一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

穿刺机器人的制作方法

2022-11-14 00:25:29 来源:中国专利 TAG:


1.本发明涉及手术器械技术领域,尤其涉及一种穿刺机器人。


背景技术:

2.穿刺机器人在临床上用于对病人的患处执行精准穿刺,穿刺机器人能够有效解决穿刺定位的问题。
3.常规穿刺机器人的机械臂尺寸较大,难以进入ct扫描区域。小型化穿刺机器人虽然能进入ct扫描区域,但运动范围有限。将大范围移动的平移调节机构设置在角度调节机构的下方时,为了让角度调节时不动点补偿平移调节尽量小,往往会将角度调节机构的下连杆进行弯曲设置,且会导致角度调节机构对应的上下万向节竖直距离较大,这带来的影响是对平移调节机构中的纵向平移调节范围有影响,且在同等角度调节的情况下对连杆组合的调节范围要求较大,使得穿刺机器人的占用空间大。


技术实现要素:

4.本发明的目的在于提出一种穿刺机器人,该穿刺机器人在角度调节时,仅需较小的平移补偿即可实现穿刺点不动,不仅实现了穿刺导引机构的大范围调整,而且提高了穿刺机器人的空间利用率。
5.为达此目的,本发明采用以下技术方案:
6.穿刺机器人,包括:
7.平移调节机构,包括横向平移调节机构和纵向平移调节机构,所述纵向平移调节机构与所述横向平移调节机构的输出端连接,且设置于所述横向平移调节机构的下方;
8.角度调节机构,设置于所述平移调节机构的下方,与所述纵向平移调节机构的输出端连接;
9.穿刺导引机构,与所述角度调节机构的输出端连接,用于穿刺操作。
10.作为穿刺机器人的一个可选方案,所述角度调节机构包括运动部,所述运动部包括两个对称设置的连杆组件,两个所述连杆组件的末端同轴设置,并通过第一万向节与所述穿刺导引机构连接。
11.作为穿刺机器人的一个可选方案,所述穿刺机器人还包括安装板,所述纵向平移调节机构的输出端通过安装板与所述角度调节机构连接,所述安装板上设置有驱动组件和传动组件,所述驱动组件和所述传动组件均设置有两个,两个所述驱动组件和两个所述传动组件一一对应连接,且对称设置于所述安装板,每个所述传动组件连接一个所述连杆组件。
12.作为穿刺机器人的一个可选方案,所述连杆组件包括第一连杆和第二连杆,所述第一连杆的一端与所述传动组件连接,另一端通过轴承与所述第二连杆连接。
13.作为穿刺机器人的一个可选方案,所述角度调节机构还包括角度编码器,所述角度编码器设置于所述连杆组件与所述传动组件的连接处。
14.作为穿刺机器人的一个可选方案,所述角度编码器为磁编码器,所述磁编码器包括磁铁和传感电路,所述磁铁集成在所述第一连杆旋转中心处,所述传感电路通过固定钣金与所述安装板固连。
15.作为穿刺机器人的一个可选方案,所述角度调节机构还包括固定部,所述固定部设置于所述运动部的下方,通过第二万向节与所述穿刺导引机构连接。
16.作为穿刺机器人的一个可选方案,所述固定部的末端设置有测量传感器,所述测量传感器与所述第二万向节连接,用于检测所述穿刺导引机构穿刺过程中的穿刺信号。
17.作为穿刺机器人的一个可选方案,所述穿刺机器人还包括壳体,所述壳体上设置有第一输出窗口和第二输出窗口,所述第一输出窗口和所述第二输出窗口沿竖直方向平行设置,两个所述第二连杆均穿过所述第一输出窗口与所述第一万向节连接;所述固定部包括第三连杆,所述第三连杆的一端与所述安装板连接,另一端穿过所述第二输出窗口与所述第二万向节连接。
18.作为穿刺机器人的一个可选方案,所述第一输出窗口的上下两端面和所述第二输出窗口的上下两端面上均设置有滚珠组件,所述第二连杆和所述第三连杆均与所述滚珠组件滚动配合。
