一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

具有硅锗鳍片的半导体结构及其制造方法与流程

2022-09-03 20:23:20 来源:中国专利 TAG:

具有硅锗鳍片的半导体结构及其制造方法
1.本发明是中国专利申请号为201611175654.3,发明名称为“具有硅锗鳍片的半导体结构及其制造方法”,申请日为2016年12月19日的专利申请的分案申请。
技术领域
2.本发明涉及半导体结构,尤其涉及具有硅锗鳍片的半导体结构及其制造方法。


背景技术:

3.半导体制造可开始于在硅衬底上设置许多半导体结构,例如电容器、晶体管以及/或者埋置互连。在一些情况下,可能想要为那些半导体结构设置硅锗沟道,以增加装置的迁移率及性能。为实现此目的,可在硅衬底上生长硅锗层。形成硅锗沟道的一个挑战包括在该硅衬底上生长包括低量锗(约5%至约40%锗)的松驰硅锗层。
4.通常,在该硅衬底上生长极厚的(数微米)、应变松驰的硅锗缓冲层。当该硅锗层生长时,它保持该硅衬底的晶格。为获得松弛的硅锗层,生长该硅锗层直至其所达到的厚度引起足够的应变,从而形成缺陷或裂纹。此制程依赖于缓慢的锗梯度来松弛该膜。此制程不仅耗时而且昂贵。


技术实现要素:

5.本发明的第一方面包括一种制造半导体结构的方法。该方法可包括:在衬底上方形成硅锗超晶格;在该硅锗超晶格内形成一组鳍片;在该组鳍片中的各鳍片之间形成介电质;在该组鳍片的第一部分及其之间的该介电质上方形成应变硅层;以及在该组鳍片的第二部分及其之间的该介电质上方形成应变硅锗层。
6.本发明的第二方面包括一种制造半导体结构的方法。该方法可包括:在衬底上形成第一应变硅锗层;注入第一物质(first species)至该第一应变硅锗层与该衬底的界面的深度;在该第一应变硅锗层中形成一组鳍片;在该组鳍片中的各鳍片之间形成介电质;退火该组鳍片;移除各鳍片的一部分;在该组鳍片的第一部分及其之间的该介电质上方形成应变硅层;以及在该组鳍片的第二部分及其之间的该介电质上方形成第二应变硅锗层。
7.本发明的第三方面包括一种半导体结构,该半导体结构包括:位于衬底上的一组鳍片,该组鳍片包括硅锗层;以及位于该组鳍片中的各鳍片之间的介电质;其中,n型场效应晶体管(nfet)区域中的各鳍片还包括位于该nfet区域中的各鳍片的该硅锗层上方的应变硅层;其中,p型场效应晶体管(pfet)区域中的各鳍片还包括位于该pfet区域中的各鳍片的该硅锗层上方的应变硅锗层。
附图说明
8.将通过参照下面的附图来详细说明本发明的实施例,该些附图中类似的附图标记表示类似的元件,以及其中:
9.图1至7显示经历如本文中所述的一种方法的方面的半导体结构。
10.图8至14显示经历替代如关于图2至7所述的方法的一种方法的方面的半导体结构。
11.图15至21显示经历如本文中所述的另一种方法的方面的半导体结构。
12.图22至26显示经历如本文中所述的另一种方法的方面的半导体结构。
具体实施方式
13.本发明的方面涉及半导体结构,尤其涉及具有硅锗鳍片的半导体结构及其制造方法。具体地说,本文中所述的半导体结构是薄的应变松弛缓冲层,其与用以获得应变松弛缓冲层的传统方法相比可较快地获得且花费较少。
14.请参照图1至7,现在将说明依据本发明的方面的一种形成半导体结构100(图7)的方法。该方法开始于形成结构90,该结构包括位于衬底102上方的硅锗超晶格110。应当理解,当作为层、区域或衬底的一个元件被称为位于另一个元件“上方”时,它可直接位于该另一个元件上或者可存在中间元件。还应当理解,当一个元件被称为与另一个元件“连接”或“耦接”时,它可直接与该另一个元件连接或耦接,或者可存在中间元件。衬底102可包括但不限于硅、锗、硅锗、碳化硅,以及基本由具有由式al
x1
ga
x2
in
x3
as
y1
p
y2ny3
sb
y4
定义的组成的一种或多种iii-v族化合物半导体组成的物质,其中,x1、x2、x3、y1、y2、y3及y4表示相对比例,分别大于或等于0且x1 x2 x3 y1 y2 y3 y4=1(1是总的相对摩尔(mole)量)。其它合适的衬底包括具有组成zn
