一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

高频放大器的制作方法

2022-08-13 23:32:52 来源:中国专利 TAG:


1.本公开涉及高频放大器。
2.本技术主张基于2020年1月10日申请的日本技术第2020-002882号的优先权,援引所述日本技术所记载的全部的记载内容。


背景技术:

3.近年来,在移动电话等移动体通信系统中,正在推进宽带化。因而,对于在系统的基站装置等中使用的功率放大器,期望宽频带中的功率效率的高效率化等。作为用于实现该功率效率的高效率化的功率放大器,已知有具有载波放大器(也称作主放大器)及峰值放大器的多尔蒂放大器。例如,在专利文献1中公开了多尔蒂放大器(多尔蒂型放大器)的构造。需要说明的是,多尔蒂放大器通常连接于驱动放大器的后段而使用。现有技术文献专利文献
4.专利文献1:国际公开第2005/093948号


技术实现要素:

5.本公开的一方案的高频放大器具备:非对称多尔蒂放大器,具备载波放大器和在所述载波放大器的输出达到了饱和区域的情况下开始放大动作且具有与所述载波放大器不同的饱和输出的峰值放大器,将输入的波长λ的高频信号放大;驱动放大器,驱动所述非对称多尔蒂放大器;分支电路,将由所述驱动放大器放大后的高频信号向所述峰值放大器侧的输入路径和所述载波放大器侧的输入路径分支;相位调整电路,设置于所述峰值放大器侧的路径和所述载波放大器侧的路径的任一方,使所述峰值放大器的输入信号的相位和所述载波放大器的输入信号的相位的任一方延迟;第一基板,搭载有所述载波放大器及所述峰值放大器;及第二基板,搭载有所述驱动放大器、所述分支电路及所述相位调整电路,在将所述第二基板以重叠的方式层叠于所述第一基板的情况下,所述驱动放大器的输入端子和所述载波放大器的输入端子处于互相投影的位置,在将n设为了0以上的整数的情况下,从所述驱动放大器的输入端子到所述载波放大器的输出端子为止的电长度以成为(2n 1)
×
π的相位的方式设定。
附图说明
6.图1是将本公开的一方案的高频放大器示意化而示出的剖视图。图2是说明图1的高频放大器的框图。图3是图1的上层的俯视图。图4是图1的下层的俯视图。图5是图1的驱动放大器电路图。图6是说明与图5的电路图对应的上层的图。
图7是图1的多尔蒂放大器电路图。图8是说明与图7的电路图对应的下层。
具体实施方式
本公开所要解决的课题
7.在印制基板搭载驱动放大器及多尔蒂放大器的情况下,若将驱动放大器、载波放大器、峰值放大器安装于同一平面上,则需要大尺寸的印制基板,因此难以实现放大器的小型化。在该情况下,可考虑将驱动放大器、多尔蒂放大器三维地安装。但是,若将放大器设为例如双层结构,在上层配置驱动放大器且在下层配置载波放大器、峰值放大器,则存在驱动放大器和载波放大器在上下方向上接近的情况。这样的话,存在驱动放大器有时会变得不稳定这一问题。
8.本公开是鉴于如上所述的实情而完成的,其目的在于提供稳定的高频放大器。本公开的效果
9.根据本公开,能够提供稳定的高频放大器。[本公开的实施方式的说明]首先,列举本公开的实施方式的内容来说明。
[0010]
对于本公开的高频放大器,(1)具备:非对称多尔蒂放大器,具备载波放大器和在所述载波放大器的输出达到了饱和区域的情况下开始放大动作且具有与所述载波放大器不同的饱和输出的峰值放大器,将输入的波长λ的高频信号放大;驱动放大器,驱动所述非对称多尔蒂放大器;分支电路,将由所述驱动放大器放大后的高频信号向所述峰值放大器侧的输入路径和所述载波放大器侧的输入路径分支;相位调整电路,设置于所述峰值放大器侧的路径和所述载波放大器侧的路径的任一方,使所述峰值放大器的输入信号的相位和所述载波放大器的输入信号的相位的任一方延迟;第一基板,搭载有所述载波放大器及所述峰值放大器;及第二基板,搭载有所述驱动放大器、所述分支电路及所述相位调整电路,在将所述第二基板以重叠的方式层叠于所述第一基板的情况下,所述驱动放大器的输入端子和所述载波放大器的输入端子处于互相投影的位置,在将n设为了0以上的整数的情况下,从所述驱动放大器的输入端子到所述载波放大器的输出端子为止的电长度以成为(2n 1)
