一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种可调谐工作频率的电磁超材料及其制备方法

2022-11-14 12:39:54 来源:中国专利 TAG:


1.本发明涉及超材料技术领域,特别是涉及一种可调谐工作频率的电磁超材料及其制备方法。


背景技术:

2.作为21世纪最具有神奇色彩、最具有奇异电磁性质的超材料,已经成为物理学、材料科学、工程学、化学交叉等前沿科学领域的研究对象。
3.超材料的奇特性质源于其精密的几何结构以及尺寸大小,其中的微结构大小尺度小于它作用的波长,因此得以对波施加影响。而当材料的介电常数ε和磁导率μ两者都是负数时,电场方向e、磁场方向h和波矢k之间的关系符合“左手定律”,这会产生许多反常现象。然而,目前大多数掺杂导电聚合物的介电常数都是正调控,很少有负介电常数的研究。一些少有的掺杂导电聚合物的负介电常数的研究也只是局限于刚性的颗粒粉末压膜,这大大限制了电磁屏蔽、超材料等领域的应用范围。
4.截止到目前,电磁超材料的设计思想均是采用逆向设计思维,即针对某一波段进行微结构的设计,由独特的无数个微结构单元(开口谐振环)有序排列组成。由于微结构的单元尺寸和间隔距离是根据工作的波长计算出来的,因此,小尺寸的微结构单元的制备困难以及无法调节的工作波段是超材料进一步应用发展所面临的最大问题。目前,超材料均需要依靠人工设计微结构单元集合而成的,因此,存在大规模制备困难、工作频带窄等瓶颈。
5.由于超材料是通过无数个微单元设计组成,其最大的问题就是要根据某一个波段计算每个单元的尺寸和间隔距离,因此,所设计的超材料只对某一个波段具有针对性,不同的单元距离针对不同的波段,具有极大的局限性。
6.研究者希望设计出一种可以对多个频率波段工作的具有电磁屏蔽功能的超材料,而基于传统超材料的设计思想,在一个材料上能同时对两个波段显示屏蔽效应的设计都是极为困难的,多波段设计更是难以实现。
7.因此,如果可以提供一种能够识别不同波段电磁波而进行微结构单元智能变化,以实现宽波段电磁屏蔽的超材料将具有重要的现实意义。


技术实现要素:

8.本发明的目的是提供一种可调谐工作频率的电磁超材料及其制备方法,以解决传统超材料小尺寸微结构单元的制备困难和无法调节的工作波段的问题。
9.为实现上述目的,本发明提供了如下方案:本发明提供一种分子级别的可调谐工作频率的电磁超材料,包括基体和聚合物涂层;所述聚合物涂层为聚吡咯涂层、聚吡咯衍生物涂层、聚苯胺涂层、聚苯胺衍生物涂层、聚噻吩涂层或聚噻吩衍生物涂层;
在所述基体和聚合物涂层之间附着有键能诱导剂和导电纳米线。
10.进一步地,所述键能诱导剂(主要指范德华力,包括氢键)为丙烯酸(aa)、丙烯酸衍生物(如甲基丙烯酸、乙烯丙烯酸、甲基丙烯酸缩水甘油酯等)、苯磺酸、磺酸类衍生物(如1,2-乙二磺酸,1,4-丁二磺酸,4,4
’‑
联苯二磺酸)或盐酸多巴胺(da);所述导电纳米线为多壁碳纳米管(mwcnts)、纳米碳纤维(cf)或金属纳米线。导电纳米线的直径在3-20nm,长度在500-20000nm。
11.本发明所使用的基体选择柔性基体或硬性基体均可,不限于织物、玻璃、建筑墙体表面、仪器设备表面等,材料不限于有机材料、天然材料或无机材料。
12.进一步地,所述聚合物涂层为聚吡咯涂层,所述基体为柔性基体。柔性基体优选为棉织物或无纺布。
13.本发明还提供上述分子级别的可调谐工作频率的电磁超材料制备方法,包括以下步骤:(1)将键能诱导剂和导电纳米线的混合溶液附着于基体表面,烘干处理;(2)将步骤(1)处理后的基体与聚合物单体混合(例如可将基体浸泡于聚合物单体溶液中,或将基体放入到充满聚合物单体的密闭容器中),添加氧化剂进行聚合反应,得到所述分子级别的可调谐工作频率的电磁超材料。
