一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

无动力恒压源装置及流量控制系统的制作方法

2022-09-03 19:59:09 来源:中国专利 TAG:


1.本发明涉及无动力恒压源装置及流量控制系统,尤其涉及污水处理中用于加药(水处理剂)的无动力恒压源装置及流量控制系统。


背景技术:

2.在工业领域通常要对压力容器内的液料进行稳压,以满足液料向外输送时流量保持恒定的输送要求。例如在工业废水处理中,通常使用恒定流加药装置定量投放药剂。现有的恒定流加药装置通常使用定量泵和控制器构成。例如专利号为cn200964346y发明专利公开了一种液体恒压源装置,该液体恒压源装置由稳压罐、压力检测装置、泵、控制箱组成。稳压罐分成上罐体和下罐体,上罐体的内腔形成储液室用于存储液体,下罐体通过进气口连通压缩空气源,下罐体的内腔形成储气室,上罐体和下罐体之间安装橡胶膜进行隔离。
3.当向外输出恒定流液体时,随着液位变化,其储液室压力降低,使得储气室的压力大于储液室压力,此时,储气室的压力推动橡胶隔离装置的橡胶膜向上偏移,从而带动压力检测装置向上移动,压力检测装置检测到了橡胶膜向上偏移的信号,也就是检测到了储液室压力降低的信号,控制快速响应液压泵,及时向储液室注入一定量的液体,确保液体压力重新稳定在设定的压力范围内,保证液体流量恒定。
4.由于该液体恒压源装置需要检测橡胶膜的偏移,并在发生偏移时快速启动液压泵,不仅结构复杂,需要不间断的电力供应,对电力供应的稳定性有较高的要求。另外泵直接与药剂接触,容易腐蚀损坏,使用寿命短,成本高。
5.随着环保要求的提高,废水处理逐渐向“工业废水近零排放及资源化利用”方向发展。与废水集中后处理的方式不同,“工业废水近零排放及资源化”需要在源头对产生的废水进行处理,大量的液体恒压源装置设置在不同的区域,不仅电源消耗巨大,其管理和维护成本也十分巨大。
6.本发明的第一目的在于对现有的液体恒压源装置进行改进,提供一种结构简单、不需要外部提供动力就能实现向外输送恒定流液体的无动力恒压源装置。
7.第二目的在于提供一种结构简单,能持续提供恒定流的流量控制系统。


技术实现要素:

8.本发明的第一技术方案为无动力恒压源装置,包括密封容器1、稳压管2。所述密封容器1内部用于存储液料,在顶部设置有连通所述密封容器1内部的进液管11和排气管12,底部设置有连通所述密封容器1内部的出液管13。
9.所述进液管11中设置有进液阀111用于控制所述进液管11的开闭,所述排气管12中设置有排气阀121用于控制所述排气管12的开闭,所述出液管13中设置有控制阀131用于控制所述出液管13的开闭。
10.所述稳压管2设置在所述密封容器1的内部,外端穿过所述密封容器1的壁,延伸到外部,连通所述密封容器1的内部与大气,内端延伸到所述密封容器1底部,内端开口22高于
所述出液管13的出口130,与所述出液管13的出口130之间形成高度差h。
11.因此,在密封容器1内装入液料,使稳压管2的内端开口22浸没在液料中,完成装料后,关闭进液阀111和排气阀121,使密封容器1处于封闭状态,即可依靠液料的重力以恒定流输出液料。
12.即,打开控制阀131时,由于稳压管2的内端开口22与所述出液管13的出口130之间形成有高度差h,液料在重力作用下,从所述出液管13的出口130向外流出。随着密封容器1内液料的减少,液面下降,由于密封容器1内的空间被液料密封,液面上方产生负压,在负压的作用下,外部的空气通过稳压管2被吸入密封容器1内,吸入的空气抵消了液面下降产生的负压,维持了密封容器1内的压力平衡状态,出液管13的出口130处的压力不会随液面下降而变小,液料以恒定流输出。
