一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

建筑模型的处理方法、装置、电子设备和存储介质与流程

2022-11-07 12:43:59 来源:中国专利 TAG:


1.本公开涉及计算机建筑模型领域,具体而言,涉及一种建筑模型的处理方法、装置、电子设备和存储介质。


背景技术:

2.bim(building information modeling,建筑信息模型)技术可以帮助实现建筑信息的集成,bim技术的核心是通过建立虚拟的建筑工程三维模型,利用数字化技术,为这个模型提供完整的、与实际情况一致的建筑工程信息库。
3.bim建模软件(例如revit软件)可以通过组合不同的建筑元素,如梁、柱、门、窗等来模拟建筑工程的实际建造。示例性地,在建筑领域,电缆桥架主要用于支撑电缆线路,并且,安装在地面上的电缆桥架与地面之间应满足一定的高度距离。因此,在使用建模软件搭建桥架模型的过程中,需要将桥架模型的高度调整至标准高度。由于桥架模型之间是纵横交错连接着的,因此,调整一组桥架模型的高度时也会联动到与其连接但延伸方向不同的其他桥架模型组的高度。在建筑设计项目中,包括梁在内的其他建筑模型也是高低错落分布的,与桥架模型处于同一空间高度的其他建筑模型便可能成为其敷设路径上的障碍物。当桥架模型遇到障碍物时,一般选择对桥架模型作出针对性的调整,例如使桥架局部翻弯避让障碍物。如果一组桥架模型的高度被带动着发生了变化,那么,该组桥架模型在其新的敷设路径上可能会遇到新的障碍物,使得前期的调整工作失去意义。
4.在现有技术中,上述对桥架模型高度的调整或者翻弯处理一般是由工作人员手动完成的,这种手动调整的方式不仅影响工作人员的工作效率和建筑模型设计的准确率,并且,当桥架模型的高度发生变化时,会带来大量的重复工作,进一步降低工作人员的工作效率。


技术实现要素:

5.本公开的目的在于,针对现有技术中存在的技术问题,提供一种建筑模型的处理方法、装置、电子设备和存储介质,以解决采用手动方式对桥架模型进行高度调整或翻弯处理所造成的工作人员工作效率低和设计准确率低的问题。
6.一方面,本公开提供了一种建筑模型的处理方法,包括:获取多个桥架模型以及与该多个桥架模型中的至少一个相连接的所有分支管件模型,并实施预处理操作;针对每个分支管件模型,根据该分支管件模型的位置确定一预设区域,并确定该预设区域内的桥架模型的目标高度;对预设区域内的桥架模型执行翻弯操作以将该预设区域内的桥架模型的高度调整至目标高度。
7.另一方面,本公开提供了一种建筑模型处理装置,包括:第一处理单元、第二处理单元和第三处理单元。其中,第一处理单元用于获取多个桥架模型以及与该多个桥架模型中的至少一个相连接的所有分支管件模型,并实施预处理操作;针对每个分支管件模型,第二处理单元用于根据该分支管件模型的位置确定一预设区域,并确定该预设区域内的桥架
模型的目标高度;第三处理单元用于对预设区域内的桥架模型执行翻弯操作以将该预设区域内的桥架模型的高度调整至目标高度。
8.再一方面,本公开提供了一种电子设备,其包括存储器和处理器,所述存储器存储有计算机程序,所述处理器执行所述计算机程序时实现本公开提供的建筑模型的处理方法中的步骤。
9.又一方面,本公开提供了一种存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现本公开提供的建筑模型的处理方法中的步骤。
10.本公开提供了一种建筑模型的处理方法、装置、电子设备和存储介质,能提高桥架模型高度调整处理过程的自动化程度。具体地,当识别出通过分支管件模型连接的两组桥架模型后,根据分支管件模型的位置划分一预设区域,并获取该预设区域内的桥架模型的目标高度。在将区域内的桥架模型调整至目标高度前,预判相交的两组桥架模型的长度是否满足翻弯所要求的长度阈值。在满足桥架阈值的情况下,将预设区域外的桥架模型调整至标准高度,并针对性地将预设区域内的桥架模型调整至目标高度,以保证在整个桥架模型网络中,尽可能多的桥架模型处于其标准高度,来满足建筑设计规范的要求。采用本公开提供的方法能够实现桥架模型高度调整过程的自动化和标准化,过程中不再需要人工参与判断或操作,效率和准确率更高。
附图说明
11.下面结合附图,通过对本公开的具体实施方式详细描述,将使本公开的技术方案及其它有益效果显而易见。
12.图1为本公开实施例提供的建筑模型的处理方法的应用环境图。
13.图2为本公开实施例一提供的建筑模型的处理方法的流程示意图。
14.图3为图2中s1的子步骤示意图。