14.步骤(1)的附着方式包括但不限于浸泡、涂覆或喷涂。
15.进一步地,混合溶液中键能诱导剂的浓度为0.1-1mol/l,优选0.7-1mol/l,导电纳米线的浓度为5-30wt%,优选10-20wt%。
16.键能诱导剂可与聚合单体发生氢键作用。键能诱导剂适用于吡咯单体,噻吩单体、苯胺单体及其衍生物,优选吡咯单体。
17.进一步地,所述氧化剂为三氧化铁、过硫酸铵、氯化铜或过氧化氢。优选三氯化铁和过硫酸铵。
18.进一步地,步骤(2)中混合时间为0.5-1h。
19.进一步地,步骤(2)中聚合反应的温度为-20~40℃,时间为1-5h。优选的聚合反应的温度为0-20℃,时间为2-3h。
20.进一步地,步骤(1)中,在将混合溶液附着于基体表面之前,对基体进行粗糙度处理,包括化学刻蚀(如碱处理,酸处理等),激光刻蚀或者涂层处理步骤。
21.本发明聚合反应所用聚合物单体为吡咯单体、吡咯单体衍生物、吡咯单体的二聚体、吡咯单体的二聚体衍生物、苯胺单体、苯胺单体衍生物、噻吩单体或噻吩单体衍生物。其中,噻吩单体衍生物优选β-噻吩单体衍生物。
22.本发明还提供上述分子级别的可调谐工作频率的电磁超材料在电磁屏蔽(如军用电磁屏蔽隐身)、声波无损传导以及辐射热屏蔽领域(如建筑放热,汽车涂层,织物遮阳,射线防护等)中的应用。
23.聚吡咯、聚噻吩、聚苯胺分子链上均具有c=c-c=c这种π键共轭体系,该分子结构具有优良的导电性能(类似于超材料的导电金属材料)。分子结构中所构成的导电五元环c=c-c=c键所构成的半圆环的空间结构就类似于超材料的金属谐振环。相互连接的-c-n-c-在整个分子链结构带动谐振环进行振动,达到谐振环振动频率与外界电磁波频率相适应,自动调整。加入的导电纳米线相当于能量转移桥,可以让每条分子链都达到相同的共振频率,从
而实现可以自适应工作波段且具有双负功能的小尺寸单元超材料。原理示意图如图1所示(以聚吡咯为例),其中,导电纳米线为能量转移桥,使每条分子链都可以相同的频率共振,同时与外界的频率保持一致。
24.本发明公开了以下技术效果:本发明通过液相聚合方法制备电磁超材料,制备工艺简单、成本低,不需要根据工作频率进行特殊设计,打破了传统超材料设计的瓶颈,制得的电磁超材料具有分子级别可调谐工作频率的特性,可实现多波段工作,而不仅限于单波段。
25.本发明的电磁超材料可自适应工作频率,微结构单元能够根据不同波段进行自适应调整,实现宽波段电磁“隐身”。
26.本发明通过分子结构设计使得电磁超材料具有负介电常数和负磁导(双负),对宽频电磁波可自我调制,具有屏蔽效果,并且聚合过程中不受限于任何基底。
附图说明
27.为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
28.图1为本发明聚吡咯涂层超材料的原理示意图;图2为实施例1-7制备的电磁超材料的介电常数;图3为液相聚合装置;图4为实施例8制备的电磁超材料与初始棉织物的介电常数(复介电常数实部)对比;图5为实施例8制备的电磁超材料与初始棉织物的磁导率(复磁导率实部)对比;图6为实施例8制备的电磁超材料与初始棉织物在太阳光波段下的屏蔽性能;图7为实施例8制备的电磁超材料与初始棉织物在中红外波段下的屏蔽性能;图8为实施例8制备的电磁超材料与初始棉织物在远红外波段下的屏蔽性能;图9为实施例8制备的电磁超材料与对比例1-3制备的不同织物介电常数(复介电常数实部)对比;图10为实施例8制备的电磁超材料与对比例1-3制备的不同织物在太阳光波段下的屏蔽性能;图11为实施例8制备的电磁超材料与对比例1-3制备的不同织物在中红外波段下的屏蔽性能;图12为实施例8制备的电磁超材料与对比例1-3制备的不同织物在远红外波段下的屏蔽性能。
