一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种防止接触面变色的智能控释保鲜复合膜

2022-10-26 21:36:06 来源:中国专利 TAG:


1.本发明属于食品包装材料技术领域,具体而言,涉及一种防止接触面变色的智能控释保鲜复合膜。


背景技术:

2.据统计,每年约三分之一的粮食被浪费在整个食品供应链中,特别是水果和蔬菜等新鲜农产品尤为突出。果蔬采摘后持续的呼吸和蒸腾过程会产生大量的水雾,当外部湿度低于包装内部空气露点湿度时,包装内部结雾,雾水会在包装内形成碳酸水,导致水果表面湿浊,此外,果蔬易因机械碰撞造成破裂溢出汁水。这些在包装内聚集的液体会使果蔬储藏的微环境失衡,阻碍果蔬特别是果蔬与包装接触面的正常代谢过程,最终导致由于接触面变色和微生物生长而引起的品质劣变等问题。然而,目前的果蔬包装材料主要是单层保鲜纸、防磕碰海绵、保鲜膜等,基于此着重于解决因水分凝聚和细菌滋生引起的储存微环境失衡问题的保鲜材料具有重要的研究意义和应用需求。
3.现有的防雾包装或防雾抗菌包装具有一定的防止水分凝结和抗菌的效果,但大多需要果蔬与包装产品接触才能实现抗菌且只能吸收一定量的水分,对不同品类的果蔬不具备适用性。目前,虽然也有能够实现非接触缓释抗菌的产品或研究,但是其存在制备复杂,可控性差、难以规模化应用等问题,并不能从根本上解决有效可控释放的问题。因此,基于实际需求开发一种既能够吸收水分保持与果蔬接触面干爽又能够根据储存环境实现智能控制释放的保鲜材料至关重要。


技术实现要素:

4.本发明旨在提供一种防止接触面变色的智能控释保鲜复合膜,该复合膜材料能够实现定向液体运输与快速液体吸收,以保持包装与果蔬接触面的干爽,防止果蔬与包装接触面变色。
5.为了实现上述目的,根据本发明的一个方面,提供了一种防止接触面变色的智能控释保鲜复合膜,包括依次复合的导水透气干爽层、吸水智能控释层以及防潮透水防护层;所述吸水透气干爽层为带有智能微孔通道的聚合物纤维膜,所述吸水智能控释层由吸水性高分子负载吸湿释放型抗菌剂组成,所述防潮透水防护层由具有微孔的疏水性高分子膜构成,配置为用以防止吸水智能控释层所吸收的水分透过该层,并实现对智能控释保鲜复合膜与保鲜包装间隙中残余水分的吸收;通过调控导水透气干爽层的浸润性、孔道孔径大小、厚度以及吸水智能控释层中高分子的吸水性及抗菌剂负载量,从而协同实现水分定向运输的智能控速及抗菌剂的智能控释。
6.根据本发明,所述聚合物纤维膜为具有低浸润性的高分子材料或该类材料经有机二氧化硅、二氧化硅掺杂改性后,通过静电纺丝法或熔融纺丝法制备而成。优选地,所述聚合物纤维膜选自聚酯、聚氨酯、聚丙烯、聚乙烯、聚氯乙烯和醋酸纤维素纳米纤维中的一种或多种。
7.根据本发明,所述导水透气干爽层的纤维直径在200~2000nm之间,膜层厚度为2~50μm,优选膜层厚度为2~15μm;所述导水透气干爽层中聚合物纤维膜的透气量为1000~2500cm3/m2·d·
pa;其中纤维交错排布,纤维间的孔道平均孔径为5~30μm。
8.根据本发明,所述导水透气干爽层中聚合物纤维膜的水静态接触角大于120
°
,优选水静态接触角为125~150
°

9.根据本发明,所述导水透气干爽层的智能微孔道的功能修饰制备采用温度响应型链段、或湿度响应型链段、或ph响应型链段、或光响应型链段。
