一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

梯度孔径和渐变亲和性的气液分离复合滤材及其制备方法与流程

2022-10-13 02:25:58 来源:中国专利 TAG:


1.本发明涉及气态流体的过滤材料技术领域,具体为梯度孔径和渐变亲和性的气液分离复合滤材及其制备方法。


背景技术:

2.天然气是我国实施双碳政策的重要能源,相同热值条件下天然气燃烧发电排放的温室气体量仅为煤炭的一半左右;而天然气燃烧时二氧化硫、含氮氧化物等大气污染物排放量更是远低于传统化石能源;提高天然气能源占比有利于加快实现绿色环保发展;在天然气开采和长途输送过程中,难免夹带大量油液和水等液体污染物;这些液体污染物如果不及时处理,将可能导致管路腐蚀、输送能耗上升和气动元件损坏等问题;因此气液分离是天然气开采环节、运输环节和终端使用环节中必不可少的一环;气液分离滤材的核心指标为过滤效率和饱和压降;其中过滤效率是指滤材分离液态颗粒的效率,饱和压降是指滤材吸收液体颗粒饱和后的压力损失;饱和压降的减小,能够降低天然气压气机的压力需求;对我国每年3200亿立方米以上的庞大天然气用量而言,有利于减少压气机等动力设备功耗,节约能源。
3.然而,现有技术更多的关注点在于增加滤材层数以提高过滤效率,难以克服由于滤材增加引起的液滴大量吸附在滤材内部堵塞流道,导致吸液饱和时压降的指数级升高的问题。


技术实现要素:

4.本发明的目的在于提供梯度孔径和渐变亲和性的气液分离复合滤材及其制备方法,通过对滤材结构和对液亲和性能改进设计,避免气液分离时,滤材内部吸附大量液体颗粒,从而降低饱和压降,以解决上述背景技术中提出的问题。
5.为实现上述目的,本发明提供如下技术方案:梯度孔径和渐变亲和性的气液分离复合滤材,包括若干层玻璃纤维滤材,若干所述玻璃纤维滤材依次设置,所述玻璃纤维滤材为单一孔径、单一亲和性材料,所述玻璃纤维滤材的厚度不超过1.5mm,若干所述玻璃纤维滤材的孔径沿气流流向梯度排列,每层所述玻璃纤维滤材对液滴毛细作用力计算公式为:,
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(a)其中:为从迎风面层开始第层滤材对液滴的表面张力,为从迎风面层开始第层滤材的平均孔径;若干所述玻璃纤维滤材对液滴毛细作用力满足沿气流流向逐渐增加的要求,表示为:。
6.优选的,所述玻璃纤维滤材平均孔径的范围为3μm到50μm。
7.优选的,包括三层玻璃纤维滤材,所述三层玻璃纤维滤材,按照气流方向排序,分别为迎风面层滤材、中间层滤材和背风面层滤材,三层所述玻璃纤维滤材的表面张力值分别为72.3n/m、72.3n/m和36.9n/m,三层所述玻璃纤维滤材的平均孔径值分别为10.7μm、9.3μm和4.7μm;将三层所述玻璃纤维滤材的表面张力值和平均孔径值代入到(a)式后,得到三层所述玻璃纤维滤材对液滴毛细作用力分别为19.3kpa、22.2kpa和22.4kpa,满足若干所述玻璃纤维滤材对液滴毛细作用力沿气流流向逐渐增加的要求。
8.梯度孔径和渐变亲和性的气液分离复合滤材的制备方法,包括以下步骤:步骤一、选取玻璃纤维滤材;步骤二、加入pet纤维网膜;步骤三、形成复合滤材。
9.优选的,所述步骤一中,通过孔径分析仪测定选取的玻璃纤维滤材的平均孔径,采用滤材效率分析仪测量选取的玻璃纤维滤材的过滤效率,使复合滤材的总体过滤效率不低于设计要求的过滤效率,表示为:
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(b)其中:为滤材层数,为从迎风面层开始第层滤材的过滤效率,为设计要求的过滤效率。
10.优选的,所述步骤二中,在两个所述玻璃纤维滤材之间插入pet纤维网膜,所述pet纤维网膜的厚度为0.01到0.03mm。
11.优选的,所述步骤三中,对步骤二中的玻璃纤维和pet纤维网膜整体进行加温加压,温度控制在270℃到290℃范围内,持续加压至120pa以上,使pet 纤维网膜融化,然后冷却至室温完成滤材的复合。
12.与现有技术相比,本发明的有益效果是:1、本发明克服了传统气液分离复合滤材饱和压降过高的缺点,通过控制实现各层玻璃纤维滤材对液滴的毛细作用力,实现液体在复合滤材内部沿气流方向的定向流动,减少滤材吸附液滴的体积,从而避免了液滴堵塞孔隙流道,达到减小饱和压降的目的。
13.2、本发明通过控制滤材内部液滴对饱和压降的影响,改善了复合滤材饱和压降与背风面层滤材毛细作用力的等量关系,实现了复合滤材饱和压降的定量设计,解决了传统气液分离滤材无法确定饱和压降指标受滤材内部液滴影响而不稳定的问题。
附图说明
14.图1为本发明复合滤材复合后的结构剖视图;图2为本发明复合滤材爆炸结构示意图;图3为本发明液体颗粒在滤材分界面上受力原理示意图;图4为本发明液体颗粒在滤材背风面层受力原理示意图;图5为本发明制备方法步骤框图;图6为本发明中热辊压成型机构加工复合滤材的工作原理示意图。
15.图中:1、玻璃纤维滤材;2、pet纤维网膜。
具体实施方式
16.下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
17.在本发明的描述中,需要说明的是,术语“上”、“下”、“内”、“外”、“顶/底端”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。
18.请参阅图1,本发明提供一种技术方案:梯度孔径和渐变亲和性的气液分离复合滤材,可用于天然气、压缩空气和高压氧气氮气等工业气体的气液分离。
19.结构由多层玻璃纤维滤材1复合而成,通过增加层数,能够有效提高复合滤材整体的过滤效率。复合滤材中多层玻璃纤维滤材1的孔径梯度排列,提高了抗污染能力;复合滤材中的多层玻璃纤维滤材1对液体的亲和性(即表面张力)渐变设置,利于分离的液滴在滤材毛细作用下连续向下游流动,最终到达背风面层(即最后层滤材),降低滤材内部液滴含量;背风面层滤材对液滴亲和性指标根据要求的设计饱和压降确定。最终通过控制每层玻璃纤维滤材1的孔径,达到设计要求的过滤效率,通过控制每层的玻璃纤维滤材1对液体亲和性指标,达到控制滤材设计饱和压降的目的。
20.在工程实际中,优先考虑滤材的过滤效率指标,即先确定滤材的层数和每层滤材的孔径和过滤效率。
21.如图1所示,该复合滤材有三层玻璃纤维滤材1,即由迎风面层滤材、中间层滤材和背风面层滤材三层滤材组成。选取迎风面层滤材平均孔径4.7μm,对0.3μm颗粒的过滤效率93%;中间层滤材平均孔径9.3μm,对0.3μm颗粒的过滤效率为67%;背风面层滤材孔径10.7μm,对0.3μm颗粒的过滤效率为58%;三层滤材组合后对0.3μm颗粒过滤总效率达到的设计过滤效率为99%。