具体实施方式
29.现详细说明本发明的多种示例性实施方式,该详细说明不应认为是对本发明的限制,而应理解为是对本发明的某些方面、特性和实施方案的更详细的描述。
30.应理解本发明中所述的术语仅仅是为描述特别的实施方式,并非用于限制本发
明。另外,对于本发明中的数值范围,应理解为还具体公开了该范围的上限和下限之间的每个中间值。在任何陈述值或陈述范围内的中间值以及任何其他陈述值或在所述范围内的中间值之间的每个较小的范围也包括在本发明内。这些较小范围的上限和下限可独立地包括或排除在范围内。
31.除非另有说明,否则本文使用的所有技术和科学术语具有本发明所述领域的常规技术人员通常理解的相同含义。虽然本发明仅描述了优选的方法和材料,但是在本发明的实施或测试中也可以使用与本文所述相似或等同的任何方法和材料。本说明书中提到的所有文献通过引用并入,用以公开和描述与所述文献相关的方法和/或材料。在与任何并入的文献冲突时,以本说明书的内容为准。
32.在不背离本发明的范围或精神的情况下,可对本发明说明书的具体实施方式做多种改进和变化,这对本领域技术人员而言是显而易见的。由本发明的说明书得到的其他实施方式对技术人员而言是显而易见的。本发明说明书和实施例仅是示例性的。
33.关于本文中所使用的“包含”、“包括”、“具有”、“含有”等等,均为开放性的用语,即意指包含但不限于。
34.本发明提供了一种分子级别的可调谐工作频率的电磁超材料,通过以下技术方案实现:首先将基体经过前处理,然后浸泡在氢键诱导掺杂剂和导电纳米线混合溶液中,烘干后浸泡在导电聚合物单体溶液中,然后滴加氧化剂溶液,在一定温度下和时间下进行化学聚合,即得。
35.制备方法主要包括以下步骤:(1)基体处理:将基体在碱性溶液中进行处理并烘干,然后配置一定浓度的氢键诱导掺杂剂和导电纳米线混合溶液,将烘干的柔性基体浸泡在混合溶液中或将混合液涂覆/喷涂在基体表面,取出烘干,备用。
36.(2)具有负介电常数和负磁导的导电聚合物涂层制备:配置一定浓度的氧化剂溶液和导电聚合物单体溶液,将基体浸泡在导电聚合物单体溶液中0.5-1h,然后逐滴滴加氧化剂溶液,在-20℃-40℃下反应1h-5h。
37.(3)反应完成后处理:反应完成后,用蒸馏水和无水乙醇冲洗,去除副产物,烘干。
38.本发明所使用的反应设备为常规反应设备,适合工业化生产。
39.本发明制备过程可以在任意基体上进行,基体可以是柔性基体(如织物,薄膜等),也可以是硬性基体(如玻璃、墙面等),且基体的表面形式不受限制(如纤维,平面,异形等)。
40.实施例1制备分子级别的可调谐工作频率的电磁超材料:制备0.4mol/l的naoh水溶液,将棉织物浸泡在naoh水溶液中1h,反复清洗,烘干备用。配置1mol/l的丙烯酸和10wt%的多壁碳纳米管分散水溶液,超声分散均匀备用。将碱处理的棉织物浸泡在上一步处理的分散水溶液中1h,烘干备用。配置1.5mol/l的六水三氯化铁乙醇溶液和0.5mol/l的吡咯单体水溶液,备用。将处理后的棉织物浸泡在60ml的吡咯单体水溶液中0.5h,然后逐滴滴加六水三氯化铁乙醇溶液10ml,保持0℃反应3h,反应完成后,用无水乙醇和蒸馏水反复清洗,烘干。
41.实施例2