×
π的相位的方式设定。
[0011]
因而,即使在产生了信号反馈(使输出信号的一部分从载波放大器的输出朝向驱动放大器的输入返回)的情况下,驱动放大器也处于不产生不稳定性的范围(负反馈区域),而不处于正反馈区域。由此,即使采用双层结构,也能够使放大器稳定。(2)在本公开的高频放大器的一方案中,所述载波放大器的输出端子中的高频信号与所述峰值放大器的输出端子中的高频信号的相位差处于π/2到3π/2的范围。
[0012]
由于载波放大器及峰值放大器的输出信号的相位差处于π/2到3π/2的范围,所以能够将从载波放大器及峰值放大器向外部放出的电磁波抑制为最小。(3)在本公开的高频放大器的一方案中,在所述第一基板与所述第二基板之间配置有接地的金属层。
[0013]
接地的金属层能够切断电磁波。由此,第一基板难以受到在第二基板侧产生的电磁波的影响,第二基板难以受到在第一基板侧产生的电磁波的影响。
(4)在本公开的高频放大器的一方案中,所述第一基板具有向所述第二基板投影的平面形状。
[0014]
能够达成高频放大器的小型化。(5)在本公开的高频放大器的一方案中,所述峰值放大器构成为具有比所述载波放大器大的饱和输出。
[0015]
在峰值放大器中,用于得到最佳匹配的相移量比载波放大器大。[本公开的实施方式的详情]以下,一边参照附图,一边对本公开的高频放大器的具体例进行说明。图1是将本公开的一方案的高频放大器示意化而示出的剖视图。
[0016]
高频放大器1搭载于移动体通信系统的基站装置等通信装置,例如用于将发送信号放大。高频放大器1具有基座构件la4。基座构件la4是兼任散热和外部端子的金属(例如铜)制的板,配置于通信装置的印制基板100上。
[0017]
在基座构件la4上搭载下层10、上层20及盖材25。下层10相当于本公开的第一基板,上层20相当于本公开的第二基板。
[0018]
下层10夹在基座构件la4与上层20之间而配置。下层10由第一电介质层11(例如厚度0.25mm以上且0.35mm以下)、第三布线层la3(例如厚度18μm以上且35μm以下)、第二电介质层12(例如厚度0.8mm以上且1.0mm以下)构成。第一电介质层11设置于基座构件la4(例如厚度0.25mm)上,在第三布线层la3形成有将形成gnd面的基座构件la4作为基准电压的高频线路图案,安装载波放大器54及峰值放大器64等主动部件以及电感器l、电容器c。
[0019]
载波放大器54及峰值放大器64分别具有形成了规定的电路的表面54a、64a和位于表面54a、64a的相反侧且例如不形成电路的背面54b、64b。载波放大器54及峰值放大器64埋入于第一电介质层11,表面54a、64a均朝向上方而安装于第三布线层la3。背面54b、64b均以与基座构件la4相接的方式朝向下方配置,粘着于涂布有烧结系银膏或烧结系铜膏的基座构件la4。
[0020]
上层20以重叠的方式层叠于下层10。上层20由第三电介质层23(例如厚度0.25mm以上且0.35mm以下)、第一布线层la1(例如厚度18μm以上且35μm以下)、第四电介质层24(例如厚度0.25mm以上且0.35mm以下)构成。在第三电介质层23与下层10(第二电介质层12)之间配置第二布线层la2。第二布线层la2(例如厚度35μm)例如是铜制的固体面,承担相对于第一布线层la1的gnd面和遮蔽在上层20与下层10之间产生的电磁波的作用。第二布线层la2相当于本公开的接地的金属层。
[0021]
在第一布线层la1形成高频线路图案,安装驱动放大器40等主动部件以及电感器l、电容器c。
[0022]
驱动放大器40具有形成了规定的电路的表面40a和位于表面40a的相反侧且例如不形成电路的背面40b。驱动放大器40埋入于第四电介质层24,表面40a与下层10对向而安装于第一布线层la1。背面40b以从下层10离开的方式朝向上方配置。
[0023]