19.作为穿刺机器人的一个可选方案,所述滚珠组件包括滚珠基座和多个滚珠,所述第一输出窗口的上下两端面和所述第二输出窗口的上下端面均设有滚珠基座,多个所述滚珠间隔设置于所述滚珠基座内。
20.作为穿刺机器人的一个可选方案,所述第二连杆的宽度和所述第三连杆的宽度均大于相邻两个所述滚珠之间的间距。
21.作为穿刺机器人的一个可选方案,所述横向平移调节机构包括第一精密导轨和第一滚珠丝杠,所述第一精密导轨设置有两个,所述第一滚珠丝杠设置于两个所述第一精密导轨之间,所述第一精密导轨通过第一滑块与所述纵向平移调节机构连接,所述第一滚珠丝杠通过第一丝杠螺母驱动所述纵向平移调节机构横向移动。
22.作为穿刺机器人的一个可选方案,两个所述第一精密导轨之间的间距大于第一设定间距。
23.作为穿刺机器人的一个可选方案,所述纵向平移调节机构包括第二精密导轨和第二滚珠丝杠,所述第二精密导轨设置有两个,所述第二滚珠丝杠设置于两个所述第二精密导轨之间,所述第二精密导轨通过第二滑块与所述角度调节机构连接,所述第二滚珠丝杠通过第二丝杠螺母驱动所述角度调节机构纵向移动。
24.作为穿刺机器人的一个可选方案,两个所述第一精密导轨之间的间距小于第二预设间距。
25.本发明的有益效果:
26.本发明提供的穿刺机器人,通过设置平移调节机构调节穿刺导引机构的平移范围,能够调节横向和纵向两个维度。通过角度调节机构调节穿刺导引机构的角度范围,通过穿刺导引机构执行穿刺动作,能够实现穿刺的精确定位及自动穿刺。将角度调节机构设于具有较大调节范围的平移调节机构的下方,角度调节机构与穿刺导引机构连接,使得角度调节支点距病人皮肤穿刺点较近,在角度调节时仅需较小的平移补偿即可实现穿刺点不动,能够实现穿刺导引机构的大范围调整,而且不影响纵向平移调节机构的调节范围,使得
穿刺机器人的空间利用率高。
27.通过将角度调节机构的运动部设置为两个连杆组件并联的结构,使得角度调节的调节效率高且结构稳定。两个连杆组件的末端通过第一万向节连接,实现了穿刺导引机构的灵活调节。
附图说明
28.图1是本发明具体实施方式提供的穿刺机器人隐藏壳体的结构示意图;
29.图2是本发明具体实施方式提供的横向平移调节机构的结构示意图;
30.图3是本发明具体实施方式提供的纵向平移调节机构的结构示意图;
31.图4是本发明具体实施方式提供的角度调节机构的结构示意图;
32.图5是本发明具体实施方式提供的运动部的结构示意图一;
33.图6是本发明具体实施方式提供的运动部的结构示意图二;
34.图7是本发明具体实施方式提供的固定部的结构示意图;
35.图8是本发明具体实施方式提供的穿刺机器人带壳体的结构示意图;
36.图9是本发明具体实施方式提供的滚珠组件的结构示意图;
37.图10是本发明具体实施方式提供的配准机构的结构示意图。
38.图中:
39.1、平移调节机构;2、角度调节机构;3、穿刺导引机构;4、配准机构;5、第一万向节;6、第二万向节;7、壳体;8、测量传感器;
40.11、横向平移调节机构;12、纵向平移调节机构;21、第三连杆;22、运动部;23、安装板;24、第三电机;25、传动组件;26、固定钣金;27、连接板;41、标记物固定板;42、标记物;71、第一输出窗口;72、第二输出窗口;73、滚珠组件;
41.111、第一支撑板;112、第一精密导轨;113、第一滚珠丝杠;114、第一同步带传动机构;115、第一滑块;116、第一输出板;117、第一丝杠螺母;118、第一线性位移传感器;119、第一限位开关;121、第二支撑板;122、第二精密导轨;123、第二滚珠丝杠;124、第二同步带传动机构;125、第二滑块;126、第二输出板;127、第二丝杠螺母;128、第二线性位移传感器;129、第二限位开关;221、第一连杆;222、第二连杆;251、第一锥齿轮;252、第二锥齿轮;253、谐波减速机;731、滚珠基座;732、滚珠。