15.图4为图2中s2的子步骤示意图。
16.图5为图2中s3的子步骤示意图。
17.图6为本公开实施例二提供的建筑模型的处理装置的结构示意图。
18.图7为本公开实施例提供的电子设备的实体结构示意图。
具体实施方式
19.本公开的说明书、权利要求书及上述附图的描述中,术语“第一”、“第二”、“第三”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应当理解,这样描述的对象在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。在本公开的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。此外,术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排它的包含。例如,包含了一系列步骤或模块的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或模块,而是可以包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或模块。
20.本公开实施例提供了一种建筑模型的处理方法,主要针对于建筑物模型中电缆桥架的设计场景。具体为,采用本公开提供的方法能够实现桥架模型高度调整过程的自动化
和标准化,过程中不再需要人工参与判断或操作,效率和准确率更高。示例性地,所采用的基础平台建筑设计软件可以是revit建模软件。本公开实施例可以通过电子设备来执行所述的建筑模型的处理方法,或者通过电子设备上运行的软件来执行所述的建筑模型的处理方法。电子设备可以是智能手机、平板电脑、笔记本电脑、智能电视、智能机器人、台式计算机、服务器计算机等,但并不限于此。
21.请参阅图1,为本公开实施例提供的建筑模型的处理方法的应用环境图。图中的电子设备100包括存储器、处理器以及显示屏,处理器可以运行建筑设计软件,所述建筑设计软件可以以计算机程序的形式存储于存储器中,所述的存储器还为建筑设计软件提供运行环境,且所述存储器可以存储该建筑设计软件所生成的建筑模型。具体地,显示屏可以显示建筑设计软件的设计编辑界面,用户可以通过设计编辑界面提供的绘图组件输入信息,以进行建筑设计,例如绘制与目标线脚的横截面相对应的轮廓图形。可选地,所述建筑设计软件可以通过软件接口调用绘图的模型数据,调用的模型数据包括但不限于建筑设计软件的模型数据。
22.下文通过具体的实施例对所述建筑模型的处理方法进行说明。
23.实施例一:
24.在本实施例中,建筑模型的处理方法的应用场景具体为:用户在建筑设计项目中生成电缆桥架模型后,可以通过触发bim软件(如revit软件)的智能管综调整功能,来实现桥架模型高度调整过程的自动化进行。
25.具体地,请参阅图2,为本公开实施例一提供的建筑模型的处理方法的流程示意图。如图2所示,在本实施例中,建筑模型的处理方法包括以下步骤:
26.s1:获取多个桥架模型以及与该多个桥架模型中的至少一个相连接的所有分支管件模型,并实施预处理操作;
27.具体地,预操作包括如图3所示的内容:
28.s11:对桥架模型进行分组,以得到多个桥架模型小组;
29.s12:针对每个桥架模型小组,确定与该桥架模型小组相关联的标准高度。
30.获取当前建筑设计项目中各桥架模型的参数信息,该参数信息可以是桥架模型轮廓线上各点的坐标数据,按照桥架分组规则对桥架模型进行分组,使得到的每个桥架模型小组中的桥架模型相互连接并且具有相同的延伸方向。
31.获取桥架模型标准高度的方式是获取建筑设计项目中的全部桥架模型与各主梁模型在同一水平面上的投影图形,记录与同一个桥架模型小组内的桥架模型投影相交的主梁模型,统计每个主梁模型的底部高程数据,以得到一底部高程数据的集合,选择此集合中的众数作为该桥架模型小组内的桥架模型的标准高度。可以理解的是,众数是指一组数据中出现次数最多的数值,而且,有时一组数据中有多个众数。因此,如果所述底部高程数据的集合中出现了多个众数,则选择所代表的主梁模型底部高程更低的众数作为所述标准高度。
32.s13:针对每个分支管件模型,识别与该分支管件模型相连接的至少一个第一桥架模型和至少一个第二桥架模型。
33.分支管件是桥架、管道等线路安装过程中常用的一种连接用管件,通过分支管件连接具有不同延伸方向的桥架或管路,以形成具有多种分支结构桥架网络,常见的分支管
件包括三通管件、四通管件等。