上层20由金属制的盖材25覆盖。驱动放大器40以倒装芯片(face down,面朝下)安装,因此,从热管理的观点来看,驱动放大器40的背面40b以与盖材25的散热部(第零布线层la0)相接的方式朝向上方配置。散热部(第零布线层la0)与其他的布线层同样,由信号布线
用的薄的金属薄膜层形成。并且,散热部(第零布线层la0)与接近的gnd导通孔(例如)(散热导通孔15d、15c、15b、15a)接触。因而,形成有从驱动放大器40到基座构件la4的散热通路(以后,将其称作第一散热通路)。
[0024]
需要说明的是,上层20的第一布线层la1与下层10的第三布线层la3之间的电通路使用信号导通孔14b、14a来确保。另外,第一布线层la1与第二布线层la2之间的电通路使用信号导通孔17a。而且,第一布线层la1与基座构件la4之间的电通路使用信号导通孔13c、13b、13a来分别确保通路。第三布线层la3与基座构件la4之间的电通路使用信号导通孔16a来确保。
[0025]
这样,由于将上层20以重叠的方式层叠于下层10,将驱动放大器40、载波放大器54及峰值放大器64三维地安装,所以能够达成模块尺寸是最外侧的形状为6mm
×
6mm且厚度2.2mm这样的高频放大器1的小型化。
[0026]
另外,在该高频放大器1中,不需要引线接合连接。由此,例如能够使500mm
×
500mm左右的大面板流向制造工序,从该面板可取得例如6千片6mm
×
6mm的面板,因此能够达成由加工费和材料费降低实现的成本的大幅降低。
[0027]
在此,在将在图3中说明的上层20重叠于在图4中说明的下层10的情况下,驱动放大器40的输入端子和载波放大器54的输入端子在上下方向上对向,驱动放大器40的输入端子与载波放大器54的输入端子的距离在上下方向上例如成为1mm以下,存在与将驱动放大器40和载波放大器54配置于同一平面上的情况相比显著缩窄的情况。在这样的物理配置中,若2个输入信号之间的相位差处于
±
π/2的范围,则在2个输入信号之间产生干涉,因此驱动放大器40的动作变得不稳定。详细而言,驱动放大器40的输出信号向输入反馈,驱动放大器40有可能振荡。
[0028]
于是,在高频放大器1中,将从驱动放大器40的输入端子到载波放大器54的输出端子为止的电长度(也就是说,在布线长上考虑了芯片部件量的电长度)或者波长λ的输入信号从驱动放大器40的输入端子包括中途的芯片部件而传播至载波放大器54的输出端子的延迟时间换算为波长λ的输入信号的相位,以在端子间成为(2n 1)
×
π的相位的方式设定。n是0以上的整数。
[0029]
为了达成该目的,在从驱动放大器40的漏极输出直到分支电路51为止的路径中,例如,如图3的曲线图案49所示,从上层20的中央大幅绕行至右半部分,在如图3的曲线图案52所示的从分支电路51的输出到导通孔52a为止的路径中,不是以直线,而是特意以曲线形成。
[0030]
这样,将从驱动放大器40的输入端子到载波放大器54的输出端子为止的电长度以成为(2n 1)
×
π的相位的方式设定。因而,即使在产生了信号反馈(也就是说,产生了使输出信号的一部分从载波放大器54的输出朝向驱动放大器40的输入返回的反馈)的情况下,驱动放大器40也处于不产生不稳定性的范围(概括而言是负反馈区域),而不处于2nπ(也就是说,产生不稳定性的正反馈区域)。由此,即使采用双层结构,也能够使放大器1稳定。
[0031]
而且,在一般的多尔蒂放大器中,将载波放大器与峰值放大器的相位差设定为π/2,但在高频放大器1中,将该相位差特意设定为π。也就是说,将载波放大器54的输出端子中的rf信号与峰值放大器64的输出端子中的rf信号的相位差设定为π/2到3π/2的范围。
[0032]
由此,从载波放大器54放出的电磁波及从峰值放大器64放出的电磁波在邻近处互
相消除,因此能够将向高频放大器1的外部放出的电磁波抑制得小。
[0033]
需要说明的是,该载波放大器54的相位和峰值放大器64的相位通过在图3中说明的相位调整电路61、在图7、8中说明的输入匹配电路53、63、输出匹配电路55、65、传送线trl1(在图4中说明的90
°
