一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种极窄脉冲雷达散射点特征聚合目标极化检测方法

2022-10-13 06:52:21 来源:中国专利 TAG:


1.本发明属于雷达目标检测领域,具体涉及一种极窄脉冲雷达散射点特征聚合目标极化检测方法,适用于对距离扩展目标进行检测。


背景技术:

2.极窄脉冲雷达,是指经过处理后单个回波脉冲宽度远小于目标尺寸的一类雷达。对于极窄脉冲雷达,目标的回波中包含多个极窄脉冲,分别对应于目标上不同的散射点。因此,目标极窄脉冲回波能够表示目标散射点沿雷达视线方向的分布情况,通常也称为目标的高分辨距离像(hrrp)。
3.极窄脉冲雷达回波中目标被分散到多个距离单元中,成为距离扩展目标,传统窄带雷达中点目标(只占据1个距离单元的目标)检测技术不再适用。为解决这一问题,最为常见的方法是先对散落在多个距离单元的目标能量进行聚合,再执行检测操作。
4.在雷达检测的实际使用场景中,复杂的地面背景下存在强杂波,若使用基于能量聚合的恒虚警检测器,在保持虚警概率不变的同时,环境杂波会使检测门限升高,导致雷达系统检测概率降低。极化是电磁波的重要基本参量之一,其描述的是电磁波的矢量特征,展现了电场矢端在传播截面上随时间变化的轨迹特性,可以提供幅度、相位信息之外的附加信息。因此,引入极化维度的信息,通过对多个距离单元的极化特征进行积累,变换到极化特征域进行特征检测,能够提高检测性能。
5.现有的极窄脉冲雷达极化检测方法中对目标散射点特征进行聚合的方法分两种,分别为对所有距离单元特征取平均实现聚合和通过对能量高的距离单元特征取平均实现聚合。前者虽然可以将所有距离单元内目标的全部信息聚合,但是对于实际目标的极窄脉冲回波,由于姿态变化或遮挡等原因,目标散射点可能仅稀疏地占据回波的若干个距离单元,若极窄脉冲回波的所有距离单元参与聚合,杂波和噪声占据大部分距离单元将导致聚合结果更接近杂波和噪声的分布而远离目标的分布,这种情况通常称作陷落损失。后者先提取极窄脉冲回波中的强散射点,然后仅对强散射点的特征进行积累,可以避免陷落损失,但忽略了能量较低而特征明显异于杂波和噪声的弱散射点,存在的信息损失。


技术实现要素:

6.本发明的技术解决问题是:克服现有技术的不足,提出一种极窄脉冲雷达散射点特征聚合目标极化检测方法,该方法使用能量强度和特征差异信息分别提取参与特征聚合的目标散射点集合,并根据各距离单元被判定存在目标散射点的频次计算权重以进行特征聚合,既避免了对检测窗口内极窄脉冲回波的所有距离单元进行积累导致的陷落损失问题,又避免了未积累到能量较低而特征明显异于噪声和杂波的距离单元的信息损失问题。
7.本发明的技术解决方案是:一种极窄脉冲雷达散射点特征聚合目标极化检测方法,该方法的步骤包括:步骤1,测量获取极窄脉冲回波信号,所获取的极窄脉冲回波信号中包括待测样本
和杂波样本,对待测样本逐距离单元提取极化特征并将提取的极化特征形成待测样本特征矩阵,对杂波样本逐距离单元提取极化特征并将提取的极化特征形成杂波样本特征矩阵;步骤2,依据能量强度信息提取待测样本的目标散射点a,依据特征差异信息提取待测样本的目标散射点b,依据能量强度信息提取杂波样本的目标散射点a,依据特征差异信息提取杂波样本的目标散射点b,并根据待测样本的目标散射点a和待测样本的目标散射点b建立待测样本的目标散射点位置标记矩阵,根据杂波样本的目标散射点a和杂波样本的目标散射点b建立杂波样本的目标散射点位置标记矩阵;步骤3,利用步骤2得到的待测样本的目标散射点位置标记矩阵对步骤1形成的待测样本特征矩阵进行聚合,得到待测样本的特征聚合结果向量,利用步骤2得到的杂波样本的目标散射点位置标记矩阵对步骤1形成的杂波样本特征矩阵进行聚合,得到杂波样本的特征聚合结果向量;步骤4,使用步骤3得到的杂波样本的特征聚合结果向量对检测器进行训练;步骤5,将步骤3得到的待测样本的特征聚合结果向量输入到步骤4训练后的检测器中,判断是否存在目标。
8.所述的步骤1中,若干帧待测样本构成待测样本集合y,将y中的总帧数记作m,y中的每帧信号ym为一个4
×
n点的矩阵,m表示极窄脉冲回波信号的帧编号,m=1,2,

