合器滑轮212和第二从动离合器滑轮214中的一个或更多个。然后,空气将在壳体220的内部
222内循环,潜在地或有意地接触第一传动离合器滑轮208、第二传动离合器滑轮210、第一从动离合器滑轮212和第二从动离合器滑轮214中的一个或更多个,然后通过壳体220的壁234中的一个或更多个空气排出开口236离开壳体220的内部222。一个或更多个排气或出口管道238被联接到排气开口236。
44.参照图3,示出了诊断系统300的示例性示意图。包括在诊断系统300中的是具有诊断电路(dc)302的发动机控制电路(ecc)162。dc 302被配置成基于至少一个操作参数诸如发动机或车辆参数或信号来检测或预测cvt 122的传动带206的故障。尽管dc 302在ecc的内部被示出,但dc可以独立于ecc或与ecc分离,或者结合到车辆100的任何其他系统中以适应该应用。
45.传动带206的故障可以指的是由旋转燃烧或计时沙漏事件引起的传动带的劣化状况。例如,在传动滑轮相对于近静止传动带的实质旋转期间,传动带206中的滑动可以产生将传动带206的侧面轮廓改变为计时沙漏形状的计时沙漏事件。仅作为示例,当轮104卡在诸如泥或雪的沟渠或松散的土壤中时,发动机速度可以增加,但轮速度可能降低到几乎为零。轮104的这种旋转运动不足可能引起从动轴128停止并且引起传动带206上的计时沙漏事件。
46.在所示出的实施方式中,dc 302是基于微处理器的,并且包括非暂态计算机可读介质或数据库304,所述非暂态计算机可读介质或数据库304包括其中存储的可由dc 302的微处理器执行以控制cvt 122的诊断过程的操作的处理指令。非暂态计算机可读介质或存储器可以包括随机存取存储器(ram)、只读存储器(rom)、可擦除可编程只读存储器(例如,eprom、eeprom或闪存)、或者任何其他能够存储信息的有形介质。例如,预定校准或经验查找表可以在易失性或非易失性存储器上存储以供后续访问。
47.示例性操作参数涉及发动机速度(例如,每分钟转数(rpm))、发动机负载(例如,相对负载百分比的单位(%rl))、节流阀位置(例如,节流阀位置百分比)、发动机扭矩(例如,英寸-磅或英寸-盎司)、发动机功率等。还设想其他合适的操作参数以适应不同的应用。下面在与图4至图7有关的段落中提供示例性操作参数和信号的详细描述。
48.如在此所使用的,术语“电路”或“单元”可以指的是以下的一部分或包括以下:执行一个或更多个软件或固件程序的专用集成电路(asic)、电子电路、处理器或微处理器(共享的、专用的或组)和/或存储器(共享的、专用的或组的)、组合逻辑电路、和/或提供所描述的功能的其他合适的部件。因此,虽然本公开内容包括电路的特定示例和布置,但因为其他修改对于本领域技术人员将变得明显,所以本系统的范围不应受此限制。
49.在此使用的术语“逻辑”包括在一个或更多个电路上执行的软件和/或固件。因此,根据实施方式,各种逻辑可以以任何适当的方式实现,并且将保持根据本文公开的实施方式。包括逻辑的非暂态机器可读介质可以另外被认为体现在诸如固态存储器、磁盘和光盘的计算机可读载体的任何有形形式内,该计算机可读载体包含将使处理器执行本文描述的技术的适当计算机指令和数据结构组。
50.本公开内容设想了dc 302不是基于微处理器的,而是被配置成基于数据库304中存储的一组或更多组硬连线指令和/或软件指令来调节cvt 122的诊断过程的操作的其他实施方式。此外,dc 302可以包含在单个装置内或者可以是一起联网的多个装置,以提供本文描述的功能。
51.在诊断过程期间,dc 302调节本系统300的整体诊断操作。通常,dc 302经由诸如控制器局域网(can)总线的网络306监测用于诊断cvt 122的传动带206的操作参数或信号中的至少一个。设想了具有诸如计算机、服务器和通过通信信道互连的其他硬件的可联网装置的集合的任何类型的网络。示例性网络包括有线网络或无线网络或其组合。示例性网络可以包括支持蓝牙的网络或支持wi-fi的网络。
52.诊断系统300中还包括一个或更多个传感器160诸如节流阀位置传感器308、发动机扭矩传感器310、温度传感器312、发动机负载传感器314、车辆速度传感器316、发动机rpm传感器318、燃料传感器320等。这样的传感器160使用诸如仪表164或显示器165的用户界面经由网络306可操作地连接到dc 302,并且被配置用于测量车辆100的操作特性和状况。在操作期间,操作参数或信号的相关信息在用户可经由网络306访问的显示器165上显示。设想用户可以参考操作员或与诊断系统300相关联的任何其他系统。dc 302经由诸如仪表接口、键盘、触敏板或屏幕、鼠标、轨迹球、语音识别系统等的人机界面(hmi)来管理用户与dc 302之间的交互。显示器165(例如,文本和图形)被配置用于从用户和/或dc 302接收输入数据。
53.在一个实施方式中,用户使用诸如hmi的输入装置以图形或文本方式与本系统300进行交互。相关数据和/或参数通常在dc 302中被接收,然后经由网络306经由专用或共享通信系统被传送到显示器165。此外,dc 302可到达的任何协作或第三方数据库也可以用作诊断系统300的一部分。
54.现在参照图3,优选地,dc 302包括监测电路322、检测电路324、警报电路326、存储电路328和显示电路330。尽管这些子电路322至330被示为父电路dc 302的从属子电路,但是每个子电路可以被操作为与dc分开的单元,并且设想了子电路的其他合适的组合以适应不同的应用。一个或更多个电路或单元可以选择性地被捆绑为在具有软件即服务(ssas)特征的处理器上运行的关键软件模型。