10.根据本发明,所述吸水智能控释层中吸水性高分子材料为聚乙烯醇、聚丙烯酸;所述吸水智能控释层中吸湿释放型抗菌剂为需要缓释剂的焦亚硫酸钠、亚硫酸钠、亚硫酸氢钠、氯酸钠、氯酸钾、次氯酸钠和亚氯酸钠中的一种或多种;或直接吸湿释放的环糊精包裹的1-甲基环丙烯、或环糊精包裹的精油。
11.根据本发明,所述吸水智能控释层中吸湿释放型抗菌剂的缓释剂为食品级酸,优选柠檬酸、乳酸、醋酸和酒石酸中的一种或多种。
12.根据本发明,所述吸水智能控释层为负载亚氯酸钠和柠檬酸的聚乙烯醇/聚丙烯酸纳米纤维;或者负载焦亚硫酸钠和柠檬酸的聚乙烯醇/聚丙烯酸纳米纤维;或者负载环糊精包裹的精油微胶囊的聚乙烯醇/聚丙烯酸纳米纤维;或者负载环糊精包裹的1-甲基环丙烯微胶囊的聚乙烯醇/聚丙烯酸纳米纤维。
13.根据本发明,所述防潮透水防护层的疏水高分子膜为带有微孔的聚酯、或聚氨酯、或疏水无纺布、或牛皮纸。
14.根据本发明,所述导水透气干爽层、吸水智能控释层以及防潮透水防护层各层之间通过阴离子π相互作用结合,或热熔胶粘结,或热压工艺复合。
15.本发明的有益效果:
16.1)本发明制备的智能控释多功能保鲜复合膜包括导水透气干爽层、吸水智能控释层、防潮透水防护层,可实现快速的导水、吸水、控制释放的效果,同时,吸水透气干爽层与吸水智能缓释层结合,可以实现高效吸水,导水透气干爽层具有低表面浸润性,避免了发白及细菌滋生,上述功能又可协同避免果蔬与包装接触面变色及微生物滋生的问题。
17.2)本发明为智能型产品,能够实现智能释放,吸水越快越多释放越快,反之释放慢。吸湿性高分子与抗菌剂混合或者包裹,吸湿性缓慢,可以抑制快速释放,避免造成伤害,延长使用时间。导水透气干爽层具有智能微孔道,可以通过修饰具有不同响应功能的链段实现根据环境变化的微通道的“开启”或“关闭”。
18.3)该保鲜复合膜中抗菌剂的释放为智能控释型,吸水智能控释层由吸湿性高分子混合或包裹吸湿释放型抗菌剂而成,可以通过调节吸水速度控制抗菌剂的释放速度,以抑制抗菌剂的快速释放,从而延长保鲜复合膜的使用时间。并且选用吸湿释放型抗菌剂,抗菌剂的释放速率和释放量随吸水量的增加而加快,反之减慢。因此,本发明的保鲜复合膜能够有效的避免抗菌剂的快速释放和过度释放。
19.4)智能控释保鲜复合膜的防潮透水防护层能够防止吸水智能控释层吸收的水分透过并实现对保鲜复合膜与保鲜包装间隙中残余水分的吸收,从而防止多余的液体浸润纸质包装,造成包装外观受损。本发明的产品通过导水、吸水、阻水、智能控释抗菌气体的协同作用达到维持果蔬包装内微环境平衡的效果,具有深远的研究意义和广阔的应用市场。
20.总之,本发明通过调控吸水透气干爽层的浸润性、孔道孔径大小和厚度以及吸水智能缓释层中吸水性高分子的吸水性以及抗菌剂含量,从而协同实现一定量的水透过吸水透气干爽层,实现气体抗菌剂释放量和释放速度的智能控释。
附图说明
21.图1是采用本发明实施例1中制备的保鲜复合膜与空白对照例保鲜草莓的照片。
具体实施方式
22.为了使本发明的目的、技术方案及优点更加清楚明白,下面结合本附图及实施例,对本发明做进一步的详细说明。需要强调,此处描述的具体实施例仅用于更好的阐述本发明,为本发明部分实施例,而非全部实施例,所以并不用作限定本发明。此外,下面描述的本发明实施例中涉及的技术特征,只要彼此间未构成冲突,即可以相互组合。