13.优选所述出液管(13)与所述密封容器(1)连接的入口(132)位于所述出口(130)之上,所述稳压管(2)的内端开口(22)与所述入口(132)齐平或位于入口(132)之下、所述出口(130)之上。
14.由于稳压管(2)的内端开口(22)与所述入口(132)齐平或位于入口(132)之下、所述出口(130)之上,因此,直至液面降低到出液管(13)的入口(132),整个液料输出过程中,均能保证出液管13的出口130处的压力恒定,液料以恒定流输出。
15.优选所述稳压管2和所述出液管13为圆管,所述稳压管2的内径t与所述出液管13的内径t之比为1.2~1.5:1。
16.由于液料流出的同时,空气通过稳压管2进入密封容器1,即,相当于用外部的空气替代密封容器1内的液料,如果稳压管2过细,空气进入密封容器1内的阻力过大,液料输出的流量会变小,造成流量不足。
17.同时空气通过稳压管2进入密封容器1内时,由于液料的表面张力的原因,首先在液料中形成气泡,以气泡的形式上浮到液面破裂后释放到密封容器,即,空气是以断续的状态进入密封容器1内,稳压管过粗,产生的气泡大,液料流量的波动也大。将稳压管2的内径t与所述出液管13的内径t之比限制在1.2~1.5:1,既能降低或避免液料流量变小,又能降低液料流量的波动。
18.优选所述密封容器1呈两端向外鼓起的圆筒状,所述排气管12设置所述密封容器1的顶部中央,所述稳压管2和所述进料管11对称设置在所述排气管12的两侧,所述稳压管2的外端开口21高于所述密封容器1顶部的最高点。
19.由于密封容器1呈两端向外鼓起的圆筒状,提高密封容器1的刚性的同时,增大液料的存储量。并且加装液料时,液料也不会从稳压管2的外端开口21流出。
20.优选所述出液管13设置在所述密封容器1的壁上、距离所述稳压管2最远的位置。
21.因此,能够降低空气气泡进入液料时对出液管13附近的压力产生扰动,进一步降低液料流量的波动。
22.优选在所述密封容器1的底部中央设置有排空管14和控制所述排空管14开闭的排空阀17,围绕所述排空管14设置有多个用于支撑的支腿15,在所述密封容器1的侧壁设置有与所述密封容器1内部连通的连通式液位计3。
23.因此,可以通过排空管14排放密封容器1内的沉淀物。由于支腿15抬高了密封容器1的高度,可以将出液管13的出口130设置的更低,增加稳压管2内端开口22与出液管13的出
口130之间的高度差h,提高密封容器1内部空间利用率的同时,提高液料流量。
24.优选所述稳压管2的外端呈倒l或倒u字形,外端开口21朝向侧方或下方。
25.因此,能够防止杂物通过稳压管2进入到密封容器1内,污染液料。
26.优选所述出液管13中的控制阀131具有开度调节功能。
27.因此,能够通过控制阀131,调节液料的流量大小。
28.所述密封容器1的底部可以设置成圆锥形,所述出液管13设置在圆锥形部位的侧壁上。
29.因此,能够减少出液管13以下的空间,进一步提高密封容器1内部空间的利用率。
30.第二技术方案为流量控制系统,包括至少两个所述无动力恒压源装置10a、10b、切换装置50。
31.各个所述无动力恒压源装置的进液管与进液总管20连接,所述切换装置包括至少两个流量计,至少两个阀门控制模块、切换模块。
32.各个所述流量计检测对应的所述无动力恒压源装置的液料流量,各个所述阀门控制模块具有输出液料和补充液料两种状态,输出液料状态时,打开对应的所述无动力恒压源装置的控制阀,关闭进液阀、排气阀、补充液料时,关闭所述控制阀,打开所述进液阀、排气阀,一个所述阀门控制模块处于输出液料状态时,另一个所述阀门控制模块处于补充液料状态。