a1
cd
a2
se
b1
te
b2
的ii-vi族化合物半导体,其中,a1、a2、b1及b2是相对比例,分别大于或等于零,且a1 a2 b1 b2=1(1是总的摩尔量)。结构90可包括n型场效应晶体管(n-type field effect transistor;nfet)区域106以及p型场效应晶体管(p-type field effect transistor;pfet)区域108。
15.硅锗超晶格110可包括位于衬底102上方的交替的锗层112与硅层114。硅锗超晶格110可通过例如外延生长和/或沉积形成。术语“外延生长和/或沉积”以及“外延形成和/或生长”是指在半导体材料的沉积表面上生长半导体材料,其中,所生长的该半导体材料可具有与该沉积表面的该半导体材料相同的结晶特性。在外延沉积制程中,控制由源气体提供的化学反应物并设置系统参数,以使沉积原子以足够的能量到达半导体衬底的沉积表面,从而围绕该表面运动并使其自己朝向该沉积表面的原子的晶体排列。因此,外延半导体材料可具有与沉积表面(该外延半导体材料可形成于该沉积表面上)相同的结晶特性。例如,沉积于{100}晶面上的外延半导体材料可呈{100}取向。在一些实施例中,外延生长和/或沉积制程对于形成于半导体表面上可具有选择性,且可不沉积材料于介电表面,例如二氧化硅或氮化硅表面上。
16.锗层112可例如在约200℃至约600℃的温度下,或者尤其在约350℃的温度下,在约1托至约1000托的压力下,或者尤其300托的压力下形成。在形成锗层112期间可使用的制程气体可包括但不限于氢(h2)、锗烷(geh4)、氯化锗(gecl4)以及氯化氢(hcl)。硅层114可例如在约400℃至约900℃的温度下,或者尤其在约700℃的温度下,在约1托至约1000托的压力下,或者尤其10托的压力下形成。在形成硅层114期间可使用的制程气体可包括但不限于:氢(h2)、硅烷(sih4)、乙硅烷(si2h6)、二氯硅烷(sicl2h2)、氯化氢(hcl)。
17.与各锗层112的厚度相比,各硅层114的相对厚度可依据想要的锗的最终百分比而变化。例如,若最终组成为25%锗,则硅层114可具有各锗层112的厚度约4倍的厚度。在此实
施例中,各锗层112可具有约1纳米(nm)至约10纳米的厚度且各硅层114可具有约4纳米至约40纳米的厚度。硅锗超晶格110可包括约10纳米至约1000纳米的总厚度。尽管图中仅显示三个锗层112及三个硅层114,但可形成任意数目的锗层112及硅层114,而不背离本发明的方面。本文中所使用的“约”意图包括例如在所述值的10%以内的值。
18.以此方式交替的锗层112与硅层114导致松弛硅锗超晶格110。具体地说,在相应锗层112与硅层114的各界面处,晶格有机会破裂,以解耦硅锗超晶格110的晶体结构,从而导致松弛硅锗超晶格110,其与应变超晶格相反。
19.如图2中所示,结构90可经历例如退火的热处理制程。例如,在结构90上可执行激光或闪光退火120。退火120可在约900℃至约1200℃的温度下执行约1小时至约24小时。退火120导致锗层112(图1)与硅层114(图1)热混合,从而使硅锗超晶格110由松弛硅锗116的单一组合组成。松弛硅锗116可包括低百分比锗。例如,松弛硅锗116可包括约10%锗至约50%锗,或者尤其25%锗。在一些实施例中,在执行退火120之前,在最上硅层114(图1)上方(例如通过生长和/或沉积)可首先形成氧化物层(未显示),例如二氧化硅。
20.除非另外指出,否则本文中所使用的术语“沉积”可包括适于材料沉积的任意当前已知或以后开发的技术,包括但不限于例如化学气相沉积(chemical vapor deposition;cvd)、低压cvd(low-pressure cvd;lpcvd)、等离子体增强型cvd(plasma-enhanced cvd;pecvd)、半大气压cvd(semi-atmosphere cvd;sacvd)以及高密度等离子体cvd(high density plasma cvd;hdpcvd)、快速加热cvd(rapid thermal