23.针对现有包装需要与果蔬接触才能达到抗菌效果且不能吸收过多的水分的问题,为了延长果蔬货架期,防止因果蔬与包装接触面的变色以及包装微环境中微生物的生长而引起的品质劣变,本发明提供一种防止接触面变色的智能控释保鲜复合膜,包括依次复合的导水透气干爽层、吸水智能控释层以及防潮透水防护层。其中,所述吸水透气干爽层为带有智能微孔通道的聚合物纤维膜,吸水智能控释层由吸水性高分子和吸湿释放型抗菌剂组成,防潮透水防护层由具有微孔的疏水性高分子膜构成,配置为用以防止吸水智能控释层所吸收的水分透过该层,并实现对智能控释保鲜复合膜与保鲜包装间隙中残余水分的吸收。该智能控释保鲜复合膜能够根据环境变化实现智能控制释放抗菌剂,以避免抗菌剂的过早和过度释放带来的安全问题和果蔬品质受损问题。
24.本发明中,所述导水透气干爽层为带有智能微孔通道的纤维膜,且材料本身具有低浸润性,通过调控导水透气干爽层的浸润性、孔道孔径大小、厚度及吸水智能控释层吸水性高分子的吸水性和抗菌剂的负载量,可以协同实现水分定向运输的智能控速及抗菌剂的智能控释。所述防潮透水防护层由疏水性高分子膜构成,膜上有一定密度的微孔,可以防止吸水智能控释层所吸收的水分透过该层并可实现对智能控释保鲜复合膜与保鲜包装间隙中残余水分的吸收。本发明的智能控释保鲜复合膜的三层结构之间相辅相成,水分被吸收后又可刺激吸水智能控释层中吸湿释放型抗菌剂的释放,从而起到了防止因果蔬与包装接触面的变色和包装微环境中微生物的生长而引起的品质劣变问题,延长了果蔬的货架期。同时本发明也能够阻止吸水智能控释层所吸收的水分透过防潮透水防护层,以防止吸收的水分浸润纸质包装,造成包装外观受损,同时也能吸收外包装底部过多水分。
25.受沙漠甲虫等自然生物启发设计的具有梯度浸润性的表面之间能够实现定向快速的液体运输和吸收,以及仿植物蒸腾作用的反重力液体传输。其中膜厚度对运输、吸收和阻隔液体的效果都至关重要。适当的厚度有助于液体快速通过低浸润性的导液面进入高浸润性的吸水智能控释层,也有助于防水层实现高效的液体阻隔。同时,在导水透气干爽层修饰特定的功能性分子,能够实现导水通道根据环境响应实现开启或关闭。
26.优选地,所述导水透气干爽层的智能微孔道的功能修饰制备采用温度响应型链段、或湿度响应型链段、或ph响应型链段、或光响应型链段。该智能控释保鲜复合膜的导水透气干爽层具有智能微孔道,可以通过修饰上述具有不同响应功能的链段实现根据环境变
化的微通道的“开启”或“关闭”。其中,温度响应型链段例如可以是聚n-异丙基丙烯酰胺(pnipaam)等。
27.在本发明一个具体实施例中,将温度响应型链段聚合物聚n-异丙基丙烯酰胺(pnipaam)修饰在导水透气干爽层醋酸纤维素单纳米孔道内,当环境温度高于临界共溶温度时,聚合物形成分子内氢键,呈现舒展状态;当环境温度低于临界共溶温度时,孔道里的分子构型发生变化,由于分子内氢键作用,呈现坍塌状态,从而实现对微孔通道的智能控制。此外,可根据实际应用情况选用不同品类的具有低浸润性的纳米纤维膜,并加以修饰具有不同响应类型的链段分子。
28.导水透气干爽层含有智能微孔通道,由合适(一定)厚度的纤维膜构成,优选纤维直径在200~2000nm之间,膜层厚度为2~50μm,进一步优选膜层厚度为2~15μm。纤维膜具有低的润湿性,水静态接触角大于120
°
,优选水静态接触角为125~150
°
。此外,导水透气干爽层中聚合物纤维膜还具有高的孔隙率,优选聚合物纤维膜的透气量为1000~2500cm3/m2·d·