具体实施方式
42.为使本发明解决的技术问题、采用的技术方案和达到的技术效果更加清楚,下面结合附图并通过具体实施方式来进一步说明本发明的技术方案。
43.在本发明的描述中,除非另有明确的规定和限定,术语“相连”、“连接”、“固定”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
44.在本发明中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它
们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
45.在本实施例的描述中,术语“上”、“下”、“右”等方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述和简化操作,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅仅用于在描述上加以区分,并没有特殊的含义。
46.如图1-图4所示,本实施例提供了一种穿刺机器人,包括平移调节机构1、角度调节机构2和穿刺导引机构3,平移调节机构1包括横向平移调节机构11和纵向平移调节机构12,纵向平移调节机构12与横向平移调节机构11的输出端连接,且设置于横向平移调节机构11的下方。角度调节机构2设置于平移调节机构1的下方,与纵向平移调节机构12的输出端连接。穿刺导引机构3与角度调节机构2的输出端连接,用于穿刺操作。
47.穿刺导引机构3包括伺服电机、传动机构和穿刺针,伺服电机通过传动机构与穿刺针连接,从而实现穿刺针的穿刺驱动。穿刺针为一次性穿刺针,与传动机构可拆卸连接。
48.通过设置平移调节机构1调节穿刺导引机构3的平移范围,能够调节横向和纵向两个维度。通过角度调节机构2调节穿刺导引机构3的角度范围,通过穿刺导引机构3执行穿刺动作,能够实现穿刺的精确定位及自动穿刺。
49.平移调节机构1设置于角度调节机构2的上方,用于驱动角度调节机构2和穿刺导引机构3整体平移。这样的设置,使得角度调节机构2的角度调节支点距离病人的皮肤穿刺点比较近,在角度调节机构2调节角度时,仅需较小的平移补偿即可实现穿刺点不动,能够实现穿刺导引机构3的大范围调整,而且不影响纵向平移调节机构12的调节范围,使得穿刺机器人的空间利用率高。
50.作为穿刺机器人的一个可选方案,横向平移调节机构11包括第一支撑板111、第一精密导轨112、第一滚珠丝杠113、第一电机、第一同步带传动机构114、第一滑块115和第一输出板116,第一精密导轨112、第一滚珠丝杠113、第一电机和第一同步带传动机构114均设置于第一支撑板111,第一电机通过第一同步带传动机构114与第一滚珠丝杠113传动连接,用于驱动第一滚珠丝杠113转动,第一滚珠丝杠113与第一丝杠螺母117传动连接,第一丝杠螺母117与第一输出板116连接;第一精密导轨112和第一滑块115均设置有两个,且一一对应连接,两个第一滑块115均与第一输出板116连接,第一滚珠丝杠113设置于两个第一精密导轨112之间,通过第一丝杠螺母117与第一输出板116连接,第一输出板116与纵向平移调节机构12连接。第一滚珠丝杠113通过第一丝杠螺母117驱动纵向平移调节机构12横向移动。