33.所述切换模块根据所述流量计的检测值判断所述液料流量的变化,在所述流量产生线性下降或为零时,切换两个所述阀门控制模块的状态。
34.因此,在密封容器内的液面降低稳压管内端开口以下位置,空气不经过液料,直接进入密封容器内时,能及时切换无动力恒压源装置,能够不受密封容器容积的限制,持续地以恒定流输出液料。
附图说明
35.图1是无动力恒定源装置的主视图;图2是无动力恒定源装置的俯视图;图3是无动力恒定源装置的侧视图;图4是采用细管径稳压管时,进入到液料中的气泡说明图;图5是采用粗管径稳压管时,进入到液料中的气泡说明图;图6a是稳压管内端开口与出液管的出口之间形成高度差的一种结构说明图;图6b是稳压管内端开口与出液管的出口之间形成高度差的另一种结构说明图;图7是稳压管第一变形例的说明图;图8是稳压管第二变形例的说明图;图9是稳压管内端开口的变形例说明图;图10是稳压管第三变形例的说明图;图11是带有圆锥形底的密封容器说明图;图12a是流量控制系统的硬件结构说明图;图12b是流量控制装置的控制说明图。
具体实施方式
36.下面结合附图对本发明的较佳实施例进行详细阐述,参考标号是指本发明中的组件、技术,以便本发明的优点和特征在适合的环境下实现能更易于被理解。下面的描述是对本发明权利要求的具体化,并且与权利要求相关的其它没有明确说明的具体实现也属于权利要求的范围。
37.以下以工业废水处理中投放药剂为例,对本发明的无动力恒定源装置进行说明。
38.如图1至3所示,无动力恒定源装置主要由密封容器1、稳压管2构成。密封容器1呈两端向外鼓起的圆筒状,用于存储液料。在顶部设置有进液用的进液管11和排气管12,底部设置有出液管13,出液管13中设置有控制阀131。进料管11中设置有进液阀111用于控制进料管11的开闭,排气管12中设置有排气阀121用于控制排气管12的开闭。
39.本实施方式中控制阀131不仅能够关闭出液管13,其开度能够调节,控制流量大小。
40.稳压管2如图1所示,设置在密封容器1的内部,外端穿过密封容器1的壁,延伸到外部,连通密封容器1的内部与大气。稳压管2的外端开口21高于密封容器1的内部最高点。稳压管2的内端向下延伸到底部,内端开口22与出液管13的入口132处于同一高度,高于出液管13的出口130。
41.即,出液管13采用90度弯折的管,水平部分安装在密封容器1上,与内端开口22相同的高度,垂直部分向下弯折,出口130与稳压管2的内端开口22之间形成高度差h。图中只是示例性的显示了出液管13的出口130与稳压管2的内端开口22之间形成高度差h,高度差h可以根据需要如图6a、6b设置的更高,以增大流量。在密封容器1内部加装水处理剂(液料)时,稳压管2的内端开口22位于水处理剂的液面之下(参见附图4、5)。
42.密封容器1、稳压管2等与水处理剂接触的部件采用耐腐蚀性材料制成。
43.本实施方式中,稳压管2和出液管13采用圆管,稳压管2的内径d大于出液管13的内径d。
44.稳压管2的外端呈倒l字形,外端开口21朝向侧方。作为变形例,稳压管2的外端也可呈倒u字形,外端开口21朝向下方。在稳压管2的外端中设置有用于控制空气流大小的稳压阀211。
45.正面看时,如图1、3所示,排气管12设置密封容器1的顶部中央,稳压管2和进料管11对称设置在排气管12的两侧。以密封容器1的中心轴为中心,出液管13设置在稳压管2的相反一侧,与稳压管2保持最大的距离。
46.密封容器1的底部中央设置有排空管14和控制排空管14开闭的排空阀17。围绕排空管14设置有三个用于支撑的支腿15。设置支腿15也抬高了密封容器1的高度,可以将出液管13的出口130设置在更低的位置,增加与稳压管2的内端开口22之间的距离h,以加大水处理剂的流量。在密封容器1的侧壁设置有与密封容器1内部连通的连通式液位计3。