传送线路56a)而在输出端子rfout处同步。
[0034]
图2是说明图1的高频放大器的框图。另外,图3是图1的上层的俯视图,图4是图1的下层的俯视图。
[0035]
高频放大器1具有驱动放大器40和设置于驱动放大器40的后段的多尔蒂放大器50,构成为能够放大例如5ghz以上且6ghz以下的频带的信号。
[0036]
驱动放大器40将输入到输入端子rfin的以波长λ规定的rf(radio frequency:射频)信号放大为多尔蒂放大器50能够放大至规定的发送功率的程度。
[0037]
多尔蒂放大器50包含分支电路51、相位调整电路61、载波放大器54、峰值放大器64及多尔蒂网络56、66,将驱动放大器40放大后的rf信号进一步放大并从输出端子rfout输出。
[0038]
驱动放大器40、载波放大器54、峰值放大器64是例如使用了gan-hemt(high electron mobility transistor:高电子迁移率晶体管)作为放大元件的放大器。驱动放大器40、载波放大器54、峰值放大器64都是栅极焊盘设置于矩形形状的一边而漏极焊盘设置于与栅极焊盘对向的边。
[0039]
需要说明的是,驱动放大器40、载波放大器54、峰值放大器64在栅极焊盘的两侧设置有源极焊盘。但是,关于驱动放大器40,2个源极焊盘连接于形成于上层20的gnd。另一方面,关于载波放大器54、峰值放大器64,源极焊盘经由在图1中说明的背面54b、64b而连接于基座构件la4。由此,确保gnd,并且形成从载波放大器54、峰值放大器64到基座构件la4为止的散热通路(以后,将其称作第二散热通路)。
[0040]
第二散热通路与第一散热通路相比,可认为散热性优异。在第二散热通路中,载波放大器54、峰值放大器64各自的源极焊盘经由背面54b、64b而连接于基座构件la4。基座构件la4是金属(例如铜)制的板,散热性优异。另一方面,在第一散热通路中,驱动放大器40的源极焊盘经由背面40b而连接于散热部(第零布线层la0),经由接近的gnd导通孔而连接于基座构件la4。第零布线层la0是信号布线用的金属薄膜,因此从散热效率的观点来看不及作为金属(例如铜)制的板的基座构件la4。作为结果,该散热部(第零布线层la0)将热的传导限速,因此可认为第二散热通路与第一散热通路相比散热性优异。
[0041]
关于第一散热通路,可认为:通过更加扩展散热导通孔15a、15b、15c、15d的直径、在连接散热部(第零布线层la0)和基座构件la4的散热通路中对现状的散热通路(第一散热通路)进一步并列地设置散热导通孔,从而第一散热通路的散热效率能够改善。
[0042]
图3所示的上层20和图4所示的下层10具有大致相似外形的平面,均以例如6mm
×
6mm形成。
[0043]
如图1所示,经由设置于通信装置的印制基板100上的信号布线101a而输入到输入端子rfin(信号导通孔13a)的rf信号从在图1中说明的基座构件la4贯通下层10,通过图1所示的信号导通孔13a、13b、13c,不与下层10的任何部位连接而以图3来看向上层20的左下的角部分输入。驱动放大器40安装于上层20的左下附近,由驱动放大器40放大后的rf信号如图3的曲线图案49所示那样大幅回转。详细而言,以该图3来看去往上层20的上边后,右转而
沿着该上边向左前进,进一步右转而去往上层20的下边,到达与驱动放大器40同样设置于上层20的分支电路51。
[0044]
分支电路51例如是威尔金森型分配器,将由驱动放大器40放大后的rf信号向峰值放大器侧的输入路径和载波放大器侧的输入路径等分。
[0045]
由分支电路51分配后的rf信号的一方(载波放大器侧的输入路径)经过规定的曲线图案52,从以图3来看形成于上层20的下边附近的导通孔52a去往下层10。这例如通过与通过图1所示的信号导通孔14a、14b的信号路径同样的通路。相对于此,由分支电路51分配后的rf信号的另一方(峰值放大器侧的输入路径)到达与驱动放大器40同样设置于上层20的相位调整电路61。
[0046]
相位调整电路61使峰值放大器64的输入信号的相位延迟规定的分布常数量。例如,使其延迟90