cvd;rtcvd)、超高真空cvd(ultra-high vacuum cvd;uhvcvd)、限制反应处理cvd(limited reaction processing cvd;lrpcvd)、金属有机cvd(metalorganic cvd;mocvd)、溅镀沉积、离子束沉积、电子束沉积、激光辅助沉积、热氧化、热氮化、旋涂方法、物理气相沉积(physical vapor desposition;pvd)、原子层沉积(atomic layer deposition;ald)、化学氧化、分子束外延(molecular beam epitaxy;mbe)、电镀、蒸镀。
21.现在请参照图3,在硅锗超晶格110上方可形成应变硅层124。如本文中将说明的那样,应变硅层124可与nfet结合使用。在形成应变硅层124以后,可图案化应变硅层124,如图4中所示。例如,例如硬掩膜的掩膜128可形成于应变硅层124上方、经图案化及蚀刻以暴露其下方的硅锗超晶格110的部分。本文中所使用的“蚀刻”可包括适于材料蚀刻的任意当前已知或以后开发的技术,包括但不限于例如:非等向性蚀刻、等离子体蚀刻、溅镀蚀刻、离子束蚀刻、反应离子束蚀刻以及反应离子蚀刻(reactive-ion etching;rie)。在图4中所示的实施例中,掩膜128及应变硅层124可经蚀刻以暴露pfet区域108的硅锗超晶格110。
22.如图5中所示,在暴露硅锗超晶格110上方可形成应变硅锗层132(例如通过外延生长和/或沉积)。也就是说,在pfet区域108的硅锗超晶格110上方可形成应变硅锗层132。应变硅锗层132可包括高百分比锗(约40%至约80%)。尽管已显示并说明了在形成应变硅锗层132之前形成应变硅层124,但应当理解,在其它实施例中,应变硅锗层132可形成于应变硅层124之前,而不背离本发明的方面。也就是说,在执行退火120(图2)以后,在硅锗超晶格110上可形成应变硅锗层132。可如关于图3至4所述图案化应变硅锗层132以暴露nfet区域106的硅锗超晶格110。随后,在nfet区域106的暴露硅锗超晶格110上方可形成应变硅层124。
23.如图6中所示,在形成应变硅层124及应变硅锗层132以后,例如通过现有技术中已
知的和/或本文中所述的传统蚀刻及掩膜技术可形成一组鳍片140。鳍片组140可包括位于nfet区域106中的鳍片142以及位于pfet区域108中的鳍片144。在各鳍片142、144上方可为硬掩膜(未显示),该硬掩膜可依据已知技术形成,以在后续制程步骤期间遮挡鳍片组140中的各鳍片142、144。应当理解,在一些实施例中,在各鳍片142、144上方使用该硬掩膜是可选的。不使用该硬掩膜的鳍片142、144的部分支持后续形成栅极堆叠(未显示),该栅极堆叠将包围各鳍片142、144,如现有技术所已知。在暴露鳍片142、144上方形成该栅极堆叠之前,可用与该晶体管类型相反的掺杂物轻掺杂鳍片142、144,其促进沟道区(未显示)的形成。另外,如图7中所示,在鳍片组140中的各鳍片142、144之间,例如通过沉积可形成介电质146。举例来说,介电质146可包括氧化物,如二氧化硅,或氮化物如氮化硅,或其组合。
24.在经历关于图1至7所示及所述的制程步骤以后所形成的半导体结构100可包括位于衬底102上的一组鳍片140以及位于鳍片组140的各鳍片142、144之间的介电质146。nfet区域106中的各鳍片142可包括硅锗超晶格110的松弛硅锗116以及位于其顶部上的应变硅层142。pfet区域108中的各鳍片144可包括硅锗超晶格110的松弛硅锗116以及位于其顶部上的应变硅锗层144。
25.图8至14显示经历替代如关于图2至7所述的方法的一种方法的方面的结构90,其中,图14中显示依据此实施例所形成的半导体结构100。在此实施例中,在形成如关于图1所述的硅锗超晶格110以后,可形成鳍片组140,如图8中所示。也就是说,鳍片组140可在形成交替的锗层112与硅层114以后形成。锗层112、硅层114以及鳍片组140可如本文中关于图1至6所述形成。如图9中所示,在各鳍片142、144之间可形成介电质146,如关于图7所述。