47.本实施方式中,密封容器1的高度为容器1高1600mm,直径1000mm,进液管11的管径为dn100,出液管13的管径为dn40,稳压管2的管径为dn50,排气管12的管径为dn100,稳压管2的内端开口22与出液管13的入口132设置距密封容器1底端约200mm的高度。
48.由于采用密封容器1存储水处理剂,并且稳压管2内端开口22和出液管13的入口132位于水处理剂的液面之下,稳压管2内端开口22与出液管13的出口130之间形成有高度
差h,因此关闭进液阀111、排气阀121和排空阀17时,密封容器1内部处于封闭状态。
49.加药(输出液料)时,打开稳压阀211和控制阀131,此时密封容器1内的水处理剂在重力作用下,从出液管13的出口130向外流出。随着密封容器1内水处理剂的减少,液面下降,由于密封容器1内的空间被水处理剂密封,液面上方产生负压,在负压的作用下,外部的空气通过稳压管2被吸入密封容器1内,吸入的空气抵消了液面下降产生的负压,维持密封容器1内的压力平衡,出液管13的出口130处的压力不会随液面下降而变小,不需要外界提供动力,就可以恒定流向处理的工业废水处理投放水处理剂。
50.由于稳压管2的内端开口22与出液管13的入口132处于同一高度,液面下降到稳压管2的内端开口22,密封容器1内与大气连通时,水处理剂不会从出液管13的出口130流出。保证整个加药过程中,水处理剂始终以恒定流投放到工业废水中,不会出现投放量不足造成的污染物超标排放。
51.作为变形例,稳压管2的内端开口22也可以设置在出液管13的入口132之下、出口130之上,这种设置同样能在整个液料输出过程中,保证出液管13的出口130处的压力恒定,液料以恒定流输出。
52.向密封容器1内加装水处理剂时,关闭出液管13上的控制阀131,并打开进液阀111和排气阀121,由进液管11将水处理剂输送到稳压管2内端开口22以上的位置h(参见附图4、5)。
53.由于进液管11和排气管12,稳压管2的外端开口21高于密封容器1顶部的最高点,加装水处理剂时,水处理剂不会从各管的开口流出,保证了安全性。
54.由于水处理剂流出的同时,空气通过稳压管2进入密封容器1,即,相当于用外部的空气替代密封容器1内的液料,将稳压管2的内径d设置成大于出液管13的内径d,能避免空气进入时受到较大的阻力,影响水处理剂的输出流量。
55.由于水处理剂的表面张力,空气通过稳压管2进入密封容器1内时,首先在液料中形成气泡,气泡上浮到液面破裂后放出空气,即,空气是以断续的状态进入密封容器1内,受其影响,水处理剂的流量会产生较大的波动。由于将稳压管2的内径t与所述出液管13的内径t之比限制在1.2~1.5:1,能避免大气泡的产生,降低水处理剂流量的波动。
56.图4是采用细管径稳压管时,排入到液料中的气泡说明图,图5是采用粗管径稳压管时,排入到液料中的气泡说明图。图4、5为图2中密封容器1的a-a剖面图。
57.采用细管径稳压管2时,如图4所示,由于管径细,产生的气泡小而密,气泡浮到液面破裂时造成密封容器1内压力的波动较小。
58.相反,采用粗管径稳压管2时,由于管径粗,如图5所所示,产生的气泡大而少,气泡破裂时造成密封容器(1)内压力的波动就大。
59.综合考虑,稳压管2的内径t与出液管13的内径t之比限制在1.2~1.5:1,能平衡管径过细带来的阻力影响和管径过粗带来的流量波动。
60.由于水处理剂的流量(流速)取决于稳压管2内端开口22与出液管13的出口130之间的高度差h。如图6a所示,例如使用软管连接到出液管13上,将出口130向下移动以提高稳压管2内端开口22与出液管13的出口130之间的高度差h,增加流量。也可以如图6b所示,通过缩短稳压管2的长度,增加稳压管2内端开口22与出液管13的出口130之间高度差h以达到增大水处理剂流量的目的。由于恒定流只能在稳压管2的内端开口22处于液面下时才能实