°
。经过了相位调整电路61的rf信号从以图3来看形成于上层20的下边附近的导通孔61a去往下层10。这也通过与通过图1所示的信号导通孔14a、14b的信号路径同样的通路。
[0047]
需要说明的是,在本实施方式中,举出将相位调整电路61不配置于分支电路51与载波放大器54之间而配置于分支电路51与峰值放大器64之间的例子进行了说明。但是,本公开不限定于该例子。例如,也能够将相位调整电路不配置于分支电路51与峰值放大器64之间而配置于分支电路51与载波放大器54之间,使载波放大器54的输入信号的相位延迟。
[0048]
本实施方式的多尔蒂放大器50是非对称多尔蒂放大器,峰值放大器64和载波放大器54对于输入的rf信号分别呈现不同的最大输出强度。例如,峰值放大器64具有比载波放大器54大2倍左右的饱和输出(尺寸),峰值放大器64在载波放大器54的输出达到了饱和区域的情况下开始放大动作。具体而言,载波放大器54以ab级或b级进行动作。峰值放大器64以c级进行动作。在瞬时功率小时,载波放大器54进行动作,不使峰值放大器64进行动作,因此功率效率升高。在瞬时功率大时,载波放大器54及峰值放大器64的双方进行动作,因此能够维持高的功率效率并增大饱和功率。
[0049]
作为一例,记载驱动放大器40、载波放大器54、峰值放大器64的输出例。驱动放大器40使用输出10w的放大器,载波放大器54使用输出15w的放大器,峰值放大器64使用输出30w的放大器。在此,10w输出专门表示fet的尺寸,并非始终输出10w,而是以具有足够10w输出的尺寸这一含义来使用。
[0050]
由载波放大器54放大后的rf信号到达设置于下层10的载波放大器侧的多尔蒂网络56。在该多尔蒂网络56设置有90
°
传送线路(也称作λ/4线路)56a。因而,由载波放大器54放大后的rf信号经由90
°
传送线路56a而从以图4来看设置于下层10的右上的角部分的输出端子rfout与后述的峰值放大器64的输出信号合成并输出。
[0051]
另一方面,由峰值放大器64放大后的rf信号到达设置于下层10的峰值放大器侧的多尔蒂网络66,与载波放大器54的输出信号合成,通过通过图1所示的信号导通孔16a的信号路径,从输出端子rfout输出。从输出端子rfout输出的信号经由如图1所示那样设置于通信装置的印制基板100上的信号布线101b而从高频放大器1向外部传播。需要说明的是,载波放大器侧的多尔蒂网络56、峰值放大器侧的多尔蒂网络66相当于本公开的多尔蒂网络。
[0052]
图5是图1的驱动放大器电路图,图6是说明与图5的电路图对应的上层的图。另外,图7是图1的多尔蒂放大器电路图,图8说明与图7的电路图对应的下层。
[0053]
从图5所示的输入端子rfin输入的rf信号经由输入匹配电路30(电感器l1、电容器c1~c4这合计5个)而向驱动放大器40的栅极输入。栅极偏压从电源vg经由电感器l2而供给。电容器c5是电源vg的旁通电容器,电阻r1是调整用的电阻。
[0054]
驱动放大器40的漏极输出经由输出匹配电路41(电感器l4、l5、电容器c7~c9)而向分支电路51提供。漏极偏压从电源vd经由电感器l3而供给。电容器c6是电源vd的旁通电容器。
[0055]
接着,如图7所示,在分支电路51中,来自驱动放大器40的rf信号向基于l11、c24的匹配电路和基于c23、l12、c29的匹配电路等分。
[0056]
由基于l11、c24的匹配电路调整了相位的rf信号经由在图3中说明的曲线图案52、导通孔52a而到达下层10,去往载波放大器54。
[0057]
该到达了下层10的rf信号经由输入匹配电路53(电容器c31、c11~14)而向载波放大器54的栅极输入。栅极偏压从电源vg经由电感器l6而供给。电容器c15是电源vg的旁通电容器,电阻r4是调整用的电阻。
[0058]
载波放大器54的漏极输出经由dc切断用的电容器c26而向载波放大器侧的多尔蒂网络56提供。漏极偏压从电源vd经由电感器l9而供给。电容器c21是电源vd的旁通电容器。