55.所有相关信息可以在例如作为非暂态数据存储装置和/或承载计算机可执行指令的机器可读数据存储介质的用于由dc 302及其子电路进行检索的数据库304中存储。dc 302中还包括用于在车辆100的dc 302、数据库304、网络306、传感器160和显示器165之间提供接口的接口电路332。优选地,接口电路332提供用于执行例如网络306、显示器165以及其他相关系统装置、服务和应用的诊断操作的电互连。
56.其他装置、服务和应用可以包括但不限于与dc 302有关的一个或更多个软件或硬件部件等。接口电路332还接收来自传感器160或其他相关系统与车辆100有关的操作数据或参数,所述操作数据或参数被传送至相应电路诸如dc 302及其子电路。
57.监测电路322被配置成经由接口电路332接收操作数据和参数,并提供关于车辆100的操作状况或特性信息。具体地,监测电路322使用传感器160提供发动机或车辆状况的详细信息诸如相对于cvt 122的车辆100的温度、速度和功率。通常,如以下更详细地讨论的,诊断系统300通过评估发动机或车辆操作状况来评定其操作特性。
58.检测电路324被配置成经由接口电路332从网络306接收操作数据和参数,并且基于预定的一组规则或算法来检查接收到的用于诊断传动带206的操作数据和参数。在操作期间,检测电路324辨识或识别由cvt 122、动力源106和/或车辆100的状况变化引起的预定触发事件,并且基于触发事件来识别或检测传动带206的故障。示例性触发事件在以下关于
图4至图7的段落中描述。
59.警报电路326被配置成通过将触发事件转换为用户可识别的有意义消息来生成信息信号或消息info以向用户或其他用户通知检测到的触发事件。更具体地,警报电路326将一个或更多个触发事件转变成传动带206的警告信号或状态信号。随后,警告信号或状态信号被传递到显示器165、移动装置或任何其他计算装置以提醒用户或其他用户。还设想了当检测到触发事件时,警报电路326提供通过调节操作参数的一个或更多个值来超控用户输入的选项以防止对传动带206的损坏,从而减轻触发事件。示例性信息信号在以下关于图4至图7的段落中描述。在一个实施方式中,提供用户输入以选择退出本文公开的一个或更多个处理序列,以为操作员提供灵活的车辆性能。
60.存储电路328被配置成在数据库304中数字地存储与本诊断系统300有关的相关信息。更具体地,数据库304包括与关于触发事件的分析数据有关的操作数据和参数,用于比较逻辑或算法的研究、开发、改进以及用户或相关系统的进一步调查的目的。
61.显示电路330被配置成用于从数据库304检索并且在显示器165上出于示出交互地显示与基于触发事件生成的信息信号info相关联的适当状态或信息消息。与每个信息信号info和相应触发事件有关的实例报告由显示电路330实时地以图形或文本方式生成。在一个实施方式中,根据需要,信息自动传输到中央服务器、其他车辆或任何其他合适的系统。
62.现在参照图4至图7,示出了执行本诊断系统300的示例性处理序列。尽管以下步骤主要是关于图1至图3的实施方式描述的,应当理解可以在不变更本公开内容的原理的情况下以不同的顺序或序列修改和执行处理序列内的步骤。
63.图4示出了在追溯控制模式下诊断系统300的带打滑事件检测逻辑400的示例性处理序列。带打滑事件是检测电路324检测到的触发事件之一。在追溯控制模式下,当检测到带打滑事件时,警报电路326具有以下选项:向用户通知传动带206的故障,或者自动调节至少一个操作参数以在不中断的情况下消除或减轻故障对车辆100的连续操作的影响。
64.在所示出的实施方式中,同时地执行步骤402和步骤404,但是每个步骤可以彼此独立的分别地或单独地被执行。在步骤402中,监测电路322接收来自用户的期望的车辆输入信号或参数,诸如来自节流阀位置传感器308的用于打开和关闭节流控制阀的预定节流阀位置参数,或者来自发动机扭矩传感器310的预定发动机扭矩参数。
65.在步骤404中,监测电路322接收来自车辆100的环境状况参数或信号,诸如来自被配置成测量传动带206的温度或cvt 122的空气温度的温度传感器312的温度信号。例如,温度传感器312可以使用红外传感器设置在空气供应管道230中、设置在空气排出管道238中,或者直接设置在传动带206上或附近。其他示例性环境状况信号包括发动机歧管温度、压力或真空信号、运动信号、曲轴加速度信号、变速器挡位信号、cvt减少率信号、传动系应变或扭矩信号、转向角信号、转向齿条位移信号等。
66.根据需要还设想了附加合适的环境状况信号。例如,在另一实施方式中,监测电路322可以通过使用传感器160检测道路负载状况或者接收由用户输入的道路负载状况来接收诸如硬地面状况、松散沙地状况等的道路负载状况用于将道路负载状况应用为环境状况信号之一。
67.优选地,同时地执行步骤406和步骤408,但是每个步骤可以彼此独立的分别地或单独地被执行。在步骤406中,监测电路322接收并监测至少一个基于发动机的参数,诸如来
自发动机负载传感器314的发动机负载信号(例如,%rl)、来自节流阀位置传感器308的节流阀位置信号(例如,节流阀位置百分比)、或者来自发动机扭矩传感器310的发动机扭矩信号(例如,英寸-磅或英寸-盎司)。其他示例性的基于发动机的参数包括如从每个相应的传感器160接收的发动机功率参数、变速器速度参数、曲轴旋转或位置参数、发动机控制单元(ecu)内部时钟参数、曲轴加速度参数等。
68.在步骤408中,监测电路322监测至少一个基于传动系的参数,诸如来自车辆速度传感器316的车辆速度参数(例如,英里/小时)或来自发动机速度传感器318的发动机速度参数(例如,rpm)。其他示例性基于传动系的参数包括从红外传感器、全球定位系统传感器、激光传感器、超声传感器、转向角传感器、转向齿条位移传感器、挡位传感器等接收的参数。还设想了其他合适的基于底盘的参数以适应该应用。
