一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种超声聚焦喷印气溶胶油墨颗粒的装置及方法

2022-08-24 00:38:04 来源:中国专利 TAG:


1.本发明涉及气溶胶喷印技术领域,特别是涉及一种超声聚焦喷印气溶胶油墨颗粒的装置及方法。


背景技术:

2.共形电子打印在保留平面电子功能的前提下能通过转印、直接书写以及热成形等方式实现二维电子电路在任意曲面的制备,以提升电子系统设计灵活性,进而实现电子系统的小型化、轻量化、智能化,被认为是颠覆传统电子制造的创新技术之一。气溶胶喷墨打印技术作为一种新型的共形电子打印技术,具有非接触式、高精度的喷印特性,可实现有源、无源电子元件及传感器的共形打印制造,目前对该技术的优化研究成为了近年来的研究热点。
3.气溶胶喷墨打印技术因其非接触式的设计方式,喷头至基底之间存在1-5mm的间隙;油墨液滴直径极小,仅为2-5μm;油墨颗粒喷射速率极高,达80-100m/s,因此,气溶胶油墨颗粒在高速经过喷射通道时,气溶胶油墨流会出现漂移分散,该漂移分散情况具有不确定性,导致出现“过度喷涂”的现象,即在原规划的喷印沉积周围出现由漂移分散的油墨液滴沉积形成的“卫星液滴”。“卫星液滴”会使规划的喷印沉积量不足而导致打印对象的强度、电气性能不足,此外,规划的相近的沉积部分会因“卫星液滴”沉积而接触短路。综上,气溶胶油墨颗粒在喷射过程中漂移分散而出现的“过度喷涂”,会导致打印对象的沉积质量不够或电气性能不足甚至失效等严重问题。
4.对气溶胶喷印的“过度喷涂”的可靠控制是实现气溶胶喷印稳定制备高性能、高集成度共形电子的关键条件之一,控制“过度喷涂”的直接方法是对气溶胶喷印过程中的油墨颗粒进行充分的聚焦,以抑制油墨颗粒的漂移分散。目前对气溶胶油墨流的聚焦方法主要为以下三种:
5.方法一,调节载气与鞘气的流量:载气的作用是将气溶胶油墨输运至喷头,决定气溶胶油墨颗粒在喷射前的分布与运动状态;鞘气的作用是对喷印过程中的气溶胶油墨颗粒聚焦并喷射,因而可通过调节鞘气与载气的气流量来控制油墨流的聚焦效果;
6.方法二,调整喷头内部的油墨通道结构:喷头内部微观几何结构的复杂性增加了油墨颗粒在喷射通道内分散的不确定性,调整喷头内部油墨通道的几何结构可实现对油墨流形貌和油墨颗粒聚焦程度的调整,以减小油墨颗粒在喷射过程中漂移分散的不确定性;
7.方法三,外加磁场对磁性金属油墨颗粒施加磁辐射力进行聚焦:在气溶胶喷印系统的外部设置磁场,对磁性金属油墨颗粒施加磁辐射力,使油墨颗粒产生径向的运动,进而实现油墨流的聚焦。
8.以上所述的气溶胶油墨颗粒聚焦方法虽然可实现一定程度的聚焦优化效果,但是,在应用实践中均存在一定的弊端。方法一与方法二仅可实现定性的聚焦优化,因为油墨材料物理属性的多样性,实际应用所选择油墨的特殊性、未知性,以及油墨物理属性与载气、鞘气流量、喷射通道几何结构的关联关系极为复杂,定量分析不明确,因此方法一和方
法二难以实现气溶胶油墨颗粒的定量聚焦,因而难以实现对“过度喷涂”可靠、定量的控制。方法三对被聚焦的油墨材料的物理属性有强烈的依赖性和选择性,因此,在实际应用中,基于此方法的油墨选择和打印规划存在一定的局限性。


技术实现要素:

9.本发明的目的是提供一种超声聚焦喷印气溶胶油墨颗粒的装置及方法,以解决上述现有技术存在的问题,以适应较大范围的油墨类别或不受油墨类别限制,并且保证聚焦方法对油墨材料无破坏性,实现对气溶胶油墨颗粒的定量聚焦,最终实现对气溶胶喷印的“过度喷涂”问题有效、可靠、精确的控制。
10.为实现上述目的,本发明提供了如下方案:
11.本发明提供一种超声聚焦喷印气溶胶油墨颗粒的装置,包括固定环设于气溶胶喷印系统的喷嘴外壁上的压电-超声换能器,所述压电-超声换能器电连接有功率放大器,所述功率放大器电连接有信号发生器;所述压电-超声换能器能够构造环形声压环境,在气溶胶油墨颗粒流外围形成水平层面全覆盖的径向高频声场,产生的径向声辐射力,能够实现对气溶胶油墨颗粒的径向聚焦。高频声场具有方向性好、穿透性强、灵敏度高、作用无损伤等特点,是用于粒子操纵的有效手段之一,因此,本发明采取对气溶胶油墨流喷射通道外加环形高频声场的方式,对气溶胶油墨颗粒进行水平层面全覆盖的径向超声聚焦。
12.可选的,所述压电-超声换能器为管状结构,且所述压电-超声换能器的内径与所述喷嘴的外径尺寸相同。
13.可选的,所述压电-超声换能器的长度为喷嘴长度的80%。
14.可选的,所述压电-超声换能器采用陶瓷压电材料制成,在实现逆压电效应的同时,保证所产生的逆压电效应不足以使得压电-超声换能器在工况条件下因压电材料属性原因产生谐振而影响系统的稳定工作;压电-超声换能器的内部电极采用烧结银(厚膜)材料,外部电极采用pvd薄膜(cuni、au)材料,可保证激励输入的稳定;所述压电-超声换能器的内部电极采用烧结银材料制成,所述压电-超声换能器的外部电极采用pvd薄膜材料制成。
15.可选的,所述喷嘴外壁与所述压电-超声换能器内壁之间添加有超声耦合剂;所述喷嘴外壁包覆有所述压电-超声换能器的部分为聚焦作用区域,所述压电-超声换能器上端外侧和下端外侧分别与所述喷嘴外壁在聚焦作用区域外的部分采用粘合剂粘合连接。
16.可选的,所述喷嘴内部中空,且所述喷嘴底部一体成型有锥形喷头,所述喷嘴顶部连通有喷射通道,所述喷射通道用于输送气溶胶油墨颗粒和载气;所述喷射通道外侧环设有锥形结构的鞘气通道,所述鞘气通道底部与所述喷嘴顶部外侧连通。
17.本发明还提供一种超声聚焦喷印气溶胶油墨颗粒的方法,包括如下步骤:
18.步骤一,根据喷印沉积分布要求、喷印系统内外部环境,确定气溶胶油墨颗粒的聚焦程度;
19.步骤二,针对步骤一中的聚焦程度,根据聚焦作用区域范围、气溶胶油墨颗粒的物理属性,对气溶胶油墨颗粒进行力-运动分析,确定气溶胶油墨颗粒的径向聚集力;
20.步骤三,针对所需的径向聚焦力,调节超声聚焦换能器工作参数,输出与聚焦效应对应的高频声波响应,产生聚焦所需的声辐射力使喷射过程中的气溶胶油墨颗粒产生径向
的加速度,最终实现对气溶胶油墨颗粒的径向定量聚焦。
21.本发明相对于现有技术取得了以下技术效果:
22.本发明中激发的高频声波可针对喷印的聚焦要求,结合气溶胶油墨材料属性、喷印环境,通过声辐射力对气溶胶油墨颗粒的力-运动分析定量计算得出,并通过调节压电-超声换能器的工况参数准确输出,实现对气溶胶油墨颗粒的定量聚焦;本发明聚焦装置输出的压电-超声响应及时,可根据喷印需求、喷印环境、喷印材料的变化,实时调节压电-超声换能器的工况参数,实现对气溶胶油墨颗粒聚焦作用的实时调整;本发明方法对气溶胶喷印油墨材料的物理、化学属性无限制要求,广泛适用于气溶胶喷印方法可喷印范围内的油墨材料;本发明对气溶胶喷印系统无干涉性,对气溶胶喷印的油墨材料无破坏性,包括物理、化学影响。