现,与前者相比,后者在容器内容积的利用上不如前者。
61.以下对本发明的变形例进行说明。
62.图7是稳压管第一变形例的说明图。如图7所示,第一变形例中,稳压管2a采用曲管,其余与以上实施方式相同。稳压管2a可以采用方管、椭圆管或横截面规律或不规律的异型管。
63.图8是稳压管第二变形例的说明图。如图8所示,稳压管2b斜向穿过密封容器1的侧方的壁进入密封容器1内部,稳压管2b的出口为斜向。与图7相同,由于稳压管2b的开口呈斜向,空气更容易进入水处理剂,空气通过稳压管2b进入密封容器1内时,能够产生相对较小的气泡。由于小气泡产生的扰动相较于大气泡较小,从而减小了空气进入水处理剂产生的扰动,降低了水处理剂流量的波动。
64.图9是稳压管内端开口的变形例说明图。如图9所示,稳压管2c的内端开口22c封闭,在靠近内端开口22c的管壁上开设多个供空气流通的孔。孔可以采用圆形、方形、三角形或其他不规则形状。各个孔的面积大于或等于稳压管2c的内径横截面面积。
65.因此空气通过稳压管2c进入密封容器1内部时,形成的气泡较为分散且体积较小,从而减小由于气泡的扰动造成的水处理剂流量波动。
66.图10是稳压管第三变形例的说明图。如图10所示,稳压管2d为l形管,竖向部分位于密封容器1外,横向部分设置为横向或斜向穿过密封容器1侧方的壁进入密封容器1内。其余部分与图1的结构相同。
67.采用上述结构,例如可将稳压管2d的竖向部分设置为透明材质,例如亚克力、玻璃等,以代替连通式液位计3。
68.图11是带有圆锥形底的密封容器说明图。如图11所示,密封容器1a底部为圆锥形底,出液管13a设置在锥形底的侧壁上,靠近锥形的顶点设置。
69.密封容器1a的底部为锥形,锥形部分容积较小,可最大限度的利用密封容器1a的内部空间。
70.本发明中,在密封容器1内设置稳压管,利用水处理剂的密封作用,在液面下降时密封容器1内产生的负压自动吸入空气,增加密封容器1内的压力,抵消因液面下降,出液管13的出口130造成的压力降低,保持出液管13的出口130压力稳定,达到无动力提供恒定流水处理剂的效果。通过设置稳压管2与出液管13的出口130的管径比,降低了空气进入对水处理剂流量产生的影响和造成的流量波动。进一步提高了无动力流量控制装置以恒定流投放水处理剂的效果。
71.由于整个控制过程,不需要泵等外部动力或辅助动力以及控制流量的控制器,在设置时不需要考虑电力供应情况,使用寿命长,成本低,管理维护成本也低。
72.尤其适合于在源头对产生的废水进行处理时的投药,即,不用将废水集中后处理,可以在不同的废水源头设置无动力流量控制装置,针对废水中的污染物选择相应的处理剂单独进行处理,实现废水零排放和资源化。由于本发明的无动力流量控制装置既不需要电力供应也没有泵之类的易损件,没有电源消耗,管理和维护也非常简单,显著降低了废水处理的成本。
73.以上以工业废水处理中的药剂投放为例,对本发明的无动力流量控制装置进行了说明。由于受到密封容器1的容积限制,加装水处理剂时,需要停止工作,无法持续的以恒定
流量投放水处理剂。以下对不受密封容器1容积限制,能持续以恒定流投放水处理剂量的流量控制系统进行说明。
74.图12a是流量控制系统的结构说明图。如图12a所示,流量控制系统由两个无动力流量控制装置,即无动力流量控制装置10a和无动力流量控制装置10b、切换装置50构成。
75.无动力流量控制装置10a的进液管11a和无动力流量控制装置10b的进液管11b与进液总管20连接。