69.在步骤410中,检测电路324在基于发动机的参数和基于传动系的参数中至少之一与用于防止与cvt 122的传动带206或变速器130的输出传动系有关的损坏的预定阈值的比较的基础上来检测带打滑事件。基于发动机的参数和基于传动系的参数的任何组合被认为来检测带打滑事件。例如,当传动轴120与从动轴128之间的转速比为4:1并且发动机负载在例如5秒的预定时间段内处于10%至20%时,则怀疑带打滑事件。作为另一示例,当传动轴120与从动轴128之间的转速比为7:1并且发动机负载在例如1秒的预定时间段内处于约50%或更大时,则带打滑事件可能正在进行中。当基于发动机的参数和基于传动系的参数中至少之一大于预定阈值时,控制取决于应用以进入步骤412和步骤414中至少之一。否则,控制返回到步骤402和步骤404。
70.仅用于示例,带打滑事件f(slip)可以由基于发动机的参数和基于传动系的参数中至少之一和时间的函数来定义,如表达式(1)所提供的:
71.f(slip)=t
·
parm
ꢀꢀꢀꢀ
(1)
72.其中,t表示时间段,并且parm表示基于发动机的参数和基于传动系的参数中至少之一。作为示例,当超过预定阈值的发动机rpm和传动系速度参数持续预定时间段同时车辆100处于停车或空挡位置时,检测电路324可以检测到带打滑事件。示例性时间段可以在1秒至5秒的范围内。
73.优选地,同时地执行步骤412和步骤414,但是每个步骤可以彼此独立的分别地或单独地被执行。在步骤412中,警报电路326基于检测到的触发事件、带打滑事件来生成信息信号info,以使用显示器165来向用户通知触发事件。例如,在显示器165上使用包括文本或图形指示(例如,符号或图标)的仪表板灯或可听信号来显示信息信号info。还设想了其他合适的音频、视觉或触觉指示。
74.在步骤414中,警报电路326基于在数据库304中存储的预定校准或经验查找表334来自动调节或修改诸如期望的车辆输入参数、环境状况参数、基于发动机的参数或基于传动系的参数的操作参数中至少之一,以防止或减少潜在的cvt或传动系损坏。例如,当检测电路324识别出带打滑事件时,警报电路326自动将发动机速度、发动机扭矩、发动机负载或节流阀位置百分比降低预定值。设想了操作参数的其他合适的调节或修改以适应不同的应用。在一个实施方式中,自动调节步骤可以根据需要可选地打开或关闭,并且渐进警告系统可以被用来使用颜色、色调和饱和度强度技术逐渐警告用户潜在的cvt或传动系损坏。例如,黄灯可以指示建议用户改变到较低挡位的低水平警告,而红灯可以指示自动将发动机
负载或速度降低到预定值的高水平警告。
75.图5示出了在前瞻控制模式下诊断系统300的带打滑事件检测逻辑500的示例性处理序列。在前瞻控制模式下,诊断系统300在潜在的cvt或传动系损坏发生之前,前瞻性地向用户通知传动带206的即将发生的故障,或者自动调节操作参数中至少之一。例如,当诊断系统300确定具有故障的概率接近约90%时,警报电路326自动调节至少一个操作参数以在不中断的情况下消除或减轻车辆100的即将发生的故障的影响。
76.在所示出的实施方式中,优选地,同时地执行步骤502、步骤504和步骤506,但是每个步骤可以彼此独立的分别地或单独地被执行。在步骤502中,监测电路322从用户接收期望的车辆输入信号或参数。在步骤504中,监测电路322从车辆100接收环境状况参数或信号。在步骤506中,监测电路322监测至少一个基于传动系的参数。
77.在步骤508中,检测电路324基于用户期望的车辆输入信号、环境状况信号和基于传动系的参数中至少之一与用于预测与cvt 122的传动带206或变速器130的输出传动系有关的潜在损坏的预定阈值的比较来检测带打滑事件。用户期望的车辆输入信号、环境状况信号和基于传动系的参数的任何组合被认为来检测带打滑事件。例如,当期望的节流阀位置百分比处于20%、传动轴120与从动轴128之间的转速比为4:1、并且发动机负载在例如5秒的预定时间段内处于10%至20%时,则可能发生带打滑事件。作为另一示例,当期望的节流阀位置百分比处于50%、传动轴120与从动轴128之间的转速比为7:1、并且发动机负载在例如1秒的预定时间段内处于约50%或更大时,则可能即将发生带打滑事件。当具有传动带206的故障的概率大于预定阈值(例如,90%)时,控制取决于应用以进入步骤510和步骤512中至少之一。否则,控制返回到步骤502、504和506。
78.优选地,同时地执行步骤510和步骤512,但是每个步骤可以彼此独立的分别地或单独地被执行。在步骤510中,警报电路326基于检测到的带打滑事件来生成信息信号info,以在潜在的带或传动系损坏发生之前向用户通知传动带206的即将发生的故障。类似地,在步骤512中,警报电路326在传动带206的即将发生的故障之前自动调节或修改操作参数中至少之一,以防止或减轻潜在的cvt或传动系损坏。例如,警报电路326自动将节流阀位置百分比减少预定速率(例如10%,从而将节流阀位置百分比从50%减少到40%),以避免传动带206的即将发生的故障。
79.图6示出了诊断系统300的临界带寿命事件检测逻辑600的示例性处理序列。临界带寿命事件是检测电路324检测到的触发事件之一,并且基于与cvt 122的传动带206有关的温度参数被触发。
80.基于从被配置成测量传动带206的温度或cvt 122的空气温度的温度传感器312接收的温度参数,检测电路324提供用于避免传动带的过热状况的关键带寿命事件的较早检测。因此,可以增加传动带206的寿命和耐久性。