51.纵向平移调节机构12包括第二支撑板121、第二精密导轨122、第二滚珠丝杠123、第二电机、第二同步带传动机构124、第二滑块125和第二输出板126,第二支撑板121与第一输出板116连接,第二精密导轨122、第二滚珠丝杠123、第二电机和第二同步带传动机构124均设置于第二支撑板121,第二电机通过第二同步带传动机构124与第二滚珠丝杠123传动连接,用于驱动第二滚珠丝杠123转动,第二滚珠丝杠123与第二丝杠螺母127传动连接,第二丝杠螺母127与第二输出板126连接;第二精密导轨122和第二滑块125均设置有两个,且
一一对应连接,两个第二滑块125均与第二输出板126连接,第二滚珠丝杠123设置于两个第二精密导轨122之间,通过第二丝杠螺母127与第二输出板126连接,第二输出板126与角度调节机构2连接,第二滚珠丝杠123通过第二丝杠螺母127驱动角度调节机构2纵向移动。
52.横向平移调节机构11和纵向平移调节机构12均采用双导轨和滚珠丝杠的组合方式,滚珠丝杠位于两个导轨之间,不仅能够消除平移调节机构1输出端的背隙,提高穿刺精度;同时能确保平移调节机构1的刚度,从而确保承载的角度调节机构2和穿刺导引机构3更加稳定可靠。
53.将第一电机和第一精密导轨112非同轴设置,第二电机和第二精密导轨122非同轴设置,电机与导轨之间通过同步带传动机构连接,提高传动效率,降低了传动过程中的噪音,而且节省占用空间。
54.第一输出板116和第二输出板126可由钣金制成。
55.作为穿刺机器人的一个可选方案,横向平移调节机构11还包括第一线性位移传感器118和第一限位开关119,第一线性位移传感器118和第一限位开关119均设置于第一支撑板111,第一线性位移传感器118沿第一精密导轨112的长度方向设置,用于检测穿刺导引机构3的横向位移;第一精密导轨112的两端均设置有第一限位开关119,第一限位开关119用于限制第一滑块115的位置。纵向平移调节机构12还包括第二线性位移传感器128和第二限位开关129,第二线性位移传感器128和第二限位开关129均设置于第二支撑板121,第二线性位移传感器128沿第二精密导轨122的长度方向设置,用于检测穿刺导引机构3的纵向位移;第二精密导轨122的两端均设置有第二限位开关129,第二限位开关129用于限制第二滑块125的位置。
56.为了保证手术的安全性,提高穿刺的精度,通过设置第一线性位移传感器118,保证横向平移调节机构11调节的横向位移的准确性。通过设置第二线性位移传感器128,保证纵向平移调节机构12调节的纵向位移的准确性。第一限位开关119用于限制第一滑块115的两个极限位置,第二限位开关129用于限制第二滑块125的两个极限位置。
57.第一线性位移传感器118和第二线性位移传感器128可以是磁栅尺、光栅尺或滑动变阻器。第一限位开关119和第二限位开关129可以是机械式开关,也可以是光电式限位开关。
58.在第一电机的驱动轴上设置有第一编码器,第一编码器用于测量第一电机的转速。在第二电机的驱动轴上设置有第二编码器,第二编码器用于测量第二电机的转速。
59.在穿刺机器人初始运行时,通过初始化运动确定第一滑块115和第二滑块125的绝对位置,在手术过程中,通过第一线性位移传感器118和第一编码器相互校对,通过第二线性位移传感器128和第二编码器相互校对,以保证平移调节机构1调节的横向位移和纵向位移的准确性。
60.如图5-图7所示,作为穿刺机器人的一个可选方案,角度调节机构2包括固定部和运动部22,运动部22包括两个对称设置的连杆组件,两个连杆组件的末端同轴设置,并通过第一万向节5与穿刺导引机构3连接。运动部22设置为两个并联的连杆组件,调节效率高且结构稳定。两个连杆组件的末端通过第一万向节5连接,从而实现穿刺导引机构3的灵活调节。固定部设置于运动部22的下方,通过第二万向节6与穿刺导引机构3连接。在进行角度调节时,运动部22进行调节,运动部22与穿刺导引机构3连接的一端的位置相对于固定部与穿