34.因此,在桥架的建模过程中,为了将属于同一小组的桥架模型调整至相应的标准高度,但又不影响其支路上的属于其他小组的桥架模型的高度,需要对分支点(分支管件的中心点)所在范围内的桥架模型进行单独的高度调整,并且同时对该范围内的桥架模型进行翻弯处理,使得延伸至所述范围外的桥架模型能够恢复至各自的标准高度,以保证整个桥架模型网络中尽可能多的桥架模型处于其标准高度。
35.在本实施例中,以属于不同桥架模型小组的第一桥架模型和第二桥架模型为例,两者具有不同的延伸方向,并通过三通管件模型形成连接。通过与预设的分支管件模型的轮廓特征进行比对,来识别建筑设计项目中的三通管件模型,进而对第一桥架模型和第二桥架模型进行定位。
36.需要说明的是,在整个桥架模型网络中,可能存在多个三通管件模型,一个三通管件模型对应一对属于不同桥架模型小组却相互连通的第一桥架模型和第二桥架模型,因此,第一桥架模型和第二桥架模型的数量对应于整个桥架模型网络中所用到的分支关键模型的数量。并且,后续所执行的步骤也是针对整个桥架模型网络进行的。
37.根据获取的三通管件模型以及与之连接的第一桥架模型和第二桥架模型的参数(标准高度),执行s2,以分区调整第一桥架模型和第二桥架模型的高度。
38.s2:针对每个分支管件模型,根据该分支管件模型的位置确定一预设区域,并确定该预设区域内的桥架模型的目标高度;
39.具体地,如图4所示,本步骤包括以下子步骤:
40.s21:比较与至少一个第一桥架模型所属小组相关联的第一标准高度和与至少一个第二桥架模型所属小组相关联的第二标准高度;
41.s22:若第一标准高度大于第二标准高度,则判断至少一个第二桥架模型是否满足预设的翻弯条件;
42.s23:若至少一个第二桥架模型满足预设的翻弯条件,则将第一标准高度作为所述目标高度。
43.为方便叙述,在本实施例中,以一个分支管件模型(如三通管件模型)为例,对本步骤进行说明。因此,该分支管件模型所对应的第一桥架模型和第二桥架模型的数量分别为一根。并且,一个分支管件模型对应一个预设区域。
44.具体地,根据该三通管件模型与建筑设计项目中的主梁的位置关系划定一空间范围(预设区域),并且使该空间范围内不包括任何主梁。根据预操作步骤中获取的与各个桥架模型小组相关联的标准高度数据,比较第一桥架模型和第二桥架模型的标准高度,在第一标准高度大于第二标准高度的情况下,进一步判断:若以第一标准高度作为预设区域内桥架模型的目标高度,该预设区域内、外的第二桥架模型是否满足一预设的翻弯条件。所述预设的翻弯条件主要是指:当预设区域内的第二桥架模型处于第一标准高度,并且预设区域外的第二桥架模型处于第二标准高度时,预设区域内的第二桥架模型的长度是否满足一长度阈值,以保证第二桥架模型经过翻弯处理后能够恢复至第二标准高度并且与预设区域外的部分相连接。
45.其中,所述长度阈值(l)的计算公式如下:
[0046][0047]
其中,l表示长度阈值,l(小写字母)表示弯头模型端面中心至弯头模型中心的距离,h表示翻弯高差,θ表示翻弯角度。
[0048]
在本实施例中,翻弯高差(h)等于第一标准高度与第二标准高度的差值。翻弯角度(θ)根据翻弯高差(h)确定,两者的关系如下表所示:
[0049]
翻弯高差(h)/mm翻弯角度(θ)/
°
h≥20045200》h≥10030100》h15
[0050]
根据翻弯角度(θ)选择合适的弯头模型。其中,弯头是桥架、管道等线路安装过程中常用的一种连接用管件,通过弯头连接两根公称通径相同或者不同的桥架(或管道),可以使桥架的敷设路径改变一定的角度,并且,理论上,弯头使桥架敷设路径变化的角度等于翻弯角度(θ)。需要说明的是,弯头的设计标准和制造标准根据其实际用途的变化而不同,因此,可以理解的是,弯头制造完成后,弯头角度(φ)、弯曲半径(r)、弯头的端点至弯头中心的距离(l)等数据便成为弯头的固有参数,并且可以从相应的技术手册或说明书等规范文件中获得。
[0051]
可以理解的是,在判断预设区域内的第二桥架模型的长度是否满足长度阈值(l)的同时,也应该判断预设区域外的第二桥架模型的长度是否满足弯头模型的端点至中心的距离(l),以保证第二桥架模型经过翻弯处理后能够恢复至第二标准高度并且与预设区域外的部分相连接。
[0052]
在本公开的一些实施例中,对于不同的翻弯处理场景,翻弯条件也可以指:判断预设区域内的第二桥架模型的长度是否满足弯头模型的端点至中心的距离(l),并且,预设区域外的第二桥架模型的长度是否满足长度阈值(l),其目的同样是保证第二桥架模型经过翻弯处理后能够恢复至第二标准高度并且与预设区域外的部分相连接。
[0053]