制备分子级别的可调谐工作频率的电磁超材料:制备0.3mol/l的naoh水溶液,将无纺布浸泡在naoh水溶液中1.5h,反复清洗,烘干备用。配置0.2mol/l的盐酸多巴胺和20wt%的碳纤维分散水溶液,超声分散均匀备用。将碱处理的无纺布浸泡在上一步处理的分散水溶液中1.5h,烘干备用。配置1mol/l的氯化铜水溶液和0.5mol/l的吡咯单体水溶液,备用。将处理后的无纺布浸泡在50ml的吡咯单体水溶液中1h,然后逐滴滴加氯化铜水溶液15ml,保持0℃反应2h,反应完成后,用无水乙醇和蒸馏水反复清洗,烘干。
42.实施例3制备分子级别的可调谐工作频率的电磁超材料:制备0.5mol/l的naoh水溶液,将pet膜浸泡在naoh水溶液中1h,反复清洗,烘干备用。配置0.8mol/l的丙烯酸和15wt%的银纳米线分散水溶液,超声分散均匀备用。将碱处理的pet薄膜浸泡在上一步处理的分散水溶液中2h,烘干备用。配置0.5mol/l的过硫酸铵水溶液和0.5mol/l的吡咯单体水溶液,备用。将处理后的pet膜浸泡在40ml的吡咯单体水溶液中1h,然后逐滴滴加过硫酸铵水溶液20ml,保持10℃反应3h,反应完成后,用无水乙醇和蒸馏水反复清洗,烘干。
43.实施例4制备分子级别的可调谐工作频率的电磁超材料:制备0.4mol/l的naoh水溶液,将pp膜浸泡在naoh水溶液中1.5h,反复清洗,烘干备用。配置0.7mol/l的苯磺酸和10wt%的多壁碳纳米管分散水溶液,超声分散均匀备用。将碱处理的pp薄膜浸泡在上一步处理的分散水溶液中1.5h,烘干备用。配置0.8mol/l的过硫酸铵水溶液和0.8mol/l的苯胺单体水溶液,备用。将处理后的pp薄膜浸泡在35ml的苯胺单体水溶液中1h,然后逐滴滴加过硫酸铵水溶液35ml,保持15℃反应3h,反应完成后,用无水乙醇和蒸馏水反复清洗,烘干。
44.实施例5制备分子级别的可调谐工作频率的电磁超材料:制备0.4mol/l的naoh水溶液,将pet膜浸泡在naoh水溶液中1h,反复清洗,烘干备用。配置0.8mol/l的苯磺酸和10wt%的碳纤维分散水溶液,超声分散均匀备用。将碱处理的pet薄膜浸泡在上一步处理的分散水溶液中1.5h,烘干备用。配置1 mol/l的氯化铜水溶液和0.5mol/l的苯胺单体水溶液,备用。将处理后的pet薄膜 浸泡在60ml的苯胺单体水溶液中1h,然后逐滴滴加过硫酸铵水溶液10ml,保持20℃反应3h,反应完成后,用无水乙醇和蒸馏水反复清洗,烘干。
45.实施例6制备分子级别的可调谐工作频率的电磁超材料:配置0.3mol/l的盐酸多巴胺和25wt%的碳纤维分散水溶液,超声分散均匀备用。将玻璃浸泡在上一步处理的分散水溶液中1.5h,烘干备用。配置0.5mol/l的六水三氯化铁乙醇溶液和0.5mol/l的噻吩单体水溶液,备用。将处理后的玻璃浸泡在40ml的噻吩单体水溶液中1.5h,然后逐滴滴加过硫酸铵水溶液20ml,保持0℃反应3h,反应完成后,用无水乙醇和蒸馏水反复清洗,烘干。
46.实施例7
制备分子级别的可调谐工作频率的电磁超材料:制备0.4mol/l的naoh水溶液,将pp膜浸泡在naoh水溶液中1h,反复清洗,烘干备用。配置0.9mol/l的苯磺酸和20wt%的银纳米线分散水溶液,超声分散均匀备用。将pp薄膜浸泡在上一步处理的分散水溶液中2h,烘干备用。配置1.5mol/l的过氧化氢水溶液和1mol/l的噻吩单体水溶液,备用。将处理后的pp薄膜浸泡在60ml的噻吩单体水溶液中1h,然后逐滴滴加过硫酸铵水溶液10ml,保持10℃反应2h,反应完成后,用无水乙醇和蒸馏水反复清洗,烘干。
47.实施例1-7制备的分子级别的可调谐工作频率的电磁超材料的介电常数见图2。