,m,n表示距离单元个数,ym=[ym(1),ym(2),

,ym(n)],每个距离单元上包含四个极化通道hh、hv、vh、vv的回波数据,ym(i)=[s
hh
,s
hv
,s
vh
,s
vv
]
t
,i表示距离单元编号,i=1,2,

,n,ym(i)表示ym第i个距离单元上的元素,(
·
)
t
表示转置,h表示水平极化,v表示垂直极化,s
hh
表示水平向发射、水平向接收的回波数据,s
hv
表示水平向发射、垂直向接收的回波数据,s
vh
表示垂直向发射、水平向接收的回波数据,s
vv
表示垂直向发射、垂直向接收的回波数据;若干帧杂波样本构成杂波样本集合yc,yc中的总帧数记为|yc|。
[0009]
所述的步骤1中,形成待测样本特征矩阵和杂波样本特征矩阵的方法为:第一步,对y和yc中的每帧样本的每个距离单元进行pauli极化分解得到奇次散射特征fea_α、偶次散射特征fea_β和45
°
二面角散射特征fea_γ,公式为:第二步,对y和yc中的每帧样本的每个距离单元进行freeman非相干极化分解得到平面散射分量特征ps、二面角散射分量特征pd、体散射分量特征pv,公式为:
联立式(1)和式(2)求解得到ps、pd和pv,式中,如果,则令α=-1,如果,则令β=1,re(
·
)表示取实部,(
·
)
*
表示共轭;第三步,对y和yc中的每帧样本,将一个距离单元的6个特征fea_α,fea_β,fea_γ,ps,pd,pv拼接成特征列向量,再将各个距离单元的特征列向量横向拼接组成t
×
n点的特征矩阵,其中t表示特征个数,得到待测样本特征矩阵集合和杂波样本特征矩阵集合,待测样本特征矩阵集合中由第m帧待测样本得到的特征矩阵记为fm,杂波样本特征矩阵集合中由第k帧杂波样本得到的特征矩阵记为f
ck
,其中,k=1,2,

,|yc|,k为杂波样本的帧编号。
[0010]
所述的步骤2中,依据能量强度信息提取待测样本的目标散射点a和杂波样本的目标散射点a的方法为:首先,对y和yc中的每帧样本,即对每个y
x
,y
x
∈{y,yc},y
x
=[y
x
(1),y
x
(2),

,y
x
(i),

,y
x
(n)],进行多极化通道融合,得到融合结果向量t,t(i)为融合结果向量t的第i个距离单元上的元素,公式为:式中,(
·
)h表示共轭转置,表示杂波平均协方差矩阵的逆矩阵,计算公式为:式中,y
ck
(i)表示yc中第k帧样本的第i个距离单元上四个极化通道数据组成的列向量;y
x
(i)为y
x
的第i个距离单元上四个极化通道数据组成的列向量;然后,对t(i)求平方得到t2(i),将t2(i)从大到小排列,取中位数的值记为噪声和杂波的平均功率,并将平均功率记为p
noise
;最后,将t2(i)与门限μ
·
p
noise
进行比较,得到基于能量强度的待测样本的目标散射点a和杂波样本的目标散射点a,且待测样本的目标散射点a和杂波样本的目标散射点a的计算方式相同均通过向量进行计算,为中第i个距离单元上的元素:式中,μ是门限因子;待测样本的目标散射点a的向量中由第m帧待测样本得到的结果用表示;杂波样本的目标散射点a的向量中由第k帧杂波样本得到的结果用表示。
[0011]
所述的步骤2中,依据特征差异信息提取待测样本的目标散射点b和杂波样本的目
标散射点b的方法为:首先,对每个极化特征,统计每个极化特征在yc的所有帧样本所有距离单元的分布直方图,并计算分布的上λ分位点fea
tup
和下λ分位点fea
tdn
,t为特征编号,t=1,2,