附图说明
23.为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
24.图1为本发明超声聚焦喷印气溶胶油墨颗粒的装置结构示意图;
25.图2本发明超声聚焦喷印气溶胶油墨颗粒的装置局部剖面示意图;
26.图3本发明气溶胶油墨颗粒聚焦状态示意图;
27.图4为本发明压电-超声换能器结构示意图;
28.图5为本发明压电-超声换能器剖面结构示意图;
29.图6为本发明喷嘴结构示意图;
30.图7为本发明喷嘴剖面结构示意图;
31.图8为本发明压电-超声换能器与喷嘴集成装配示意图;
32.图9本发明超声聚焦喷印气溶胶油墨颗粒工作状态竖直剖面原理图;
33.图10本发明超声聚焦喷印气溶胶油墨颗粒工作状态水平剖面原理图;
34.附图标记说明:1-气溶胶喷印系统,2-喷嘴,3-压电-超声换能器,4-功率放大器,5-信号发生器,6-气溶胶油墨颗粒,7-喷射通道,8-鞘气通道,9-超声耦合剂。
具体实施方式
35.下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
36.本发明的目的是提供一种超声聚焦喷印气溶胶油墨颗粒的装置及方法,以解决上述现有技术存在的问题,以适应较大范围的油墨类别或不受油墨类别限制,并且保证聚焦方法对油墨材料无破坏性,实现对气溶胶油墨颗粒的定量聚焦,最终实现对气溶胶喷印的“过度喷涂”问题有效、可靠、精确的控制。
37.为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实
施方式对本发明作进一步详细的说明。
38.本发明提供一种超声聚焦喷印气溶胶油墨颗粒的装置,如图1、图2、图3、图4、图5、图6、图7、图8、图9和图10所示,包括固定环设于气溶胶喷印系统1的喷嘴2外壁上的压电-超声换能器3,压电-超声换能器3电连接有功率放大器4,功率放大器4电连接有信号发生器5;压电-超声换能器3能够构造环形声压环境,在气溶胶油墨颗粒6流外围形成水平层面全覆盖的径向高频声场,产生的径向声辐射力,能够实现对气溶胶油墨颗粒6的径向聚焦。高频声场具有方向性好、穿透性强、灵敏度高、作用无损伤等特点,是用于粒子操纵的有效手段之一,因此,本发明采取对气溶胶喷印油墨流喷射通道外加环形高频声场的方式,对气溶胶油墨颗粒6进行水平层面全覆盖的径向超声聚焦。
39.具体的,压电-超声换能器3为管状结构,以实现水平层面全覆盖的径向声辐射力,实现对气溶胶油墨颗粒6的水平层面全覆盖的径向聚焦,以实现油墨流颗粒聚焦的充分性和均匀性,且压电-超声换能器3的内径与喷嘴2的外径尺寸相同,以尽量减小换能器与气溶胶油墨流的距离,避免高频声波能量在传递过程中过多的衰减,且保证压电-超声换能器3与气溶胶喷印系统1的高集成度配合。压电-超声换能器3的长度为喷嘴2长度的80%,在为气溶胶喷印系统1不增加过多负载的条件下,构建足够的聚焦作用范围,保证气溶胶油墨颗粒在喷射过程中受到充分的聚焦作用以达到充分的聚焦效果。
40.压电-超声换能器3采用陶瓷压电材料制成,压电-超声换能器3是基于压电陶瓷的逆压电效应工作的,涉及到电能与机械能的转换。依据逆压电效应,一定频率的电信号可以转换为一定频率的机械振动,振动源的振动通过介质以波的形式传播,形成一定频率的声波。信号发生器和功率放大器作为激励源,为该压电-超声换能器输入≥2mhz频率的≥50vpp的电信号,通过对电信号激励输入的调节,对产生的超声波的强度和分布形式进行调整,从而控制作用在颗粒上的力;压电-超声换能器的内部电极采用烧结银材料制成,压电-超声换能器的外部电极采用pvd薄膜材料制成。