pa,其中纤维交错排布,纤维间的孔道平均孔径为5~30μm。
29.根据本发明,所述导水透气干爽层采用的聚合物纤维膜为具有低浸润性的高分子材料或该类材料经有机二氧化硅、二氧化硅掺杂改性后,通过静电纺丝法或熔融纺丝法制备而成。进一步优选地,所述聚合物纤维膜选自聚酯、聚氨酯、聚丙烯、聚乙烯、聚氯乙烯、醋酸纤维中的一种或多种。
30.根据本发明,所述吸水智能控释层由吸水性高分子及吸湿释放型抗菌剂按照一定比例混合或由吸湿性高分子包裹吸湿释放型抗菌剂制备而成,然后将其均匀分布在上下两层之间,形成智能控释保鲜复合膜。吸水性高分子材料为聚乙烯醇、聚丙烯酸等,本发明优选上述材料但并不局限于此。吸水性高分子与抗菌剂混合或者包裹,吸湿性缓慢,可以抑制快速释放,避免造成伤害,延长使用时间。
31.本发明提供的智能控释保鲜复合膜中抗菌剂的释放为智能控释型,选用吸湿释放型抗菌剂,抗菌剂的释放速率和释放量随吸水量的增加而加快,反之减慢,从而能够有效的避免抗菌剂的快速释放和过度释放。所述吸水智能控释层中吸湿释放型抗菌剂为需要缓释剂的焦亚硫酸钠、亚硫酸钠、亚硫酸氢钠、氯酸钠、氯酸钾、次氯酸钠中的一种或多种;或直接吸湿释放的环糊精包裹的1-甲基环丙烯、或环糊精包裹的精油。所述吸水智能控释层中吸湿释放型抗菌剂的缓释剂为食品级酸,优选柠檬酸、乳酸、醋酸和酒石酸中的一种或多种。
32.二氧化氯无毒害、无残留,生物安全性高。二氧化氯与微生物接触时会产生单线态氧与次氯酸分子,能够很好的吸附和穿透微生物细胞以氧化微生物细胞内含硫基的酶,使蛋白质中的氨基酸氧化分解,抑制蛋白质合成,达到快速抗菌的效果。同样,二氧化硫也是一种高效的保护水果不受细菌、霉菌侵蚀的化学物质。但二氧化氯和二氧化硫过早和过度的释放会抑制其在实际生产生活中的应用,因此,利用相应氯酸盐或硫酸盐和酸之间吸湿释放二氧化氯或二氧化硫气体的特性,可以实现湿度响应的智能控释。
33.此外,环糊精也是开发智能控释材料的优良载体。环糊精具有外亲水内疏水的空腔结构,其空腔可以用来封装1-mcp,精油等易挥发的抗菌物质。当环境的相对湿度达到一定阈值时,内腔疏水分子与环糊精之间的氢键结合作用减弱,实现快速释放,也能达到智能控释的效果。
34.在本发明一个具体实施方式中,所述吸水智能控释层由吸湿性高分子包裹吸湿释放型抗菌剂制备而成,包裹方式可以通过分别负载两种反应物纺丝制成纳米纤维混合,或通过两层同轴电纺膜混合,或通过三层同轴静电纺丝。
35.根据本发明,所述防潮透水防护层由防潮不透水或者疏水高分子膜构成,可以防止从上层(即导水透气干爽层)吸收的水分透过该层,并可以实现对保护层下面过多水分吸收。优选防潮透水防护层为带有一定密度微孔的聚酯、或聚氨酯、或疏水无纺布、或牛皮纸等。
36.本发明还提供了一种防止接触面变色的智能控释保鲜复合膜的制备方法,将导水透气干爽层、吸水智能控释层以及防潮透水防护层各层之间通阴离子π相互作用结合或者热熔胶粘结或热压复合而成。
37.具体地,智能控释保鲜复合膜的制备方法包括以下步骤:a)在防潮透水防护层上铺一层或者纺一层吸水智能缓释层;b)在吸水智能缓释层上再纺一层导水透气干爽层;c)通过喷胶、热压工艺复合而成。