26.现在请参照图10,在结构90上可执行热处理制程,例如退火120,如关于图2所述。也就是说,此实施例与图2至7的实施例不同之处在于退火120执行于形成鳍片组140以后而不是在形成鳍片组140之前。退火120导致锗层112(图9)与硅层114(图9)热混合,从而使硅锗超晶格110由松弛硅锗116的单一组合组成。松弛硅锗116可包括低百分比锗。也就是说,松弛硅锗116可包括约10%锗至约50%锗,或者尤其25%锗。在一些实施例中,在执行退火120之前,在最上硅层114(图9)上方(例如通过生长和/或沉积)可首先形成氧化物层(未显示),例如二氧化硅。
27.如图11中所示,例如通过蚀刻可凹入鳍片组140,以使鳍片组140中的各鳍片142、144的高度小于其间的各介电质146的高度。例如,掩膜(未显示)可形成于结构90上方,经图案化及蚀刻以暴露鳍片142、144。接着,可移除鳍片142、144的一部分。在凹入鳍片142、144以后,在各鳍片142、144的暴露硅锗超晶格110上方(例如通过外延生长和/或沉积)可形成应变硅层124至介电质146的高度,如图12中所示。另外,可图案化应变硅层124以暴露松弛硅锗层116的一部分。例如,如图13中所示,例如硬掩膜的掩膜128可形成于应变硅层124上方,经图案化及蚀刻以暴露pfet区域108中的该掩膜下方的鳍片142、144及介电质146。
28.如图14中所示,在各鳍片142、144的暴露硅锗超晶格110上方(例如通过外延生长和/或沉积)可形成应变硅锗层132至介电质146的高度,如关于图7所述。也就是说,在pfet区域108的硅锗超晶格110上方可形成应变硅锗层132。应变硅锗层132可包括高百分比锗(约40%至约80%)。尽管已显示并说明了在形成应变硅锗层132之前形成应变硅层124,但应当理解,在其它实施例中,应变硅锗层132可形成于应变硅层124之前,而不背离本发明的方面。也就是说,在凹入鳍片组140以后,在硅锗超晶格110上可形成应变硅锗层132。可如关
于图13所述图案化应变硅锗层132,以暴露nfet区域106的硅锗超晶格110。随后,在nfet区域106的暴露硅锗超晶格110上方可形成应变硅层124。
29.在经历关于图8至14所示及所述的制程步骤以后所形成的半导体结构100可包括位于衬底102上的一组鳍片140以及位于鳍片组140的各鳍片142、144之间的介电质146。nfet区域106中的各鳍片142可包括:包括松弛硅锗116的硅锗超晶格110以及位于其顶部上的应变硅层142。pfet区域108中的各鳍片144可包括:包括松弛硅锗116的硅锗超晶格110以及位于其顶部上的应变硅锗层144。
30.现在请参照图15至19,其显示经历如本文中所述的另一种方法的方面的半导体结构190。在此实施例中,在衬底202上例如通过外延生长和/或沉积形成硅锗碳层204,如图15中所示。衬底202可包括本文中关于衬底102(图1)所列的任意材料。硅锗碳层204可包括约0.5%碳至约1.5%碳。另外,在硅锗碳层204上方例如通过外延生长和/或沉积可形成应变硅锗层210。应变硅锗层210可包括低百分比锗。也就是说,应变硅锗层210可包括约10%锗至约50%锗,或者尤其25%锗。
31.应变硅锗层210及硅锗碳层204可在约400℃至约800℃的温度下,或者尤其约500℃的温度下,在约1托至约1000托的压力下,或者尤其10托的压力下形成。在形成锗层112期间可使用的制程气体可包括但不限于:氢(h2)、锗烷(geh4)、氯化氢(hcl)、硅烷(sih4)、乙硅烷(si2h6)、二氯硅烷(sicl2h2)、甲基硅烷(sih3ch3)以及乙炔(c2h2)。
32.如图16中所示,可注入注入物质212至硅锗碳层204与衬底202的界面的深度。注入物质212可包括例如氢(h )及氦(he)的至少其中一种。注入物质212可以约1e16离子/cm2至约5e16离子/cm2的剂量,或者尤其约2e16离子/cm2的剂量,以例如约10电子伏特(ev)至约30ev的能量范围注入。在另一个实施例中,注入物质212可包括氢(h2)。在此实施例中,可注入的氢(h2)的剂量范围可为关于氢(h )及氦(he)所述剂量范围的大约一半。该注入导致硅锗碳层204与衬底202的晶格解耦,从而在硅锗碳层204与衬底202的界面处引起缺陷216。具体地说,在硅锗碳层204与衬底202的界面处可形成微腔(未显示),以使硅锗碳层204的晶格破裂但不会完全与衬底202解耦或引起脱层。