41.喷嘴2内部中空,且喷嘴2底部一体成型有锥形喷头,喷嘴2顶部连通有喷射通道7,喷射通道7用于输送气溶胶油墨颗粒和载气;喷射通道7外侧环设有锥形结构的鞘气通道8,鞘气通道8底部与喷嘴2顶部外侧连通;喷嘴2外壁与压电-超声换能器3内壁之间添加有超声耦合剂9;喷嘴2外壁包覆有压电-超声换能器3的部分为聚焦作用区域,置于聚焦作用范围内的喷嘴2部分的内外壁与压电-超声换能器3的管壁平行,该部分长度与压电-超声换能器3的长度对应,避免高频声波在穿过通道壁、气流层和油墨溶剂的过程中因传播介质层界面方向变化而产生折射,进而避免高频声场对油墨颗粒聚焦方向的改变,保证水平层面径向的超声聚焦作用,填补微间隙,减小喷嘴外壁与换能器内壁间的声阻抗差,以减小超声能量的衰减损失。最后,使用粘合剂将压电-超声换能器上下端外侧与与喷嘴外壁在聚焦作用区域外的部分粘合连接,在保证二者装配稳定的同时,避免粘结材料置于聚焦作用区域内而造成高频声波在传播过程中方向改变和能量衰减。通过利用上述设计的压电-超声换能器3及电信号激励,配合超声聚焦装置的气溶胶喷印系统的喷嘴,以及二者间的连接装配,采用超声聚焦的方式,实现对气溶胶油墨颗粒水平层面全覆盖的径向定量聚焦。
42.本发明还提供一种超声聚焦喷印气溶胶油墨颗粒的方法,采取超声聚焦的方法,对气溶胶油墨颗粒进行水平层面全覆盖的径向定量聚焦,实现对气溶胶喷印的“过度喷涂”可靠控制,包括如下步骤:
43.首先,针对气溶胶喷印的沉积要求,包括沉积线宽和相邻沉积线间距,得出“过度喷涂”的可接受范围,此可接受范围指,在喷印有效沉积量的前提下,“过度喷涂”不造成相邻沉积线接触的最大“过度喷涂”范围。根据“过度喷涂”的可接受范围和有效沉积范围,分析得出气溶胶油墨颗粒6在喷射过程中所需的聚焦程度。
44.然后,基于气溶胶油墨流喷射过程中的聚焦区范围,分析在无聚焦作用下,气溶胶油墨颗粒在喷射过程中的力-运动情况,受力包括溶剂及鞘气的流体曳力,运动包括油墨颗粒在通道轴向的速度,构建气溶胶油墨颗粒在聚焦区域轴向的运动模型,计算油墨颗粒喷射通过聚焦区域的时间。
45.其次,针对气溶胶油墨颗粒6所需的聚焦程度,基于气溶胶油墨颗粒6在聚焦区域的运动时间,根据气溶胶油墨颗粒6的物理属性,包括粒径、密度,对气溶胶油墨颗粒6在聚焦区域的径向力-运动分析,确定实现气溶胶油墨颗粒6实现该径向聚焦运动所需的声场参数,包括频率、压力节点分布、声压、声强等。
46.最后,针对上述分析得出的聚焦声场的相关参数,根据压电-超声换能器3的激励-响应关系,调节信号发生器5与功率放大器4激励参数,使压电-超声换能器3产生相应的逆压电效应,输出超声聚焦响应,对气溶胶油墨颗粒实现水平层面全覆盖的径向定量聚焦。
47.在本发明的描述中,需要说明的是,术语“中心”、“顶”、“底”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“笫二”仅用于描述目的,而不能理解为指示或暗示相对重要性。
48.本发明中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献