,t;然后,对待测样本的特征矩阵fm的每个极化特征,逐距离单元与fea
tup
和fea
tdn
进行比较,得到第m帧待测样本的目标散射点b的标记矩阵am,其中,标记矩阵am中第t个特征第i个距离单元上的元素am(t,i)为:其中,fm(t,i)表示特征矩阵fm中第t个特征第i个距离单元上的元素,am(t,i)表示标记矩阵am中第t个特征第i个距离单元上的元素;最后,对第k帧杂波样本得到的特征矩阵f
ck
的每个极化特征,逐距离单元与fea
tup
和fea
tdn
进行比较,得到第k帧杂波样本的目标散点b的标记矩阵a
ck
,其中,标记矩阵a
ck
中第t个特征第i个距离单元上的元素a
ck
(t,i)为:其中,f
ck
(t,i)表示特征矩阵f
ck
中第t个特征第i个距离单元上的元素,a
ck
(t,i)表示标记矩阵a
ck
中第t个特征第i个距离单元上的元素。
[0012]
所述的步骤2中,建立待测样本的目标散射点位置标记矩阵的方法为:将待测样本的目标散射点a和待测样本的目标散射点b进行合并,即将由第m帧待测样本得到的和由第m帧待测样本得到的am拼接得到第m帧待测样本的目标散射点位置标记矩阵wm,矩阵wm的尺寸为(t 1)
×
n点;建立杂波样本的目标散射点位置标记矩阵的方法为:将杂波样本的目标散射点a和杂波样本的目标散射点b进行合并,即将由第k帧杂波样本得到的和由第k帧杂波样本得到的a
ck
拼接得到第k帧杂波样本的目标散射点位置标记矩阵w
ck
,矩阵w
ck
的尺寸为(t 1)
×
n点。
[0013]
所述的步骤3中,得到待测样本的特征聚合结果向量和杂波样本的特征聚合结果向量的具体方法为:步骤3-1,计算散射点权重向量;对y和yc中的每帧样本对应的散射点权重矩阵w,w∈{wm,w
ck
},按列求和并归一化得到散射点权重向量w,w(i)为向量w的第i个距离单元上的元素,计算公式为:其中,w(t,i)为矩阵w中第t个特征第i个距离单元上的元素;
将由第m帧待测样本计算得到的散射点权重向量w记为wm,将由第k帧杂波样本计算得到的散射点权重向量w记为w
ck
;步骤3-2,对散射点特征进行聚合得到每帧样本对应的特征向量,具体方法为:使用得到的fm和wm得到待测样本的特征聚合结果向量xm,使用得到的f
ck
和w
ck
得到杂波样本的特征聚合结果向量x
ck
,计算公式为:xm=fmw
mt
,x
ck
=f
ckwckt