33.如图17中所示,例如通过现有技术中已知的和/或本文中所述的传统蚀刻及掩膜技术可自应变硅锗层210形成一组鳍片240。鳍片组240可包括nfet区域206中的鳍片242以及pfet区域208中的鳍片244。在各鳍片242、244上方可为硬掩膜(未显示),该硬掩膜可依据已知技术形成,以在后续制程步骤期间遮挡该组鳍片中的各鳍片242、244。应当理解,在一些实施例中,在各鳍片242、244上方使用该硬掩膜是可选的。不使用该硬掩膜的鳍片242、244的部分支持后续形成栅极堆叠(未显示),该栅极堆叠将包围各鳍片242、244,如现有技术所已知。在暴露鳍片242、244上方形成该栅极堆叠之前,可用与该晶体管类型相反的掺杂物轻掺杂鳍片242、244,其促进沟道区(未显示)的形成。另外,在鳍片组240中的各鳍片242、244之间,例如通过沉积可形成介电质246,如图18中所示。例如,介电质246可包括氧化物,如二氧化硅,或氮化物如氮化硅,或其组合。
34.如图19中所示,在半导体结构200上可执行退火250。退火250导致缺陷216(图16至18)延伸穿过硅锗碳层204及应变硅锗层210,从而形成裂纹252。退火可在800℃至约1100℃的温度下执行约60秒至约1200秒。裂纹252引起硅锗碳层204与衬底202进一步解耦。这导致应变硅锗层210(图15至18)变为松弛硅锗层218。现在请参照图20,例如通过蚀刻可凹入鳍
片组240,以使鳍片组240中的各鳍片242、244的高度小于其间的各介电质246的高度。在凹入鳍片242、244以后,在鳍片组240中的各鳍片242、244上方可形成应变硅层262,如图21中所示。另外,应变硅层262可经图案化及蚀刻以暴露松弛硅锗层218的一部分。例如,掩膜(未显示)可形成于应变硅层262上方,经图案化及蚀刻以暴露其下方的松弛硅锗层218的部分,如关于图4及13所述。尤其,该掩膜可经蚀刻以暴露pfet区中的松弛硅锗层218。
35.仍请参照图21,在暴露松弛硅锗层218上方(例如外延生长和/或沉积)可形成另一个应变硅锗层264,如关于图5所述。也就是说,在pfet区域208中的松弛硅锗层218上方可形成应变硅锗层264。应变硅锗层264可包括高百分比锗(约40%至约80%)。尽管已显示并说明了在形成应变硅锗层264之前形成应变硅层262,但应当理解,在其它实施例中,应变硅锗层264可形成于应变硅层262之前,而不背离本发明的方面。也就是说,在凹入鳍片组240以后,在松弛硅锗层218上可形成应变硅锗层264。可如本文中所述图案化并蚀刻应变硅锗层264,以暴露nfet区域206中的松弛硅锗层218。随后,在nfet区域206的暴露松弛硅锗层218上方可形成应变硅层262。
36.现在请参照图22至26,其显示经历如本文中所述的另一种方法的方面的半导体结构290。此实施例与关于图15至19所述的实施例基本类似,除了硅锗碳层设于应变硅锗层内,与衬底隔开以外。
37.如图22中所示,在衬底302上例如通过外延生长和/或沉积形成应变硅锗层310。衬底302可包括本文中关于衬底102(图1)所列的任意材料。应变硅锗层310可包括低百分比锗。也就是说,应变硅锗层310可包括约10%锗至约50%锗,或者尤其25%锗。在形成应变硅锗层310期间,可形成硅锗碳层304。也就是说,可形成应变硅锗310的第一层或层组。接着,可形成硅锗碳304的一层或层组。随后,可形成应变硅锗304的第二层或层组。硅锗碳层304可包括约0.25%碳至约1.5%碳。应变硅锗层310及硅锗碳层304可通过本文中关于图15所述的制程条件形成。