[0059]
载波放大器侧的多尔蒂网络56由输出匹配电路55和用于将载波放大器54的输出和峰值放大器64的输出合成的传送线trl1(包括在图4中说明的90
°
传送线路56a)构成,输出匹配电路55由传送线trl2、电容器c25构成。
[0060]
另一方面,由分支电路51等分且由基于c23、l12、c29的匹配电路调整了相位的rf信号由相位调整电路61(电感器l15、l16、电容器c32)进一步调整相位,经由导通孔61a而到达下层10,去往峰值放大器64。
[0061]
该到达了下层10的rf信号经由输入匹配电路63(电感器l7、电容器c16~19)而向峰值放大器64的栅极输入。栅极偏压从电源vg经由电感器l8而供给。电容器c20是电源vg的旁通电容器,电阻r5是调整用的电阻。
[0062]
峰值放大器64的漏极输出经由dc切断用的电容器c28而向峰值放大器侧的多尔蒂网络66提供。漏极偏压从电源vd经由电感器l10而供给。电容器c22是电源vd的旁通电容器。
[0063]
峰值放大器侧的多尔蒂网络66由输出匹配电路65和传送线trl4构成,输出匹配电路65由电容器c27和电容器c10的2段结构、传送线trl3构成。
[0064]
若比较前述的放大器输出,则可认为各自的消耗电流或消耗功率并且作为其结果而产生的发热的大小按照驱动放大器40、载波放大器54、峰值放大器64的顺序变大。在本实施方式的高频放大器1中,设为了将发热更大的峰值放大器64、载波放大器54利用散热效率更好的第二散热通路来应对且将发热比它们小的驱动放大器40利用第一散热通路来应对的结构。通过设为这样的结构,高频放大器1能够提供小型且散热性好的高频放大器。
[0065]
高频放大器1由于将峰值放大器64、载波放大器54利用第二散热通路来应对,将驱动放大器40利用第一散热通路来应对,所以如图1所示,输入到输入端子rfin(信号导通孔13a)的rf信号从基座构件la4贯通下层10,通过图1所示的信号导通孔13a、13b、13c,不与下层10的任何部位连接而以图3来看向上层20的左下的角部分输入。另外,由分支电路51分配后的rf信号向设置于下层10的峰值放大器64、载波放大器54输入,因此通过与通过图1所示的信号导通孔14a、14b的信号路径同样的通路。通过通过这些信号通路,高频放大器1能够
提供小型且散热性好的高频放大器。
[0066]
应该认为本次公开的实施方式在所有方面都是例示而非限制性的内容。本公开的范围不是由上述的含义表示,而是由权利要求书表示,意在包括与权利要求书等同的含义及范围内的所有变更。附图标记说明
[0067]1…
高频放大器,10

下层,11

第一电介质层,12

第二电介质层,13a、13b、13c、14a、14b、16a、17a

信号导通孔,15a、15b、15c、15d

散热导通孔,20

上层,23

第三电介质层,24

第四电介质层,25

盖材,30

输入匹配电路,40

驱动放大器,40a

表面,40b

背面,41

输出匹配电路,49

曲线图案,50

多尔蒂放大器,51

分支电路,52

曲线图案,52a

导通孔,53

输入匹配电路,54

载波放大器,54a

表面,54b

背面,55

输出匹配电路,56、66

多尔蒂网络,56a

90
°
传送线路,61

相位调整电路,61a

导通孔,63

输入匹配电路,64

峰值放大器,64a

表面,64b

背面,65

输出匹配电路,100

印制基板,101a、101b

印制基板上的布线,la0

第零布线层(散热部),la1

第一布线层,la2

第二布线层,la3

第三布线层,la4

基座构件,rfin

输入端子,rfout

输出端子,l、l1~l12、l15、l16

电感器,c、c1~c29、c31、c32

电容器,r1、r3~r5

电阻,trl1~trl4

传送线,vd、vg

电源。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献