81.在步骤602中,监测电路322接收并监测来自传感器160的环境状况参数或信号,诸如来自被配置成测量例如传动带206或者cvt 122的进气系统124或排气系统126的车辆部件的温度的温度传感器312的温度信号。例如,通过一个或更多个温度传感器312测量传动带温度或cvt空气出口温度。
82.在步骤604中,监测电路322接收并监测与发动机负载信号、节流阀位置信号、发动机扭矩信号、发动机功率信号等有关的至少一个基于发动机的参数。其他示例性的基于发
动机的参数包括与如从每个相应的传感器160接收的离合器比率、变速器的齿轮选择或挡位、进气压力、进气温度、传动系速度、ecu时钟等有关的参数。
83.在步骤606中,监测电路322接收并监测至少一个基于传动系的参数,诸如来自车辆速度传感器316的车辆速度参数或来自发动机速度传感器318的发动机速度参数。在某些实施方式中,轮速度传感器也用于监测速度参数。
84.在步骤608中,检测电路324在基于发动机的参数、基于传动系的参数和环境状况参数中至少之一与预定阈值的比较的基础上来检测临界带寿命事件,以预测传动带206的剩余寿命。当基于发动机的参数、基于传动系的参数和环境状况参数中至少之一大于预定阈值时,控制进入步骤612和步骤614中至少之一。否则,控制返回到步骤602、604和606。
85.仅用于示例,临界带寿命事件f(life)可以由时间以及基于发动机的参数、基于传动系的参数和环境参数中至少之一的函数来定义,如表达式(2)所提供的:
86.f(life)=remainer-t
·
parm
ꢀꢀ
(2)
87.其中,t表示时间段,parm表示基于发动机的参数、基于传动系的参数和环境状况参数中至少之一,并且remainer表示留给传动带206的剩余寿命时间段。作为示例,当超过预定阈值(例如,大于250℉)的带温度持续预定时间段(例如,10分钟至15分钟)或者传动带206的剩余寿命小于最小寿命阈值时,检测电路324可以检测到临界带寿命事件。在一个实施方式中,最小寿命阈值由带温度、带速度和带载荷中至少之一确定。仅作为示例,当带温度处于250℉达15分钟时,剩余寿命时间段约为150小时,而当带温度处于330℉达10分钟时,剩余寿命时间段约为10小时。带温度(或带速度或负载)和带寿命时间段具有诸如曲线图上的负指数斜率的反比关系。因此,也可以基于带速度和带负载类似地计算剩余寿命时间段以适应不同的应用。因此,检测电路324预测到传动带206的热劣化。
88.在步骤610中,当检测电路324检测到传动带206的剩余寿命小于最小寿命阈值(例如,留下10%的剩余寿命)时,控制取决于应用以进入步骤612和步骤614中至少之一(或者同时进入步骤312和步骤314)。否则,控制返回到步骤602、604和606。
89.在步骤612中,警报电路326基于检测到的触发事件来生成信息信号info,以使用显示器165来通知用户。例如,信息信号info由显示电路330使用包括文本或图形指示(例如,达到的(或将达到的)℉/℃带温度、带故障的英里、带寿命剩余百分比、或使用的带寿命百分比)的仪表板灯或可听信号显示在显示器165上,请求维护传动带206。还设想了其他合适的音频、视觉或触觉指示。
90.在步骤614中,警报电路326基于存储在数据库304中的校准表334来自动调节或修改诸如环境状况参数、基于发动机的参数或基于传动系的参数的操作参数中至少之一,以防止或减少潜在的cvt传动带故障。例如,当检测电路324识别出临界带寿命事件时,警报电路326自动将车辆速度降低预定值。设想了操作参数的其他合适的调节或修改以适应不同的应用。
91.图7示出了诊断系统300的发动机曲轴加速度变化事件检测逻辑700的示例性处理序列。发动机曲轴加速度变化事件是检测电路324检测到的触发事件之一,并且基于在预定时间段期间测量的至少一个操作参数的变化模式来触发。设想了基于比较逻辑或算法的历史信息来监测和检测参数变化模式。
92.在操作期间,发动机曲轴加速度变化事件可以被认为是由上述的带打滑事件或动
力源106的不正确的点火序列事件引起的。发动机曲轴加速度变化事件检测逻辑700将带打滑事件与发动机燃烧失火事件区分开来。因此,有利的是在不考虑燃烧失火信号的情况下,本方法改进了对传动带206的故障的诊断。
93.在步骤702中,监测电路322接收并监测来自车辆100的环境状况参数或信号,诸如来自燃料传感器320的燃料状态信号(例如,燃料开启/关闭)或来自温度传感器312的发动机冷却剂温度信号。其他示例性环境状况信号包括传动带温度信号、离合器状态信号等。例如,离合器状态信号可以指示完全接合状态、部分接合状态或非接合状态。而且,滑轮位置信号可以用作环境状况信号之一。
94.在一个实施方式中,当曲轴加速度信号小于预定下阈值时,可以在预定公差范围内忽略带打滑事件。然而,当曲轴加速度信号大于预定上阈值时(即,当车辆或发动机速度达到预定阈值时),不能忽略带打滑事件,并且车辆100从当前速度被减速到较低速度。如果燃料状态信号在减速期间为关闭,则初始预定时间段可以是可以检测到带打滑事件的最佳时间段。
95.在步骤704中,监测电路322接收并监测与曲轴加速度信号、发动机扭矩信号、变速器挡位信号等有关的至少一个基于发动机的参数。其他示例性的基于发动机的参数包括与如从每个相应的传感器160接收的离合器比率、齿轮选择或挡位、进气压力、进气温度、传动系速度、ecu时钟等有关的参数。
96.在步骤706中,监测电路322接收并监测至少一个基于传动系的参数,诸如来自车辆速度传感器316的车辆速度参数或来自发动机速度传感器318的发动机速度参数。在一个实施方式中,从轮速度传感器接收的轮速度信号也被用于监测速度参数。