刺导引机构3连接的一端的位置发生变化,从而实现穿刺导引机构3的角度调节。
61.作为穿刺机器人的一个可选方案,穿刺机器人还包括安装板23,纵向平移调节机构12的输出端通过安装板23与角度调节机构2连接,安装板23上设置有驱动组件和传动组件25,驱动组件和传动组件25均设置有两个,两个驱动组件和两个传动组件25一一对应连接,且对称设置于安装板23,每个传动组件25连接一个连杆组件。驱动组件通过传动组件25驱动运动部22。第二输出板126与安装板23连接,平移调节机构1通过安装板23驱动角度调节机构2和穿刺导引机构3进行平移。
62.驱动组件包括第三电机24,传动组件25包括第一锥齿轮251、第二锥齿轮252和谐波减速机253,第三电机24的输出轴与第一锥齿轮251连接,第一锥齿轮251与第二锥齿轮252啮合传动,且第一锥齿轮251的轴线和第二锥齿轮252的轴线垂直。第三电机24、第一锥齿轮251和第二锥齿轮252均连接于安装板23的下方,安装板23的下方还设置有连接板27,两个第三电机24均固定于连接板27上,第三电机24的输出轴穿过连接板27与第一锥齿轮251连接,第二锥齿轮252穿过安装板23与位于安装板23上方的谐波减速机253的输入轴连接,谐波减速机253的输出轴与运动部22连接,用于驱动运动部22进行角度调节。通过第一锥齿轮251和第二锥齿轮252将第三电机24的输出动力转向90
°
,使得布置更加紧凑,节省空间。通过谐波减速机253传动,能够有效消除背隙影响,同时大减速比能够增加反驱力,防止角度调节机构2连接的穿刺导引机构3受力变形。
63.具体地,连杆组件包括第一连杆221和第二连杆222,第一连杆221的一端与传动组件25连接,另一端通过轴承与第二连杆222连接。在本实施例中,第一连杆221的一端与安装板23上方的谐波减速机253的输出轴连接,另一端与安装板23一侧的第二连杆222通过轴承连接,轴承为精密轴承。
64.两个第二连杆222的末端通过连接轴连接于第一万向节5,第一万向节5与穿刺导引机构3连接,以保证角度调节的灵活性。
65.作为穿刺机器人的一个可选方案,角度调节机构2还包括角度编码器,角度编码器设置于连杆组件与传动组件25的连接处。第一连杆221和谐波减速机253的连接处集成了嵌入式绝对值角度编码器,嵌入式绝对值角度传感器设置于第一连杆221的旋转中心,实现了绝对角度的精确测量。
66.可选地,角度编码器为磁编码器,磁编码器包括磁铁和传感电路,磁铁集成在第一连杆221旋转中心处,传感电路通过固定钣金26与安装板23固连,使得传感电路上的传感器芯片与磁铁的距离固定,从而实现绝对角度的精确测量。
67.作为穿刺机器人的一个可选方案,固定部的末端设置有测量传感器8,测量传感器8与第二万向节6连接,用于检测穿刺导引机构3穿刺过程中的穿刺信号。
68.固定部包括第三连杆21,第三连杆21的一端与安装板23连接,另一端与第二万向节6连接,第二万向节6与穿刺导引机构3连接。
69.在本实施例中,测量传感器8为压力传感器,压力传感器设置于第三连杆21与第二万向节6之间。用于测量穿刺导引机构3在穿刺过程中的穿刺力。
70.如图8所示,作为穿刺机器人的一个可选方案,穿刺机器人还包括壳体7,壳体7上设置有第一输出窗口71和第二输出窗口72,第一输出窗口71和第二输出窗口72沿竖直方向平行设置,两个第二连杆222均穿过第一输出窗口71与第一万向节5连接;第三连杆21穿过
第二输出窗口72与第二万向节6连接。
71.在本实施例中,平移调节机构1设置于壳体7内,第一输出窗口71和第二输出窗口72均设置于壳体7靠近穿刺导引机构3一侧的侧壁上,通过壳体7支撑第二连杆222和第三连杆21,能够有效提升角度调节机构2的刚度。