[0014]
所述的步骤4中,使用杂波样本的特征聚合结果向量对检测器进行训练的方法为:将杂波样本的特征聚合结果向量x
ck
,作为正例样本输入检测器中进行训练,训练结束后得到一个包围(1-η)比例正例样本的最小超球面,超球面内是杂波样本空间,超球面外是异常样本空间,参数η是检测器的训练数据异常值比例参数,参数η的值等于检测器的虚警概率。
[0015]
所述的步骤5中,判断是否存在目标的方法为:将第m帧待测样本的特征聚合结果向量xm输入检测器,观测向量xm与超球面的位置关系,若输入样本落在超球面外,则判为第m帧待测样本中存在目标,若输入样本落在超球面内,则判为第m帧待测样本中不存在目标。
[0016]
对比已有技术,本发明具有如下优点:(1)本发明在检测中充分融合和利用目标散射能量和极化两个维度的信息,与现有仅使用能量强度或极化特征的检测方法相比,可以减少信息损失,提升检测性能;(2)本发明在散射点特征聚合时,分别对每个极化特征判断各个距离单元是否存在目标散射点以获取目标散射点位置标记矩阵,该操作可以潜在地自适应地为每个极化特征赋予不同的权重,使检测器关注于更有价值的特征。即,若某特征对目标和杂波的区分性好,可能在更多距离单元上判定存在目标散射点,等效于该特征参与特征聚合时对应的权重更大、对检测结果的影响更大;(3)本发明在散射点特征聚合时,分别对每个距离单元使用能量强度和极化特征差异信息获取目标散射点位置标记矩阵,并根据各距离单元被判定为目标散射点的频次作为权重进行特征聚合,该操作可以自适应地为各个距离单元赋予不同的权重,使检测器更关注于目标所在的距离单元,避免陷落损失问题,提升检测性能。
[0017]
(4)综合利用极窄脉冲回波的能量和极化特征信息,同时提取目标强、弱散射点,对目标各散射点上的特征进行聚合,一定程度上避免了陷落损失和信息损失,从而提升了雷达目标检测的检测概率。
附图说明
[0018]
图1为不同信杂比下本发明与现有特征检测技术的特征提取能力对比图;图2为不同信杂比下本发明与现有特征检测技术的检测概率对比图;图3为不同方位角下本发明与现有特征检测技术的检测概率对比图。
具体实施方式
[0019]
下面结合附图和实施例对本发明做进一步说明。
[0020]
一种极窄脉冲雷达散射点特征聚合目标极化检测方法,该方法的步骤包括:
步骤1,测量获取极窄脉冲回波信号,所获取的极窄脉冲回波信号中包括待测样本和杂波样本,对待测样本逐距离单元提取极化特征并将提取的极化特征形成待测样本特征矩阵,对杂波样本逐距离单元提取极化特征并将提取的极化特征形成杂波样本特征矩阵;步骤2,依据能量强度信息提取待测样本的目标散射点a,依据特征差异信息提取待测样本的目标散射点b,依据能量强度信息提取杂波样本的目标散射点a,依据特征差异信息提取杂波样本的目标散射点b,并根据待测样本的目标散射点a和待测样本的目标散射点b建立待测样本的目标散射点位置标记矩阵,根据杂波样本的目标散射点a和杂波样本的目标散射点b建立杂波样本的目标散射点位置标记矩阵;步骤3,利用步骤2得到的待测样本的目标散射点位置标记矩阵对步骤1形成的待测样本特征矩阵进行聚合,得到待测样本的特征聚合结果向量,利用步骤2得到的杂波样本的目标散射点位置标记矩阵对步骤1形成的杂波样本特征矩阵进行聚合,得到杂波样本的特征聚合结果向量;步骤4,使用步骤3得到的杂波样本的特征聚合结果向量对检测器进行训练;步骤5,将步骤3得到的待测样本的特征聚合结果向量输入到步骤4训练后的检测器中,判断是否存在目标。
[0021]
所述的步骤1中,若干帧待测样本构成待测样本集合y,将y中的总帧数记作m,y中的每帧信号ym为一个4
×
n点的矩阵,m表示极窄脉冲回波信号的帧编号,m=1,2,

,m,n表示距离单元个数,ym=[ym(1),ym(2),

,ym(n)],每个距离单元上包含四个极化通道hh、hv、vh、vv的回波数据,ym(i)=[s
hh
,s
hv
,s
vh
,s
vv
]
t
,i表示距离单元编号,i=1,2,

,n,ym(i)表示ym第i个距离单元上的元素,(
·
)
t
表示转置,h表示水平极化,v表示垂直极化,s
hh
表示水平向发射、水平向接收的回波数据,s
hv
表示水平向发射、垂直向接收的回波数据,s
vh
表示垂直向发射、水平向接收的回波数据,s
vv
表示垂直向发射、垂直向接收的回波数据;若干帧杂波样本构成杂波样本集合yc,yc中的总帧数记为|yc|。
[0022]
所述的步骤1中,形成待测样本特征矩阵和杂波样本特征矩阵的方法为:第一步,对y和yc中的每帧样本的每个距离单元进行pauli极化分解得到奇次散射特征fea_α、偶次散射特征fea_β和45
°
二面角散射特征fea_γ,公式为:第二步,对y和yc中的每帧样本的每个距离单元进行freeman非相干极化分解得到平面散射分量特征ps、二面角散射分量特征pd、体散射分量特征pv,公式为:
联立式(1)和式(2)求解得到ps、pd和pv,式中,如果,则令α=-1,如果,则令β=1,re(
·
)表示取实部,(
·
)
*
表示共轭;第三步,对y和yc中的每帧样本,将一个距离单元的6个特征fea_α,fea_β,fea_γ,ps,pd,pv拼接成特征列向量,再将各个距离单元的特征列向量横向拼接组成t
×
n点的特征矩阵,其中t表示特征个数,得到待测样本特征矩阵集合和杂波样本特征矩阵集合,待测样本特征矩阵集合中由第m帧待测样本得到的特征矩阵记为fm,杂波样本特征矩阵集合中由第k帧杂波样本得到的特征矩阵记为f
ck
,其中,k=1,2,