48.将实施例1-7制备的分子级别的可调谐工作频率的电磁超材料分别对应标记为棉织物/聚吡咯、无纺布/聚吡咯、pet/聚吡咯、pp/聚苯胺、pet/聚苯胺、玻璃/聚噻吩和pp/聚噻吩。
49.图2中的“1”对应实施例1的棉织物/聚吡咯,“2”对应实施例2的无纺布/聚吡咯,“3”对应实施例7的pp/聚噻吩,“4”对应实施例3的pet/聚吡咯,“5”对应实施例4的pp/聚苯胺,“6”对应实施例5的pet/聚苯胺,“7”对应实施例6的玻璃/聚噻吩。
50.下面以聚吡咯涂层棉织物为例对本发明进行详细说明:实施例8制备分子级别的可调谐工作频率的电磁超材料(聚吡咯涂层棉织物):(1)将氢氧化钠和蒸馏水放入烧杯中,搅拌至溶解,制备得到氢氧化钠浓度为10g/l的氢氧化钠溶液,放入烧杯中备用;(2)将丙烯酸缓慢滴入蒸馏水中,慢慢搅拌,制备得到丙烯酸浓度为1mol/l的丙烯酸溶液,并向溶液中加入2.5mg/ml的多壁碳纳米管,以1000r/min搅拌6h,分散均匀备用;(3)将氯化铁与无水乙醇放入烧杯中,搅拌至溶解,制备得到氯化铁浓度为1.5 mol/l 的氯化铁溶液,放入烧杯中备用;(4)将吡咯与蒸馏水放入烧杯中,以1000r/min搅拌1h,分散均匀,制备得到吡咯浓度为0.5 mol/l 的吡咯溶液,放入烧杯中备用;(5)超材料以织物为基体,基体成分为棉,裁剪为10
×
10cm2,用蒸馏水清洗干净,烘干备用;将棉织物浸泡在(1)制备的溶液中1h,用蒸馏水反复冲洗至中性,烘干备用;将上一步烘干的棉织物浸泡在(2)制备的溶液中1h,烘干备用;(6)利用液相聚合装置(如图3所示)制备聚吡咯涂层织物,具体操作如下:将步骤(5)处理得到的棉织物浸泡在(4)制备的吡咯溶液中30min,环境控制在0℃;逐滴滴加(3)制备的氧化铁溶液,边滴加边晃动反应器皿,保证充分反应,反应时间为3h,反应温度为0℃。吡咯溶液与氯化铁溶液的体积比为6:1;反应完成后,用蒸馏水和无水乙醇反复清洗棉织物样品,去除副产物,烘干。
51.实施例8制备的超材料可以在9.8
×
10
7 hz-1ghz实现双负性能(介电常数ε为-5854.79,磁导率μ为-0.25),超材料与初始棉织物的介电常数及磁导率对比见图4-5。更高的频率测试采用光热信号代替,采用直接测温方法测试超材料内部温度,对比如图6-8所示。可以看出,热源在外侧时,超材料内部升温速度低于普通棉织物,当热源在内部时,外界感受到内部温度,超织物明显低于普通织物。结合两种测试,证明了超材料实现了多个波段的电磁屏蔽功能。
52.对比例1与实施例8不同之处在于,棉织物只经过碱处理,不在步骤(2)制备的溶液中进行浸泡,聚合温度为60℃,聚合时间为3h(h-ppy)。
53.对比例2与实施例8不同之处在于,棉织物只经过碱处理,不在步骤(2)制备的溶液中进行浸泡,聚合温度为0℃,聚合时间为3h(l-ppy)。
54.对比例3与实施例8不同之处在于,棉织物分别经过碱处理、丙烯酸处理,聚合温度为0℃,聚合时间为3h(aal-ppy)实施例8的超材料与对比例1-3制备的各织物具有不同数量的α-α连接,具体如表1所示。α-α连接的数量直接影响着负介电常数的产生,具体性能对比如图9所示。
55.当用光热信号测试屏蔽性能时,α-α连接数量的不同实现了不同的温升,如图10-12所示。
56.以上所述的实施例仅是对本发明的优选方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。
再多了解一些

本文用于创业者技术爱好者查询,仅供学习研究,如用于商业用途,请联系技术所有人。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献