38.本发明制备的智能控释保鲜复合膜可实现快速导水、吸水、控制释放的效果,吸水透气干爽层与吸水智能缓释层结合,既可以实现高效吸水,同时,导水透气干爽层具有低表面浸润性,避免了发白及细菌滋生,上述功能又可协同实现避免果蔬与包装接触面变色及微生物滋生的问题。防潮透水防护层能够防止吸水智能控释层吸收的水分透过并实现对保鲜复合膜与保鲜包装间隙中残余水分的吸收,从而防止多余的液体浸润纸质包装,造成包装外观受损。
39.下面结合具体实施例详细说明本发明的技术方案。
40.实施例1
41.制备防止接触面变色的智能控释保鲜复合膜:
42.(1)制备醋酸纤维素(ca)纳米纤维为导水透气干爽层:称取6g的醋酸纤维素溶于50ml n,n-二甲基乙酰胺和丙酮的混合溶液中,其中n,n-二甲基乙酰胺和丙酮的比例为1:2(v/v)。将上述溶液在室温下搅拌12小时得到均匀的溶液。将上述溶液装入20ml注射器中以备纺丝,纺丝流速设置为1.5ml/h,纺丝距离为18cm。
43.(2)制备负载亚氯酸钠和柠檬酸的聚乙烯醇/聚丙烯酸纳米纤维为吸水智能控释层:以水为溶剂,分别配制百分比均为8wt%的聚乙烯醇(pva)溶液和聚丙烯酸(paa)溶液,将其分别溶解后按照质量比3:1均匀混合得到纺丝液。将上述溶液装入20ml注射器中以备纺丝,纺丝流速设置为1.5ml/h,纺丝距离为18cm。
44.将上述所得聚乙烯醇/聚丙烯酸(pva-g-paa)纳米纤维置于140℃下热交联4h以使该纳米纤维膜具有水稳定性。将上述所得pva-g-paa纳米纤维分为两份分别浸泡在20mg/ml的亚氯酸钠溶液和10mg/ml的柠檬酸溶液中30min,随后,将上述纳米纤维膜置于60℃的鼓风干燥箱中烘干,得到负载吸湿释放clo2抗菌剂的吸水智能控释层。
45.(3)制备聚氨酯(pu)纳米纤维为防潮透水防护层:称取2.4g聚氨酯于20ml的n,n-二甲基甲酰胺溶液中于室温下搅拌12小时得到聚氨酯纺丝溶液。将上述溶液装入20ml注射器中以备纺丝,纺丝流速设置为1.5ml/h,纺丝距离为18cm。
46.(4)将导水透气干爽层、吸水智能控释层和防潮透水防护层通过阴离子π相互作用、或热熔胶粘合、或热压复合结合而成(记为clo2/ca/pva-g-paa/pu):其中,醋酸纤维素
具有π键,聚乙烯醇和聚丙烯酸具有游离阴离子,由于阴离子-π相互作用的存在,可实现膜之间的粘附。
47.实施例2
48.本实施例和实施例1采用的原料和方法基本相同,唯不同之处在于将温度响应型链段修饰在导水透气干爽层的纳米孔道内:
49.步骤(1)具体为:制备醋酸纤维素(ca)纳米纤维为导水透气干爽层:称取6g的醋酸纤维素溶于50ml n,n-二甲基乙酰胺和丙酮的混合溶液中,其中n,n-二甲基乙酰胺和丙酮的比例为1:2(v/v)。将上述溶液在室温下搅拌12小时得到均匀的溶液。将上述溶液装入20ml注射器中以备纺丝,纺丝流速设置为1.5ml/h,纺丝距离为18cm。
50.随后,将温度响应性聚合物聚n-异丙基丙烯酰胺(pnipaam)修饰在醋酸纤维素单纳米孔道内,当环境温度高于临界共溶温度时,聚合物形成分子内氢键,呈现舒展状态;当环境温度低于临界共溶温度时,孔道里的分子构型发生变化,由于分子内氢键作用,呈现坍塌状态,从而实现对微孔通道的智能控制。
51.实施例3
52.本实施例和实施例1基本相同,唯不同之处在于:
53.本实施例中,步骤(2)具体为:制备负载焦亚硫酸钠和柠檬酸的聚乙烯醇/聚丙烯酸纳米纤维为吸水智能控释层:以水为溶剂,分别配制百分比均为8wt%的聚乙烯醇(pva)溶液和聚丙烯酸(paa)溶液,将其分别溶解后按照质量比3:1均匀混合得到纺丝液。将上述溶液装入20ml注射器中以备纺丝,纺丝流速设置为1.5ml/h,纺丝距离为18cm。
54.将上述所得聚乙烯醇/聚丙烯酸(pva-g-paa)纳米纤维置于140℃下热交联4h以使该纳米纤维膜具有水稳定性。将焦亚硫酸钠和柠檬酸按照一定比例均匀洒在上述所得pva-g-paa纳米纤维和醋酸纤维素及聚氨酯纤维膜之间,得到负载吸湿释放so2抗菌剂的吸水智能控释层。
55.实施例4
56.本实施例和实施例1基本相同,唯不同之处在于:
57.本实施例中,步骤(2)具体为:制备负载环糊精包裹的1-甲基环丙烯(1-mcp)微胶囊的聚乙烯醇/聚丙烯酸纳米纤维为吸水智能控释层:以水为溶剂,分别配制百分比为8wt%的聚乙烯醇(pva)溶液和聚丙烯酸(paa)溶液,将其分别溶解后按照质量比3:1均匀混合得到纺丝液。将上述溶液装入20ml注射器中以备纺丝,纺丝流速设置为1.5ml/h,纺丝距离为18cm。将上述所得聚乙烯醇/聚丙烯酸(pva-g-paa)纳米纤维置于140℃下热交联4h以使该纳米纤维膜具有水稳定性。
58.将环糊精包裹的1-mcp按照一定比例均匀洒在上述所得聚乙烯醇接枝聚丙烯酸(pva-g-paa)纳米纤维和醋酸纤维素或聚氨酯纤维膜之间,得到负载吸湿释放1-mcp抗菌剂的吸水智能控释层。
59.实施例5
60.本实施例和实施例1基本相同,唯不同之处在于:
61.本实施例中,步骤(2)具体为:制备负载环糊精包裹的精油微胶囊的聚乙烯醇/聚丙烯酸纳米纤维为吸水智能控释层,此处以百里香酚精油为例:首先用饱和溶液法制备β-环糊精(β-cd)包裹的百里香酚微胶囊。在60℃下制备β-cd饱和溶液。将与β-cd摩尔比为1∶1
的百里香酚的乙醇溶液缓慢滴加到β-cd溶液中。将上述溶液在密闭容器中搅拌24小时,冷却静止至不再析出沉淀物。将上述固液混合体系抽滤,洗涤,干燥,得到β-cd包裹的百里香酚微胶囊。
62.将6g聚丙烯腈溶于54g n,n-二甲基甲酰胺中,并加入聚丙烯腈质量5%的上述百里香酚微胶囊,将该溶液于室温下搅拌5小时得到均匀的纺丝溶液。将上述溶液装入20ml注射器中以备纺丝,纺丝流速设置为1.5ml/h,纺丝距离为17cm。
63.将实施例1中制备的智能控释保鲜复合膜中进行水果实验,以评估其在实际应用中的效果。选用多汁易腐烂的草莓作为水果实验的模型,草莓购置北京当地果园,采摘后立即运往实验室。将草莓分为空白对照组和实施例1组,将各组草莓置于5l的保鲜盒中,于20℃下保存3天,拍照记录草莓的形貌变化。
64.如图1所示,相同放置时间条件下,空白对照组的草莓在保存过程中出现发霉和变色现象,实施例1组的草莓在保存三天后仍保持相对完整的形貌。
65.结果表明,本发明制备的防止接触面变色的智能控释保鲜复合膜能够防止因果蔬与包装接触面的变色以及包装微环境中微生物的生长而引起的品质劣变,能够延长果蔬采后货架期。
66.以上所述仅是本发明的优选应用实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
再多了解一些

本文用于创业者技术爱好者查询,仅供学习研究,如用于商业用途,请联系技术所有人。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献