97.在步骤708中,检测电路324基于在预定时间段期间测量的至少一个操作参数的变化模式来检测发动机曲轴加速度变化事件。例如,通过基于曲轴旋转角度(例如,在每个90
°
、180
°
或270
°
处)测量曲轴加速度信号的加速率或减速率来检测发动机曲轴加速度变化事件。当曲轴加速度信号的时间窗加速率或减速率大于预定阈值时,检测电路324识别出变化模式的初始检测。在一个实施方式中,不需要在发动机的整个循环中测量时间窗加速率或减速率。
98.在步骤710中,在变化模式的初始检测之后,检测电路324以预定时间间隔(例如,以每个发动机循环时间间隔)将与变化模式有关的数据记录或存储在数据库304中,用于随后的比较。在步骤712中,当变化模式的频率大于预定阈值、变化模式持续长于预定时间段、或者频率和模式时间段的任何组合大于预定阈值(或时间段)时,控制进入步骤714和步骤716中至少之一。否则,控制返回到步骤702、704和706。
99.仅用于示例,发动机曲轴加速度变化事件f(ecav)可以通过参数变化模式、时间段(或频率)以及基于发动机的参数、基于传动系的参数和环境参数中至少之一的函数来定义,如表达式(3)所提供的:
100.f(ecav)=pattern
·
(t|freq)
·
parm
ꢀꢀ
(3)
101.其中,pattern表示参数变化模式,t表示时间段,freq表示参数变化模式的频率,并且parm表示基于发动机的参数、基于传动系的参数和环境状况参数中至少之一。在一个实施方式中,当检测到曲轴加速度信号的预定变化模式,并且检测到的变化模式持续预定时间段或重复预定次数时,检测电路324检测到发动机曲轴加速度变化事件。例如,当发动
机处于关闭节流阀或零燃料补给事件时,在1秒减速时间段期间,发动机可以将速度从3500rpm减少到2500rpm。在这种情况下,未损坏的带将具有约100个可检测的发动机压缩或惯性引起的曲轴加速度或减速度。相反,具有损坏部分的带将具有约额外的8个至30个可检测的曲轴加速度或减速度。
102.优选地,警报电路326取决于应用以选择性地执行步骤714或步骤716。具体地,在步骤714中,当检测到发生单次发动机曲轴加速度变化事件时,警报电路326执行用于确定发动机曲轴加速度变化事件是由带打滑事件还是由发动机燃烧失火事件引起的第一校正方法或快速校正方法。在一个实施方式中,基于车辆速度、变速器状态、冷却剂温度和离合器状态来确定时间窗加速率或减速率。
103.仅作为示例,当在较短时间段(例如,2毫秒至10毫秒)内检测到发动机曲轴加速度变化事件并且燃料状态信号为关闭或者发动机速度低(例如,100rpm)时,发动机燃烧失火事件没有发生,但带打滑事件正在进行中。在另一实施方式中,当检测到发动机曲轴加速度变化事件并且检测到负扭矩时,当发动机产生的扭矩小于空转所需的扭矩时,车辆100减速。在减速期间,如果传动带206未完全接合,则可能发生带打滑事件。因此,有利的是通过第一校正方法或快速校正方法实现发动机曲轴加速度变化事件的确切原因的准确诊断。
104.在步骤716中,当检测到多个发生的发动机曲轴加速度变化事件时,警报电路326执行用于确定发动机曲轴加速度变化事件是由带打滑事件还是由发动机燃烧失火事件引起的第二校正方法或慢速校正方法。例如,当在较长时间段(例如,2秒至60秒)(可选地,所述时间段可以是几分钟)期间检测到多个发动机曲轴加速度变化事件并且在所述时间段期间发动机扭矩高时,带打滑事件而不是发动机燃烧失火事件正在进行中。在一个实施方式中,基于识别出燃料关闭、低扭矩和高扭矩中之一的情况来调查带打滑事件。在燃料关闭情况期间,如果曲轴信号存在变化,则将发动机曲轴加速度变化事件归类为带打滑事件。在低扭矩情况期间,如果曲轴信号的幅度变化高于某个阈值,则将发动机曲轴加速度变化事件归类为带打滑事件。在高发动机扭矩情况期间,发动机曲轴加速度变化事件将被归类为发动机燃烧失火事件。在一个示例中,如果发动机曲轴加速度变化事件不能被归类为带打滑事件,则将其归类为发动机燃烧失火事件。在一个示例中,如果发现发动机燃烧失火事件,则停用已经失火的汽缸的燃料喷射器。与第一校正方法一样,有利的是通过第二校正方法或慢速校正方法实现发动机曲轴加速度变化事件的准确诊断。
105.在步骤718中,警报电路326基于检测到的触发事件来生成信息信号info,以使用显示器165来通知用户。例如,信息信号info显示在显示器165上,用于基于检测到的发动机曲轴加速度变化事件警告用户发生带打滑事件。
106.发动机曲轴加速度变化事件的一个示例被归类为在图8中提供的带打滑事件或发动机失火事件。转向图8,提供发动机曲轴加速度变化事件检测逻辑800。
107.如框810所示,监测电路322利用来自发动机曲轴位置传感器802的输入监测发动机曲轴位置值,利用来自发动机rpm传感器804的输入监测发动机rpm值,以及利用来自下游rpm传感器806的输入监测可换挡变速器输入轴rpm值。示例性下游rpm传感器806被定位成确定最终由cvt的输出轴驱动的轴的转速,该轴诸如可换挡变速器的输入轴、可换挡变速器的输出轴、轮速度传感器、以及半轴。如果由传感器806监测的轴是可换挡变速器或在可换挡变速器的下游的输出轴,则还包括挡位传感器807(参见图8)以指示可换挡变速器的齿轮
比。基于监测值,如框812所示,检测电路324检测曲轴加速度变化事件。通过基于曲轴旋转角度(例如,以诸如每1
°
、2
°
、5
°
、10
°
、30
°
和90
°
的旋转的增量)测量曲轴加速度信号的加速率或减速率来检测曲轴加速度变化事件,该曲轴旋转角度可以基于发动机曲轴位置传感器802和发动机rpm传感器804确定。示例性的曲轴加速度变化事件包括发动机失火事件和cvt损坏的带事件,两者都随时间呈现重复模式。