,|yc|,k为杂波样本的帧编号。
[0023]
所述的步骤2中,依据能量强度信息提取待测样本的目标散射点a和杂波样本的目标散射点a的方法为:首先,对y和yc中的每帧样本,即对每个y
x
,y
x
∈{y,yc},y
x
=[y
x
(1),y
x
(2),

,y
x
(i),

,y
x
(n)],进行多极化通道融合,得到融合结果向量t,t(i)为融合结果向量t的第i个距离单元上的元素,公式为:式中,(
·
)h表示共轭转置,表示杂波平均协方差矩阵的逆矩阵,计算公式为:式中,y
ck
(i)表示yc中第k帧样本的第i个距离单元上四个极化通道数据组成的列向量;y
x
(i)为y
x
的第i个距离单元上四个极化通道数据组成的列向量;然后,对t(i)求平方得到t2(i),将t2(i)从大到小排列,取中位数的值记为噪声和杂波的平均功率,并将平均功率记为p
noise
;最后,将t2(i)与门限μ
·
p
noise
进行比较,得到基于能量强度的待测样本的目标散射点a和杂波样本的目标散射点a,且待测样本的目标散射点a和杂波样本的目标散射点a的计算方式相同均通过向量进行计算,为中第i个距离单元上的元素:
式中,μ是门限因子;待测样本的目标散射点a的向量中由第m帧待测样本得到的结果用表示;杂波样本的目标散射点a的向量中由第k帧杂波样本得到的结果用表示。
[0024]
所述的步骤2中,依据特征差异信息提取待测样本的目标散射点b和杂波样本的目标散射点b的方法为:首先,对每个极化特征,统计每个极化特征在yc的所有帧样本所有距离单元的分布直方图,并计算分布的上λ分位点fea
tup
和下λ分位点fea
tdn
,此处λ取值为0.01,t为特征编号,t=1,2,

,t;然后,对待测样本的特征矩阵fm的每个极化特征,逐距离单元与fea
tup
和fea
tdn
进行比较,得到第m帧待测样本的目标散射点b的标记矩阵am,其中,标记矩阵am中第t个特征第i个距离单元上的元素am(t,i)为:其中,fm(t,i)表示特征矩阵fm中第t个特征第i个距离单元上的元素,am(t,i)表示标记矩阵am中第t个特征第i个距离单元上的元素;最后,对第k帧杂波样本得到的特征矩阵f
ck
的每个极化特征,逐距离单元与fea
tup
和fea
tdn
进行比较,得到第k帧杂波样本的目标散点b的标记矩阵a
ck
,其中,标记矩阵a
ck
中第t个特征第i个距离单元上的元素a
ck
(t,i)为:其中,f
ck
(t,i)表示特征矩阵f
ck
中第t个特征第i个距离单元上的元素,a
ck
(t,i)表示标记矩阵a
ck
中第t个特征第i个距离单元上的元素。
[0025]
所述的步骤2中,建立待测样本的目标散射点位置标记矩阵的方法为:将待测样本的目标散射点a和待测样本的目标散射点b进行合并,即将由第m帧待测样本得到的和由第m帧待测样本得到的am拼接得到第m帧待测样本的目标散射点位置标记矩阵wm,矩阵wm的尺寸为(t 1)
×
n点;建立杂波样本的目标散射点位置标记矩阵的方法为:将杂波样本的目标散射点a和杂波样本的目标散射点b进行合并,即将由第k帧杂波样本得到的和由第k帧杂波样本得到的a
ck
拼接得到第k帧杂波样本的目标散射点位置标记矩阵w
ck
,矩阵w
ck
的尺寸为(t 1)
×
n点。
[0026]
所述的步骤3中,得到待测样本的特征聚合结果向量和杂波样本的特征聚合结果向量的具体方法为:步骤3-1,计算散射点权重向量;
对y和yc中的每帧样本对应的散射点权重矩阵w,w∈{wm,w
ck
},按列求和并归一化得到散射点权重向量w,w(i)为向量w的第i个距离单元上的元素,计算公式为:其中,w(t,i)为矩阵w中第t个特征第i个距离单元上的元素;将由第m帧待测样本计算得到的散射点权重向量w记为wm,将由第k帧杂波样本计算得到的散射点权重向量w记为w
ck
;步骤3-2,对散射点特征进行聚合得到每帧样本对应的特征向量,具体方法为:使用得到的fm和wm得到待测样本的特征聚合结果向量xm,使用得到的f
ck
和w
ck
得到杂波样本的特征聚合结果向量x
ck
,计算公式为:xm=fmw
mt
,x
ck
=f
ckwckt