22.本实施例中,滤材利用聚结分离的原理实现气液分离。滤材实际工作过程中,需要考虑降低分离的液体在滤材吸附中的影响。迎风面层滤材、中间层滤材和背风面层滤材初始对水亲和性均为“抗水0级”(3m-ii-1988《拒水测试试剂》),即对水表面张力为72.3n/m,结合本发明提供的公式(a),可以计算出滤材对水的毛细作用力分别为:迎风面层41kpa,中间层20.8kpa、19.3kpa。不符合沿气流方向上迎风面层滤材对液滴毛细作用力逐渐增加的规律,因此将三层滤材的顺序调整为:迎风面层滤材孔径10.7μm,0.3μm颗粒过滤效率58%;中间层滤材平均孔径9.3μm,0.3μm颗粒过滤效率67%;背风面层滤材平均孔径4.7μm,0.3μm颗粒过滤效率93%。调整滤材顺序后,滤材对水的毛细作用力分别为:迎风面层19.3kpa,中间层22.2kpa、背风面层41kpa。
23.此时,背风面层滤材对水的毛细作用力偏大,需要对背风面层滤材进行改性处理。改性处理后背风面层对水亲和性达到“抗水9级”(3m-ii-1988《拒水测试试剂》),即对水表面张力为36.9n/m,背风面层滤材对水毛细作用力为22.4kpa,降低了复合滤材的饱和压降。
24.请参阅图5,本发明还提供了梯度孔径和渐变亲和性的气液分离复合滤材的制备
方法,包括以下步骤:步骤一、选取玻璃纤维滤材1:通过孔径分析仪测定选取的每层玻璃纤维滤材1的平均孔径,采用滤材效率分析仪测量选取的每层玻璃纤维滤材1的过滤效率,使多层玻璃纤维滤材1复合后形成的复合滤材的总体过滤效率不低于设计要求的过滤效率,表示为:
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(b)其中:为滤材层数,为从迎风面层开始第层滤材的过滤效率,为设计要求的过滤效率。
25.步骤二、加入pet纤维网膜2:在两个玻璃纤维滤材1之间插入pet纤维网膜2,pet纤维网膜2的厚度为0.01mm。
26.步骤三、形成复合滤材:采用热辊压成型机构对步骤二中的多层玻璃纤维滤材1和pet纤维网膜2整体进行加温加压,如图6所示,其中,温度控制在270℃,持续加压至120pa以上,使pet 纤维网膜融化,然后冷却至室温完成滤材的复合。
27.热辊压成型机构为现有技术,在此不再详细描述其结构,其工作原理可参考图6。
28.实施例二如图1所示,该复合滤材有三层玻璃纤维滤材1,即迎风面层滤材、中间层滤材和背风面层滤材三层滤材组成。选取迎风面层滤材平均孔径4.7μm,对0.3μm颗粒的过滤效率93%;中间层滤材平均孔径9.3μm,对0.3μm颗粒的过滤效率为67%;背风面层滤材孔径10.7μm,对0.3μm颗粒的过滤效率为58%;三层滤材组合后对0.3μm颗粒过滤总效率达到的设计过滤效率为99%。
29.本实施例中,滤材利用聚结分离的原理实现气液分离。滤材实际工作过程中,需要考虑降低分离的液体在滤材吸附中的影响。迎风面层滤材、中间层滤材和背风面层滤材初始对水亲和性均为“抗水0级”(3m-ii-1988《拒水测试试剂》),即对水表面张力为72.3n/m,结合本发明提供的公式(a),可以计算出滤材对水的毛细作用力分别为:迎风面层41kpa,中间层20.8kpa、19.3kpa。不符合沿气流方向上迎风面层滤材对液滴毛细作用力逐渐增加的规律,因此将三层滤材的顺序调整为:迎风面层滤材孔径10.7μm,0.3μm颗粒过滤效率58%;中间层滤材平均孔径9.3μm,0.3μm颗粒过滤效率67%;背风面层滤材平均孔径4.7μm,0.3μm颗粒过滤效率93%。调整滤材顺序后,滤材对水的毛细作用力分别为:迎风面层19.3kpa,中间层22.2kpa、背风面层41kpa。
30.此时,背风面层滤材对水的毛细作用力偏大,需要对背风面层滤材进行改性处理。改性处理后背风面层对水亲和性达到“抗水9级”(3m-ii-1988《拒水测试试剂》),即对水表面张力为36.9n/m,背风面层滤材对水毛细作用力为22.4kpa,降低了复合滤材的饱和压降。
31.请参阅图5,本发明还提供了梯度孔径和渐变亲和性的气液分离复合滤材的制备方法,包括以下步骤:步骤一、选取玻璃纤维滤材1:通过孔径分析仪测定选取的玻璃纤维滤材1的平均孔径,采用滤材效率分析仪测量选取的玻璃纤维滤材1的过滤效率,使复合滤材的总体过滤效率不低于设计要求的过滤效率,表示为:
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
(b)
其中:为滤材层数,为从迎风面层开始第层滤材的过滤效率,为设计要求的过滤效率。
32.步骤二、加入pet纤维网膜2:在两个玻璃纤维滤材1之间插入pet纤维网膜2,所述pet纤维网膜2的厚度为0.03mm。
33.步骤三、形成复合滤材:采用热辊压成型机构对步骤二中的玻璃纤维滤材1和pet纤维网膜2整体进行加温加压,温度在290℃,持续加压至120pa以上,使pet 纤维网膜融化,然后冷却至室温完成滤材的复合。
34.此外在如图3和图4中,f
上 为上游滤材对液滴毛细作用力,f
下 为下游滤材对液滴毛细作用力,p为气流对液滴作用力。
35.需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。
36.尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。
再多了解一些

本文用于创业者技术爱好者查询,仅供学习研究,如用于商业用途,请联系技术所有人。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献