108.如框814所示,处理序列800确定会与损坏的cvt带相关联的相互作用频率。如框816所示,检测电路324监测观察到的曲轴加速度信号的时间窗加速率或减速率。如果检测到观察到的曲轴加速度变化事件,则通过警报电路326将观察到的曲轴加速度变化事件的频率与损坏的cvt带的确定的相互作用频率进行比较,如框818所示。如果观察到的曲轴加速度变化事件频率在被损坏的cvt带的确定的相互作用频率的第一阈值量内,则将观察到的曲轴加速度变化事件归类为cvt被损坏的带事件,如框820所示。否则,如框822所示,将观察到的曲轴加速度变化事件归类为发动机失火事件。在任一情况下,警报电路326向车辆的操作员提供状况的指示。可替选地,在发动机失火事件的情况下,停止供至失火的汽缸的燃料,或者停止供至失火的汽缸的燃料和火花。在下一次按键重启车辆时,重置对汽缸的燃料供应或者燃料和火花供应。
109.在一个实施方式中,第一阈值量是以赫兹为单位的绝对量,诸如100赫兹。在另一实施方式中,第一阈值量是百分比量。示例性百分比超过或低于损坏的cvt带的确定的相互作用频率约10%内。在实施方式中,将观察到的曲轴加速度变化事件频率与损坏的cvt带的确定的相互作用频率并且与损坏的cvt带的确定的相互作用频率的倍数进行比较。
110.参照图9,示出了用于确定损坏的cvt带的相互作用频率的示例性处理序列840。如框842所示,检测电路324检测来自发动机rpm传感器804的发动机输出速度(e
速度
),并且如框844所示,检测来自变速器输入轴rpm传感器806的变速器输入速度(t
速度
)。如框846所示,基于检测到的发动机输出速度和变速器输入速度来确定cvt的cvt比率(cvt
比率
)。
111.如框848所示,基于确定的cvt比率(cvt
比率
)和检测到的发动机输出速度(e
速度
)来确定cvt 200的传动离合器202的节圆直径(dp
直径
)。节圆直径(dp
直径
)与传动带206所骑乘的传动离合器202上的直径对应。如本领域所理解的,滑轮208与滑轮210之间的间距是可调节的,导致传动离合器202具有许多可能的节圆直径。在一个示例中,诊断电路302参考数据库304中提供的查找表850以确定传动离合器202的节圆直径。诊断电路302将确定的cvt比率(cvt
比率
)和检测到的发动机速度(e
速度
)作为输入提供至查找表850,所述查找表850返回与所提供的确定的cvt比率(cvt
比率
)和检测到的发动机速度(e
速度
)相关联的节圆直径(dp
直径
)。在一个示例中,诊断电路302从查找表850中选择具有最接近的相应确定的cvt比率(cvt
比率
)和检测到的发动机速度(e
速度
)的节圆直径(dp
直径
)。
112.如框852所示,基于确定的节圆直径(dp
直径
),诊断电路302确定cvt带206的线性带速度(带
速度
)。如框854所示,cvt带206的线性带速度(带
速度
)和cvt带206的已知长度由诊断电路302用来确定cvt带206上的点与传动离合器202的相互作用频率(带
频率
)。如果cvt带206具有损坏的区域,则损坏的区域将以来自框854的被称为损坏的cvt带的相互作用频率(带
频率
)的确定的频率与传动离合器202相互作用。示例性的带损坏包括旋转燃烧损坏、cvt带上缺少齿轮和绳索弹出。
113.参照图10,示出了示例性处理序列900。处理序列900基于过多能量在cvt 200内累
积的确定来调节动力源10的峰值输出功率。
114.如框902所示,诊断电路302确定输入cvt 200的能量的量(e

)。如框904所示,诊断电路302还确定离开cvt 200的热能的量(e

)。在一个实施方式中,基于cvt的机械效率和输入cvt 200的机械功率来确定输入cvt 200的能量,同时基于流过cvt 200的空气的热特性来确定离开cvt的能量。
115.如框906所示,诊断电路302将进入cvt 200的能量(e

)与离开cvt 200的热能(e

)进行比较以确定能量是否在cvt 200内累积。在cvt 200内累积的能量导致cvt 200的带206的温度升高。当(e

)小于(e

)时,能量在cvt 200内累积。
116.如果能量在cvt 200内累积,则诊断电路302将累积的能量的量与阈值水平进行比较,如框908所示。如果累积的能量的量超过阈值水平,则诊断电路302诸如通过减少动力源106的峰值输出功率或动力源106的峰值输出扭矩来引起输入cvt 200的能量(e

)的减少,如框910所示。在一个实施方式中,动力源106的峰值输出功率的减小是逐渐的,以避免动力源106的峰值输出功率的快速下降。
117.为了引起动力源106的峰值输出功率的减少,诊断电路302向动力源106的ecc 162发送消息。示例性消息是can网络总线上的can消息。可替选地,如果图3所示的诊断电路302是ecc 162的一部分,则诊断电路302直接限制动力源106的峰值输出功率。
118.参照图11,示出了用于确定进入cvt 200的能量的量(e

)的示例性处理序列930。如框932所示,诊断电路302确定动力源106,说明性地是内燃发动机输出功率水平(发动机
功率
)。在一个示例中,输出功率水平(发动机
功率
)例如通过发动机计算的扭矩输出乘以发动机速度来确定。然后,如框934所示,诊断电路302从cvt离合器效率图或查找表936中检索cvt离合器效率(离合器
效率
)。
119.cvt离合器效率图对于相应的输出功率水平(发动机
功率
)具有不同的效率值。在一个示例中,诊断电路302从查找表936中选择具有最接近的相应确定的输出功率水平(发动机