如果第二桥架模型满足预设的翻弯条件,则令预设区域内桥架的目标高度等于第一标准高度。可以理解的是,本实施例中比较第一标准高度和第二标准高度的目的主要是为了得到一个尽量高的目标高度。因此,在目标高度等于第一标准高度(高于第二标准高度)的情况下,如果第二桥架模型不满足预设的翻弯条件,则获取该预设区域内全部梁(非主梁)的底部高程数据,并与第二标准高度一起形成一个高度数据集合,并按照一定的顺序(例如从高到低)逐一判断其中的高度数据是否同时适合作为预设区域内第一桥架模型和第二桥架模型的目标高度,判断方法与原理如前文所述,本段落不再详述。
[0054]
并且,在本公开的另一些实施例中,在调整预设区域外的桥架模型的高度时,如果需要对桥架模型执行翻弯操作以避让障碍物,也可以采用与上文中相同或相似的方法来预判桥架模型是否能够满足翻弯条件,并且需要根据实际情况对翻弯条件的内容进行相应的调整。
[0055]
s3:对预设区域内的桥架模型执行翻弯操作以将该预设区域内的桥架模型的高度调整至目标高度。
[0056]
本实施例中,确定了目标高度后,在第二桥架模型满足预设的翻弯条件的情况下,执行图5中所述的子步骤:
[0057]
s31:将预设区域外并与至少一个第一桥架模型属于同一小组的桥架模型调整至第一标准高度,以及将预设区域外并与至少一个第二桥架模型属于同一小组的桥架模型调整至第二标准高度。
[0058]
s32:将预设区域内的至少一个第一桥架模型和至少一个第二桥架模型调整至目标高度;
[0059]
s33:分别对至少一个第一桥架模型和/或至少一个第二桥架模型执行翻弯操作,以使预设区域内的至少一个第一桥架模型连接至预设区域外的与至少一个第一桥架模型属于同一小组的桥架模型以及预设区域内的至少一个第二桥架模型连接至预设区域外的与至少一个第二桥架模型属于同一小组的桥架模型。
[0060]
具体地,在本实施例中,如果目标高度等于第一桥架模型对应的第一标准高度,则在执行s33时只需要对第二桥架模型进行翻弯处理,使得预设区域内的第二桥架模型(处于第一标准高度)在翻弯后能够与预设区域外的第二桥架模型(处于第二标准高度)连接。
[0061]
在本公开的其他实施例中,如果确定的目标高度不同于第一标准高度或第二标准高度,那么在执行s33时需要同时对第一桥架模型和第二桥架模型进行翻弯处理,以使预设区域内的第一桥架模型(处于目标高度)在翻弯后能够与预设区域外的第一桥架模型(处于第一标准高度)连接,并且,预设区域内的第二桥架模型(处于目标高度)在翻弯后能够与预设区域外的第二桥架模型(处于第二标准高度)连接。
[0062]
需要说明的是,流程图中示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行,并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以按照不同于此处的顺序执行所示出或描述的步骤。
[0063]
根据上文所述,将本公开实施例一提供的建筑模型的处理方法应用在基于bim软件(如revit软件)的建筑设计项目中,能提高桥架模型高度调整处理过程的自动化程度。具体地,当识别出通过分支管件模型连接的两组桥架模型后,根据分支管件模型的位置划分一预设区域,并获取该预设区域内的桥架模型的目标高度。在将区域内的桥架模型调整至目标高度前,预判相交的两组桥架模型的长度是否满足翻弯所要求的长度阈值。在满足桥架阈值的情况下,将预设区域外的桥架模型调整至标准高度,并针对性地将预设区域内的桥架模型调整至目标高度,以保证在整个桥架模型网络中,尽可能多的桥架模型处于其标准高度,来满足建筑设计规范的要求。采用本公开提供的方法能够实现桥架模型高度调整过程的自动化和标准化,过程中不再需要人工参与判断或操作,效率和准确率更高。
[0064]
实施例二:
[0065]
为了更好地实施上述建筑模型的处理方法中的步骤,本实施例提供了一种用于实施上述方法的相关装置。请参阅图6,为本公开实施例二提供的建筑模型的处理装置的结构示意图。建筑模型的处理装置600包括:第一处理单元610、第二处理单元620和第三处理单元630。其中,第一处理单元610用于获取多个桥架模型以及与该多个桥架模型中的至少一个相连接的所有分支管件模型,并实施预处理操作;针对每个分支管件模型,第二处理单元620用于根据该分支管件模型的位置确定一预设区域,并确定该预设区域内的桥架模型的目标高度;第三处理单元630用于对预设区域内的桥架模型执行翻弯操作以将该预设区域
内的桥架模型的高度调整至目标高度。
[0066]