[0027]
所述的步骤4中,使用杂波样本的特征聚合结果向量对检测器进行训练的方法为:将杂波样本的特征聚合结果向量x
ck
,作为正例样本输入检测器中进行训练,训练结束后得到一个包围(1-η)比例正例样本的最小超球面,超球面内是杂波样本空间,超球面外是异常样本空间,参数η是检测器的训练数据异常值比例参数,参数η的值等于检测器的虚警概率,此处η取值为0.01。
[0028]
所述的步骤5中,判断是否存在目标的方法为:将第m帧待测样本的特征聚合结果向量xm输入检测器,观测向量xm与超球面的位置关系,若输入样本落在超球面外,则判为第m帧待测样本中存在目标,若输入样本落在超球面内,则判为第m帧待测样本中不存在目标。
[0029]
所述的依据能量强度提取目标散射点,是指根据极窄脉冲回波各距离单元的能量强度,使用有序统计恒虚警检测算法提取目标散射点,所述的依据特征差异信息提取目标散射点是指:根据极窄脉冲回波各距离单元提取的每个极化特征,分别使用特征分布上下分位点作为检测门限提取目标散射点;检测器为一类分类的支持向量机。
[0030]
实施例本部分结合实测数据实验,对本发明的效果进行说明。为了评估所提出检测方法的性能,采用雷达领域公开的数据集gtri进行了实验。
[0031]
数据集及参数设置:gtri数据集为x波段雷达测量的t-72坦克目标数据集,雷达中心频率为9.6ghz,距离分辨率为0.3m。考虑到t-72坦克目标的最大长度约9.4米,使用距离分辨率计算其最多占据33个距离单元,因此设置n=33。从gtri数据集中分别截取目标和杂波数据,并将目标数据和杂波数据按照一定的信杂比相叠加而仿真生成的数据,此处信杂比定义为目标片段和杂波片段的平均功率之比,取值为1db到15db(间隔1db)。使用的数据集详情如下:中心频率为9.6ghz;距离分辨率为0.3m;
俯仰角为27.9909
°
;方位角为(i
×
4.25 1.975)
°
,i=1,2,3,

,84;训练数据量(杂波)为1000条;信杂比为1db到15db(间隔1db);测试数据量(目标)为每个信杂比下8400条,其中每个方位角下100条;使用上述训练数据训练检测器,训练过程中虚警概率设置为0.01(即η=0.01),然后将各个信杂比下的测试数据分别输入检测器中,得到检测器性能曲线。使用“对所有距离单元特征平均”和“对能量高散射点特征平均
”ꢀ
2种现有的特征聚合方式作为对照组。
[0032]
实验结果:图1给出了不同信杂比下本发明与现有特征聚合方法的特征提取能力对比图,图中横轴表示不同的信杂比,纵轴处的特征提取能力用杂波和目标特征分布的最大均值差异(maximum mean discrepancy,mmd)距离表示,若mmd距离大,则杂波和目标特征分布差异越大,说明特征对杂波和目标更以区分,认为特征提取能力强;反之,认为特征提取能力弱。图2给出了三种方法在实测gtri数据集上的目标检测概率曲线,图中横轴表示不同的信杂比,纵轴表示检测概率。结果表明,相较于对所有距离单元特征取平均和对能量高的距离单元特征取平均的方法,本发明在信杂比为小于10db时有更强的特征提取能力,并且取得更高的检测概率。同时,对能量高的距离单元特征取平均方法的检测性能明显低于另外两种方法,说明能量高的点不代表其特征值也明显异于杂波,该特征聚合方法没有利用到能量较低但特征明显异于噪声和杂波的距离单元,存在严重的信息损失。
[0033]
图3给出了本发明在信杂比为7db时,对目标不同方位角数据的检测概率曲线,图中横轴表示目标方位角(0
°
代表迎头方向),纵轴代表检测概率。结果表明,本发明可以在各方位角下取得更高的检测概率。此外,可以发现与对所有距离单元特征取平均的方法相比,性能差异主要体现在方位角为90
°
和270
°
附近,即目标处于正侧姿态,此时目标长度变短,目标散射点占据的距离单元个数少,对所有距离单元特征取平均的特征聚合方式存在的陷落损失更严重,本发明可以有效解决该问题。
[0034]
综上所述,以上仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
再多了解一些

本文用于创业者技术爱好者查询,仅供学习研究,如用于商业用途,请联系技术所有人。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献