功率
)的cvt离合器效率(离合器
效率
)。cvt离合器效率是从与cvt 200相关联的传动轴120传递到与cvt 200相关联的从动轴128的能量的百分比的估计。假设剩余的能量作为热量保留在cvt 200的内部。如框938所示,诊断电路302从(发动机
功率
)和(1-离合器
效率
)的量的乘积来确定输入cvt 200的能量(e

)。
120.参照图12,示出了用于确定自cvt 200离开的能量(e

)的示例性处理序列960。如框962所示,诊断电路302通过空气供应管道230来确定进入cvt 200的内部的空气的空气温度。如框964所示,基于所述温度读数和传热系数966,诊断电路302基于cvt离合器气流模型968来确定离开cvt 200的能量的量(e

)。cvt离合器气流模型基于发动机速度(传感器804)、下游传动系轴速度(传感器806)、挡位(传感器807)和车辆的海拔。车辆的海拔可以基于由大气压力传感器测量的大气压力或者基于由gps系统提供的位置值来确定。在一个实施方式中,排气管道238中的气流的出口温度也被监测,并且用于确定离开cvt 200的能量。
121.本公开还可以配置如下:
122.方案1.一种车辆的车辆诊断方法,所述车辆包括内燃发动机和可操作地联接到所述内燃发动机的无级变速器(cvt),所述方法包括以下步骤:
123.使用检测电路来检测所述车辆的至少一个发动机曲轴加速度变化事件;
124.使用监测电路来确定从与所述cvt的操作相关联的一个或更多个传感器接收的至
少一个操作参数;以及
125.使用警报电路基于所述至少一个操作参数来确定所述至少一个检测到的发动机曲轴加速度变化何时与所述cvt的所述传动带的故障有关。
126.方案2.根据方案1所述的诊断方法,还包括将环境状况参数包括为所述至少一个操作参数,其中,所述环境状况参数包括燃料状态信号、发动机冷却剂温度信号、传动带温度信号和离合器状态信号中至少之一。
127.方案3.根据方案1或2所述的诊断方法,还包括将基于发动机的参数包括为所述至少一个操作参数,其中,所述基于发动机的参数与曲轴加速度信号、发动机扭矩信号和变速器挡位信号中至少之一有关。
128.方案4.根据方案1至3中任一项所述的诊断方法,还包括将基于传动系的参数包括为所述至少一个操作参数,其中,所述基于传动系的参数与车辆速度信号、发动机速度信号和轮速度信号中至少之一有关。
129.方案5.根据方案1至4中任一项所述的诊断方法,还包括通过测量曲轴加速度信号的加速率或减速率来检测所述至少一个发动机曲轴加速度变化事件。
130.方案6.根据方案1至5中任一项所述的诊断方法,还包括基于在预定时间段期间测量的所述操作参数的变化模式来检测所述至少一个发动机曲轴加速度变化事件。
131.方案7.根据方案6所述的诊断方法,还包括确定所述变化模式的频率是否大于预定阈值。
132.方案8.根据方案6或7所述的诊断方法,还包括确定所述变化模式的模式时间段是否大于预定时间段。
133.方案9.根据方案6至8中任一项所述的诊断方法,还包括确定是否所述变化模式的大小。
134.方案10.根据方案1至9中任一项所述的诊断方法,还包括执行第一校正方法,所述第一校正方法用于基于所述至少一个发动机曲轴加速度变化事件的单次发生来确定所述发动机曲轴加速度变化事件是由带打滑事件还是由发动机燃烧失火事件引起。
135.方案11.根据方案1至10中任一项所述的诊断方法,还包括执行第二校正方法,所述第二校正方法用于基于所述至少一个发动机曲轴加速度变化事件的多次发生来确定所述发动机曲轴加速度变化事件是由带打滑事件还是由发动机燃烧失火事件引起。
136.方案12.一种车辆的车辆诊断方法,所述车辆包括内燃发动机和可操作地联接到所述内燃发动机的无级变速器(cvt),所述方法包括以下步骤:
137.使用监测电路来确定从与所述cvt的操作相关联的一个或更多个传感器接收的至少一个操作参数;
138.使用检测电路来检测所述cvt的传动带的至少一个带打滑事件;
139.使用警报电路基于所述至少一个操作参数来确定所述至少一个检测到的带打滑事件何时与所述cvt的所述传动带的即将发生的故障有关;以及
140.使用所述警报电路在发生所述车辆的带或传动系损坏之前通知所述传动带的所述即将发生的故障。
141.方案13.根据方案12所述的诊断方法,还包括生成与所述传动带的所述即将发生的故障有关的信息信号。
142.方案14.根据方案12或13所述的诊断方法,还包括提供通过调节所述至少一个操作参数的至少一个值来超控用户输入的选项。
143.方案15.根据方案12至14中任一项所述的诊断方法,还包括在追溯控制模式和主动控制模式中至少之一下由所述检测电路检测所述至少一个带打滑事件。
144.方案16.根据方案12至15中任一项所述的诊断方法,还包括使用所述监测电路来接收期望的车辆输入参数。
145.方案17.根据方案12至16中任一项所述的诊断方法,还包括将环境状况参数包括为所述至少一个操作参数。
146.方案18.根据方案12至17中任一项所述的诊断方法,还包括将基于发动机的参数包括为所述至少一个操作参数。
147.方案19.根据方案12至18中任一项所述的诊断方法,还包括将基于传动系的参数包括为所述至少一个操作参数。
148.方案20.根据方案12至19中任一项所述的诊断方法,还包括在基于发动机的参数与基于传动系的参数的比较的基础上来检测所述带打滑事件,以预测所述传动带的所述即将发生的故障。
149.方案21.根据方案20所述的诊断方法,还包括确定所述基于发动机的参数和所述基于传动系的参数中至少之一是否大于预定阈值。