72.作为穿刺机器人的一个可选方案,两个第一精密导轨112之间的间距大于第一预设间距。将两个第一精密导轨112之间的间距尽量拉大,以提升平移调节机构1的刚度。
73.作为穿刺机器人的一个可选方案,两个第二精密导轨122之间的间距小于第二预设间距。两个第二精密导轨122之间的间距控制在合理范围内,以兼顾平移调节机构1的刚度和调节范围。
74.如图8所示,在本实施例中,壳体7的长度方向与穿刺导引机构3的横向位移垂直,以壳体7的长度l为参照,第一预设间距为2l/3。
75.壳体7的宽度方向与穿刺导引机构3的纵向位移垂直,以壳体7的宽度w为参照,第二预设间距为w/3。
76.如图8和图9所示,作为穿刺机器人的一个可选方案,第一输出窗口71的上下两端面和第二输出窗口72的上下两端面上均设置有滚珠组件73,第二连杆222和第三连杆21均与滚珠组件73滚动配合。具体地,滚珠组件73包括滚珠基座731和多个滚珠732,第一输出窗口71的上下两端面和第二输出窗口72的上下端面均设有滚珠基座731,多个滚珠732间隔设置于滚珠基座731内。角度调节机构2在调节角度时,第二连杆222与第一输出窗口71滚动连接,第三连杆21与第二输出窗口72滚动连接,有效地提升了第二连杆222和第三连杆21的刚度。
77.作为穿刺机器人的一个可选方案,第二连杆222的宽度和第三连杆21的宽度均大于相邻两个滚珠732之间的间距。这样的设置,能够确保第二连杆222和第三连杆21能够始终与至少一个滚珠732接触,从而达到刚度提升的目的。
78.本实施例提供的穿刺机器人应用于肿瘤穿刺活检和肝肿瘤治疗时的微波消融手术,在肿瘤穿刺活检时通过穿刺机器人使用穿刺针对病人执行精准穿刺,在穿刺时,穿刺机器人在超声、核磁或ct图像的引导下进行穿刺。在微波消融手术中通过穿刺机器人使用消融针对病人执行精准穿刺,对于体积较大的肿瘤,往往需要多根消融针穿刺到位后同步执行微波消融手术。本实施例提供的穿刺机器人满足轻量化和小型化设置,而且在有限的空间内能够实现调节范围的最大化,能够适用于多个穿刺针同时穿刺的应用场景。
79.穿刺机器人在超声、核磁或ct图像的引导下进行穿刺,能够避免医护人员遭受辐射。
80.如图10所示,为实现穿刺机器人与ct图像之间的坐标关系的建立,作为穿刺机器人的一个可选方案,壳体7上设置有配准机构4,配准机构4包括标记物固定板41和标记物42,沿第一输出窗口71和第二输出窗口72的长度方向的两侧均设置有标记物固定板41,标记物固定板41自壳体7向靠近穿刺导引机构3的方向延伸,标记物42设于标记物固定板41上。沿第一输出窗口71和第二输出窗口72的长度方向的两侧均设置标记物固定板41,确保配准机构4覆盖穿刺导引机构3的活动区域,标记物42能对ct图像相关信息进行识别,以确保穿刺机器人与ct图像之间的配准。
81.关于标记物42与ct图像相关信息的识别的具体方法以及工作原理已是现有技术,
在此不再赘述。
82.标记物固定板41为低密材料,如碳纤维等。标记物42为常规的配准标记形状,可选地,标记物42为z形金属丝。为了确保标记物42不会在ct成像中产生明显的金属伪影,一般选取低密金属材料如铝丝等,铝丝的直径一般为0.5mm~1mm之间。
83.以上内容仅为本发明的较佳实施例,对于本领域的普通技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,本说明书内容不应理解为对本发明的限制。
再多了解一些

本文用于创业者技术爱好者查询,仅供学习研究,如用于商业用途,请联系技术所有人。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献