76.无动力流量控制装置10a中,稳压管2a的内端开口22a高于出液管13a的入口132a。无动力流量控制装置10b与无动力流量控制装置10a完全相同,稳压管2b的内端开口22b高于出液管13b的入口132b。
77.图12b是流量控制装置的控制说明图。
78.如图12b所示,切换装置50由两个流量计51a、51b,两个阀门控制模块52a、52b、切换模块53构成。
79.流量计51a检测无动力流量控制装置10a投放水处理剂时的流量;阀门控制模块52a控制无动力流量控制装置10a的控制阀131a、进液阀111a、排气阀121a。
80.流量计51b检测无动力流量控制装置10b投放水处理剂的流量;阀门控制模块52b控制无动力流量控制装置10b的控制阀131b、进液阀111b、排气阀121b。
81.阀门控制模块52a和阀门控制模块52b具有输出水处理剂(输出液料)和补充水处理剂(补充液料)两种状态,输出水处理剂时,打开对应的无动力流量控制装置的控制阀,关闭进液阀、排气阀。补充水处理剂时,关闭控制阀,打开进液阀、排气阀。阀门控制模块52a处于输出水处理剂状态时,阀门控制模块52b处于补充水处理剂状态,反之也相同。
82.切换模块53根据流量计51a、51b的检测值判断水处理剂流量的变化,在流量产生线性下降时,切换两个阀门控制模块52a、52b的状态。例如,阀门控制模块52a处于输出水处理剂状态时,由于液面(参见图4、5)在稳压管2a的内端开口22a以上,如上所述,密封容器1a内部被液料封闭,随着水处理剂流出,液面上方产生负压,空气被吸入密封容器1a内,密封容器1内的压力保持平衡,出口130a处的压力一定,水处理剂以恒定流投放到工业废水中。
83.但当液面下降到稳压管2a的内端开口22a位置时,由于失去水处理剂的密封,密封容器1与外界的空气直接连通,密封容器1a内的压力始终维持在一个大气压。之后,液面下降时,出液管13的出口130的压力随着液面高度的降低而线性下降,水处理剂的流量由恒定流转为线性下降。
84.当切换模块53检测到流量由恒定流转为线性下降时,切换阀门控制模块52a和阀门控制模块52b的状态,使阀门控制模块52a 处于补充水处理剂状态,阀门控制模块52b处于输出水处理剂状态。
85.通过本发明的方法能及时判断切换时机,为处于补充水处理剂状态的无动力流量控制装置10a或无动力流量控制装置10b加装水处理剂,最大限度利用无动力流量控制装置提供恒定流水处理剂的能力。
86.利用本发明的流量控制系统,能够不受密封容器(1)容积的限制,持续地以恒定流投放水处理剂。
87.作为变形例,也可以将无动力流量控制装置10a中的稳压管2a的内端开口22a设置在与出液管13a的入口132a相同的高度。无动力流量控制装置10b同样,将稳压管2b的内端
开口22b设置在与出液管13b的入口132b相同的高度。
88.切换模块53检测到水处理剂的流量为零时,切换阀门控制模块52a和阀门控制模块52b的状态。
89.变形例也同样能不受密封容器(1)容积的限制,持续地以恒定流投放水处理剂。
90.由于不需要外部提供动力即可实现恒定压,恒定流的投放水处理剂,与使用泵和控制器的结构相比,使用和维护成本较低,尤其适合于没有电力供应的地方使用。
91.以上对无动力流量控制装置以及流量控制装置用于工业废水处理中投放水处理剂进行了说明。无动力流量控制装置以及流量控制系统不限于水处理剂的投放,也可以作为定量计量、定量灌装和定量配料用设备使用。
92.应该注意的是,上述实施例对本发明进行说明而不是对本发明进行限制,并且本领域技术人员在不脱离所附权利要求的范围的情况下可设计出替换实施例。在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献