150.方案22.根据方案20或21所述的诊断方法,还包括使用显示器来通知所述至少一个检测到的带打滑事件;以及基于预定表来自动调节所述至少一个操作参数。
151.方案23.一种车辆的车辆诊断方法,所述车辆包括内燃发动机和可操作地联接到所述内燃发动机的无级变速器(cvt),所述方法包括以下步骤:
152.使用监测电路来确定从与所述cvt的操作相关联的一个或更多个传感器接收的至少一个操作参数;
153.使用检测电路来检测所述cvt的传动带的至少一个临界带寿命事件;
154.使用警报电路基于所述至少一个操作参数来确定所述至少一个检测到的临界带寿命事件何时与所述cvt的所述传动带的故障有关;以及
155.使用所述警报电路来生成与所述传动带的寿命有关的信息信号。
156.方案24.根据方案23所述的诊断方法,还包括将环境状况参数包括为所述至少一个操作参数,其中,所述环境状况参数包括温度信号。
157.方案25.根据方案23或24所述的诊断方法,还包括将基于发动机的参数包括为所述至少一个操作参数,其中,所述基于发动机的参数与发动机负载信号、节流阀位置信号、发动机扭矩信号和发动机功率信号中至少之一有关。
158.方案26.根据方案23至25中任一项所述的诊断方法,还包括将基于传动系的参数包括为所述至少一个操作参数,其中,所述基于传动系的参数与车辆速度信号和发动机速度信号中至少之一有关。
159.方案27.根据方案23至26中任一项所述的诊断方法,还包括在基于发动机的参数、基于传动系的参数与环境状况参数的比较的基础上检测所述临界带寿命事件;以及基于所述比较来预测所述传动带的剩余寿命。
160.方案28.根据方案23至27中任一项所述的诊断方法,还包括确定所述传动带的所
述剩余寿命是否小于预定阈值。
161.方案29.根据方案27或28所述的诊断方法,还包括使用与所述传动带的所述剩余寿命相关联的文本或图形指示在显示器上显示所述信息信号。
162.方案30.根据方案23至29中任一项所述的诊断方法,还包括基于所述至少一个检测到的临界带寿命事件来调节基于发动机的参数、基于传动系的参数和环境状况参数中至少之一。
163.方案31.一种车辆的车辆诊断方法,所述车辆包括内燃发动机和可操作地联接到所述内燃发动机的无级变速器(cvt),所述方法包括以下步骤:
164.确定由所述内燃发动机向所述cvt提供的输入能量的量;
165.确定离开所述cvt的输出热能的量;
166.基于所述输入能量的量和所述输出热能的量来确定所述cvt中累积能量的量;
167.将所述累积能量的量与阈值进行比较;以及
168.响应于所述累积能量的量满足所述阈值来减少所述输入能量的量。
169.方案32.根据方案31所述的诊断方法,其中,减少所述输入能量的量的步骤包括减少由所述内燃发动机向所述cvt提供的功率的步骤。
170.方案33.根据方案31或32所述的诊断方法,其中,基于所述cvt的机械输入特性来确定所述输入能量的量。
171.方案34.根据方案31至33中任一项所述的诊断方法,其中,基于所述cvt的流体特性来确定所述输出热能的量。
172.方案35.根据方案31至34中任一项所述的诊断方法,其中,确定由所述内燃发动机向所述cvt提供的所述输入能量的量的步骤包括以下步骤:
173.确定所述内燃发动机的输出功率;
174.基于所确定的输出功率来确定cvt离合器效率;以及
175.基于所述确定的输出功率和所确定的cvt离合器效率来确定向所述cvt提供的所述输入能量的量。
176.方案36.根据方案31至35中任一项所述的诊断方法,其中,基于所述确定的输出功率来确定所述cvt离合器效率的步骤包括从数据库检索所述确定的cvt离合器效率的步骤。
177.方案37.根据方案31至36中任一项所述的诊断方法,其中,确定离开所述cvt的所述输出热能的量的步骤包括以下步骤:
178.确定进入所述cvt的内部的空气的空气温度;以及
179.基于cvt离合器气流模型、传热系数和所确定的空气温度来确定离开所述cvt的所述输出热能的量。
180.方案38.一种车辆的车辆诊断方法,所述车辆包括内燃发动机和可操作地联接到所述内燃发动机的无级变速器(cvt),所述方法包括以下步骤:
181.检测多个发动机曲轴加速度变化事件;
182.确定所述多个发动机曲轴加速度变化事件的频率;
183.确定所述cvt的传动带的cvt带相互作用频率;以及
184.基于所述频率与所述cvt带相互作用频率的比较,将所述多个发动机曲轴加速度变化事件归类为发动机失火事件和cvt带损坏事件中的一个。
185.方案39.根据方案31至38中任一项所述的诊断方法,其中,确定所述cvt的所述传动带的所述cvt带相互作用频率的步骤包括以下步骤:
186.确定所述cvt的传动离合器的节圆直径;
187.基于所述传动离合器的所确定的节圆直径和所述cvt的传动轴的转速来确定所述cvt的所述传动带的线速度;以及
188.基于所述cvt的所述传动带的所确定的线速度和所述带的长度来确定所述传动带的所述cvt带相互作用频率。
189.上面的详细描述和其中描述的示例仅出于说明和描述的目的而给出,而不是用于限制。例如,所描述的操作可以以任何合适的方式完成。所述方法可以以任何合适的顺序执行,同时仍然提供所描述的操作和结果。因此,设想本实施方式涵盖落入上文公开的并且在此要求保护的基本原理的范围内的任何和所有修改、变化或等同物。此外,虽然以上描述描述了执行代码的处理器的形式的硬件、状态机的形式的硬件或能够产生相同效果的专用逻辑,但也设想了其他结构。
再多了解一些

本文用于创业者技术爱好者查询,仅供学习研究,如用于商业用途,请联系技术所有人。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献