具体地,在本实施例中,作为对用户触发bim软件(如revit软件)的智能管综调整功能这一操作的响应,第一处理单元610按照分组规则对建筑设计项目中已经生成的桥架模型进行分组,并获取与每一个桥架模型小组相关联的标准高度。其中,分组规则为是指将具有相同延伸方向并且相互连接的桥架模型划分为一组。第一处理单元610还用于识别建筑设计项目中的每个分支管件模型,以获取与每个分支管件模型连接的第一桥架模型和第二桥架模型。
[0067]
确定与分支管件模型相对应的预设区域后,第二处理单元620进一步用于比较与第一桥架模型所属小组相关联的第一标准高度和与第二桥架模型所属小组相关联的第二标准高度。在第一标准高度大于第二标准高度的情况下,第二处理单元620进一步用于判断第二桥架模型是否满足预设的翻弯条件,并且,当判断出第二桥架模型满足预设的翻弯条件时,第二处理单元620将第一标准高度作为该预设区域内的目标高度,并触发第三处理单元630调整该预设区域内外的桥架模型的高度。
[0068]
具体地,在本实施例中,第三处理单元630用于将预设区域外的第一桥架模型和第二桥架模型分别调整至第一标准高度和第二标准高度,并根据确定的目标高度,调整预设区域内的第一桥架模型和第二桥架模型的高度。第三处理单元630还用于分别对第一桥架模型和/或第二桥架模型执行翻弯操作,以使预设区域内的第一桥架模型和第二桥架模型能够分别连接至预设区域外的第一桥架模型和第二桥架模型。
[0069]
本实施例所提供的建筑模型处理装置中的各个处理单元所执行的建筑模型的处理方法的其他方面与前面实施例所述的建筑模型的处理方法相同或相似,在此不再赘述。
[0070]
本发明还提供了一种电子设备,图7为本公开实施例提供的电子设备的实体结构示意图。电子设备700包括:处理器(processor)701、通信接口(communications interface)702、存储器(memory)703和通信总线704。其中,处理器701、通信接口702和存储器703通过通信总线704完成相互间的通信。处理器701可以调用存储器703中的逻辑指令,以执行如下方法:获取多个桥架模型以及与该多个桥架模型中的至少一个相连接的所有分支管件模型,并实施预处理操作;针对每个分支管件模型,根据该分支管件模型的位置确定一预设区域,并确定该预设区域内的桥架模型的目标高度;对预设区域内的桥架模型执行翻弯操作以将该预设区域内的桥架模型的高度调整至目标高度。
[0071]
本公开实施例还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现上述各实施例提供的方法,例如包括:获取多个桥架模型以及与该多个桥架模型中的至少一个相连接的所有分支管件模型,并实施预处理操作;针对每个分支管件模型,根据该分支管件模型的位置确定一预设区域,并确定该预设区域内的桥架模型的目标高度;对预设区域内的桥架模型执行翻弯操作以将该预设区域内的桥架模型的高度调整至目标高度。
[0072]
综上所述,本公开提供了一种建筑模型的处理方法、装置、电子设备和存储介质,能提高桥架模型高度调整处理过程的自动化程度。具体地,当识别出通过分支管件模型连接的两组桥架模型后,根据分支管件模型的位置划分一预设区域,并获取该预设区域内的桥架模型的目标高度。在将区域内的桥架模型调整至目标高度前,预判相交的两组桥架模型的长度是否满足翻弯所要求的长度阈值。在满足桥架阈值的情况下,将预设区域外的桥
架模型调整至标准高度,并针对性地将预设区域内的桥架模型调整至目标高度,以保证在整个桥架模型网络中,尽可能多的桥架模型处于其标准高度,来满足建筑设计规范的要求。采用本公开提供的方法能够实现桥架模型高度调整过程的自动化和标准化,过程中不再需要人工参与判断或操作,效率和准确率更高。
[0073]
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如rom/ram、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的方法。
[0074]
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
[0075]
最后应说明的是:以上实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的精神和范围。
再多了解一些

本文用于创业者技术爱好者查询,仅供学习研究,如用于商业用途,请联系技术所有人。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献