38.如图23中所述,可注入注入物质312至应变硅锗层310与衬底302的界面的深度。注入物质312可以关于图16所述的任意制程条件注入。注入物质212可包括例如氢(h2)与氦(he)的至少其中一种。该注入导致应变硅锗层310与衬底302的晶格解耦,从而引起缺陷316。
39.如图24中所示,例如通过现有技术中已知的和/或本文中所述的传统蚀刻及掩膜技术可自应变硅锗层310形成一组鳍片340。鳍片组340可包括nfet区域306中的鳍片342以及pfet区域308中的鳍片344。在各鳍片342、344上方可为硬掩膜(未显示),该硬掩膜可依据已知技术形成,以在后续制程步骤期间遮挡该组鳍片中的各鳍片342、344。应当理解,在一些实施例中,在各鳍片342、344上方使用该硬掩膜是可选的。不使用该硬掩膜的鳍片342、344的部分支持后续形成栅极堆叠(未显示),该栅极堆叠将包围各鳍片342、344,如现有技术所已知。在暴露鳍片342、344上方形成该栅极堆叠之前,可用与该晶体管类型相反的掺杂物轻掺杂鳍片342、344,其促进沟道区(未显示)的形成。另外,在鳍片组340中的各鳍片342、344之间,例如通过沉积可形成介电质346。例如,介电质346可包括氧化物,如二氧化硅,或氮化物如氮化硅,或其组合。
40.如图25中所示,在半导体结构290上可执行退火350。退火350导致缺陷316(图23至24)延伸穿过硅锗碳层304及应变硅锗层310,从而形成裂纹352。裂纹352引起应变硅锗层
310(图22至24)层304与衬底302进一步解耦。这导致应变硅锗层310变为松弛硅锗层318。另外,例如通过蚀刻可凹入鳍片组340,以使鳍片组340中的各鳍片342、344的高度小于其间的各介电质346的高度。
41.现在请参照图26,在凹入鳍片342、344以后,在鳍片组340中的各鳍片342、344上方可形成应变硅层362。另外,可图案化应变硅层362以暴露松弛硅锗层318的一部分。例如,掩膜(未显示)可形成于应变硅层362上方,并经蚀刻以暴露其下方的松弛硅锗层318的部分。该掩膜可经蚀刻以暴露pfet区域中的松弛硅锗层318。
42.在暴露松弛硅锗层318上方(例如外延生长和/或沉积)可形成另一个应变硅锗层364,如关于图5所述。也就是说,在pfet区域308中的松弛硅锗层318上方可形成应变硅锗层364。应变硅锗层364可包括高百分比锗(约40%至约80%)。尽管已显示并说明了在形成应变硅锗层364之前形成应变硅层362,但应当理解,在其它实施例中,应变硅锗层364可形成于应变硅层362之前,而不背离本发明的方面。也就是说,在凹入鳍片组340以后,在松弛硅锗层318上可形成应变硅锗层364。可如本文中所述图案化应变硅锗层364,以暴露nfet区域306中的松弛硅锗层318。随后,在nfet区域306中的暴露松弛硅锗层318上方可形成应变硅层362。
43.关于图15至26所示并说明的实施例,应当理解,在一些实施例中,可能不包括硅锗碳层304且不背离如本文中所述的揭示的方面。
44.如上所述的方法用于集成电路芯片的制造中。制造者可以原始晶圆形式(也就是说,作为具有多个未封装芯片的单个晶圆)、作为裸芯片,或者以封装形式分配所得的集成电路芯片。在后一种情况中,该芯片设于单芯片封装件中(例如塑料承载件,其具有附着至母板或其它更高层次承载件的引脚)或者多芯片封装件中(例如陶瓷承载件,其具有单面或双面互连或嵌埋互连)。在任何情况下,接着将该芯片与其它芯片、分立电路元件和/或其它信号处理装置集成,作为(a)中间产品例如母板的部分,或者作为(b)最终产品的部分。该最终产品可为包括集成电路芯片的任意产品,涉及范围从玩具及其它低端应用直至具有显示器、键盘或其它输入装置以及中央处理器的先进电脑产品。
45.对本发明的各种实施例所作的说明是出于说明目的,而非意图详尽无遗或限于所揭示的实施例。许多修改及变更对于本领域的普通技术人员将显而易见,而不背离所述实施例的范围及精神。本文中所使用的术语经选择以最佳解释实施例的原理、实际应用或在市场已知技术上的技术改进,或者使本领域的普通技术人员能够理解本文中所揭示的实施例。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献