一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

靶向肿瘤的光热基因联合治疗纳米系统的制备方法及应用

2022-08-13 16:43:30 来源:中国专利 TAG:


1.本发明涉及生物医药技术领域,特别是涉及一种靶向肿瘤的光热基因联合治疗纳米系统的制备方法及应用。


背景技术:

2.肺癌是源于支气管黏膜上皮或肺泡上皮的恶性肿瘤,大多数肺癌患者年龄在65岁以上,但近年发病有年轻化倾向。肺癌的发病率和死亡率在众多恶性肿瘤中较高,晚期肺癌患者预后欠佳。临床上常通过手术切除的方式治疗癌症,并根据病情以及手术效果联合应用化疗、放疗、靶向治疗、生物免疫治疗等多种治疗方式进行治疗。虽然这些治疗方法针对于肿瘤有不错的治疗效果,但是会对患者身体产生极大的损伤。
3.在众多治疗手段中,光热治疗(ptt)因具有时间短、疗效显著、毒副作用小等优点被广泛关注和研究,并且已有部分应用于临床中。ptt的技术原理是将具有光热转换的药材注入人体,运用靶向识别技术将其聚集在肿瘤附近,再通过激光照射将光能转化为热能杀死癌细胞。然而现实问题在于,单独的光热治疗手段难以治愈癌症。因此,通常在光热治疗的前提下,再搭配如化疗、基因治疗等手段进行治疗。
4.细胞周期蛋白依赖性激酶(cdks)是一类丝氨酸/苏氨酸蛋白激酶,其单体本身并不具有活性,必须与相应的细胞周期蛋白结合形成有活性的异二聚体复合物发挥调节作用,可催化相应底物磷酸化,驱动细胞周期各项进程,依序完成dna合成和有丝分裂,引起细胞的生长和增殖。cdk作为细胞周期的关键性激酶,其生理活性通过与细胞周期蛋白、cdk激活激酶和cdk抑制蛋白的相互作用进行调节。大量研究表明,多数恶性肿瘤的发生和发展均与细胞周期调控功能紊乱有关,而cdk的过度活化是其中的重要原因之一。由于cdk在调节肿瘤细胞的增殖与凋亡中起关键作用,通过选择性抑制肿瘤组织中的cdks活性,可以对肿瘤治疗起到积极的作用,所以对cdk抑制剂的研究已成为肿瘤治疗和开发新型靶向药物的热点领域。cdks可分为两大类:控制细胞周期的cdks和细胞转录的cdks。cdk7主要与细胞内遗传信息的转录机制相关,其与白血病、三阴性乳腺癌、小细胞肺癌、胃癌和神经母细胞瘤等肿瘤的发生密切相关,因此,cdk7被认为是治疗恶性肿瘤的一个潜在药物靶点。许多cdk7小分子抑制剂被报道对多种恶性肿瘤具有良好的抑制作用,然而这些抑制剂也会导致多种不良反应的产生。


技术实现要素:

5.基于此,有必要针对上述问题,本发明提供一种靶向肿瘤的光热基因联合治疗纳米系统的制备方法,所得的纳米系统可有效靶向到肿瘤部位,通过光热和基因双重影响,达到抑制肿瘤增殖的效果,而且可减少或避免化学药物的使用,减少不良反应的发生。
6.一种靶向肿瘤的光热基因联合治疗纳米系统的制备方法,其特征在于,包括以下步骤:
7.制备纳米金棒:将金纳米种子和金棒生长液混合,生长得到金纳米棒aunr;
8.接枝:在甲氧基聚乙二醇-聚乙烯亚胺共聚物上接枝细胞穿膜肽irgd,得到mpeg-pei-irgd;
9.复合纳米金棒:将mpeg-pei-irgd和aunr混合,得到aunr@mpeg-pei-irgd;
10.复合sicdk7:将aunr@mpeg-pei-irgd和sicdk7混合,得到光热基因联合治疗纳米系统aunr@mpeg-pei-irgd/sicdk7;
11.其中,irgd的氨基酸序列为:crgdkgpdc(seq id no.1);
12.sicdk7的核苷酸序列为:agggatctgaaaccaaaca(seq id no.2)。
13.本发明的制备方法中,先制备具有良好光热性能的纳米金棒aunr,以及接枝有细胞穿膜肽irgd的mpeg-pei-irgd,两者复合后再与sicdk7复合,sicdk7为具有抑制cdk7合成能力的sirna,得到可靶向肿瘤并兼具光热和基因治疗的纳米系统。
14.现有技术中cdk7小分子抑制剂易产生多种不良反应的情况下,发明人想到利用载体负载可抑制肿瘤增殖的小干扰rna(sirna)或许是一种更佳的治疗方案。由此得到本发明的技术方案。
15.本发明所制备的纳米系统中,纳米金棒aunr具有光热治疗作用,在近红外光的照射下可快速升温,对肿瘤细胞造成损伤,同时尽可能降低对正常细胞的损伤;irgd多肽靶向识别肿瘤部位,在肿瘤部位富集并被肿瘤细胞内吞;负载的sicdk7在肿瘤细胞内干扰cdk7的翻译,从而使得cdk7基因的表达下降,对增殖活跃的肿瘤细胞具有良好的抑制作用;如此,达到靶向治疗肿瘤的作用。本发明的纳米系统具备精准治疗效果,减少或避免化学药物的使用,减少不良反应的产生。
16.在其中一个实施例中,所述制备纳米金棒步骤具体为:将十六烷基三甲基溴化铵和四氯金酸混合,加入冰冻的硼氢化钠继续混合,得到金纳米种子;将十六烷基三甲基溴化铵和四氯金酸混合,加入硝酸银和抗坏血酸混合,得到金棒生长液;向生长液中加入盐酸和金纳米种子,待生长出金纳米棒aunr。
17.在其中一个实施例中,所述接枝步骤具体为:将甲氧基聚乙二醇羧基溶于水,加入1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸(edc)进行活化,调节ph为6.8~7.2,加入n-羟基琥珀酰亚胺(nhs)和聚乙烯亚胺(pei),反应完成后除杂,得到mpeg-pei;将3-巯基丙酸溶于水,加入1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸进行活化,加入n-羟基琥珀酰亚胺和mpeg-pei,反应完成后除杂,得到mpeg-pei-sh;将irgd溶于水,加入1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸进行活化,调节ph为6.8~7.2,加入n-羟基琥珀酰亚胺和mpeg-pei-sh,反应完成后除杂,得到mpeg-pei-irgd。
18.在pei的基础上接枝了甲氧基聚乙二醇,可增加纳米系统在体内的半衰期,降低免疫原性,增加纳米系统的分散性,增加纳米材料的生物相容性。
19.用巯基化的阳离子聚合物甲氧基聚乙二醇-聚乙烯亚胺(mpeg-pei)修饰金棒,使其负载更多具有抑制cdk7合成能力的sicdk7。
20.在mpeg-pei部位接枝上肿瘤穿膜肽irgd,可保证该纳米系统能准确靶向到肿瘤部位。
21.在其中一个实施例中,所述甲氧基聚乙二醇羧基与聚乙烯亚胺的质量比为1:(1~1.5),优选为1:1.2。
22.在其中一个实施例中,所述3-巯基丙酸与mpeg-pei的质量比为1:(15~40),优选
为1:20。
23.在其中一个实施例中,所述irgd与mpeg-pei-sh的质量比为1:(8~12)。
24.在其中一个实施例中,所述除杂的方法为:用截留分子量为3500da的透析袋透析。
25.在其中一个实施例中,所述复合纳米金棒步骤具体为:将mpeg-pei-irgd和aunr混合,在惰性气体保护下搅拌1-3d,经离心去除杂质,得到aunr@mpeg-pei-irgd。
26.在其中一个实施例中,所述复合纳米金棒步骤中,所述aunr与mpeg-pei-irgd的质量比为1:(4~6)。
27.在其中一个实施例中,所述复合sicdk7步骤中,所述aunr@mpeg-pei-irgd和sicdk7的质量比为(15~40):1,优选为20:1。
28.在其中一个实施例中,所述复合sicdk7步骤中,所述aunr@mpeg-pei-irgd和sicdk7混合后,置于20~30℃下孵育20~40min,即得aunr@mpeg-pei-irgd/sicdk7。
29.本发明还提供一种采用本发明所述的制备方法得到的靶向肿瘤的光热基因联合治疗纳米系统。
30.本发明还提供一种本发明所述的靶向肿瘤的光热基因联合治疗纳米系统在制备抑制肺癌药物中的用途。
31.本发明与现有技术相比,具有以下有益效果:
32.本发明所制备的纳米系统中,纳米金棒aunr具有光热治疗作用,在近红外光的照射下可快速升温,对肿瘤细胞造成损伤,同时尽可能降低对正常细胞的损伤;irgd多肽靶向识别肿瘤部位,在肿瘤部位富集并被肿瘤细胞内吞;负载的sicdk7在肿瘤细胞内干扰cdk7的翻译,从而使得cdk7基因的表达下降,对增殖活跃的肿瘤细胞具有良好的抑制作用;如此,达到靶向治疗肿瘤的作用。本发明的纳米系统具备精准治疗效果,减少或避免化学药物的使用,减少不良反应的产生。
附图说明
33.图1为aunr的电子透射电镜图。
34.图2为mpeg-cooh、mpeg-pei、mpeg-pei-sh、mpeg-pei-irgd的核磁共振氢谱图。
35.图3为mpeg-cooh、mpeg-pei、mpeg-pei-sh、mpeg-pei-irgd的红外光谱图。
36.图4为mpeg-pei-irgd、aunr、aunr@mpeg-pei-irgd的紫外吸收光谱图。
37.图5为aunr、aunr@mpeg-pei-irgd以及aunr@mpeg-pei-irgd/sicdk7复合物在不同n/p比下的平均粒径图。
38.图6为aunr、aunr@mpeg-pei-irgd以及aunr@mpeg-pei-irgd/sicdk7复合物在不同n/p比下的zeta电位zata电位。
39.图7为pbs/sicdk7组、aunr@mpeg-pei/sicdk7、aunr@mpeg-pei-irgd/sicdk7以及lipo 2000/sicdk7组体外转染流式结果图。
40.图8为pbs组和aunr@mpeg-pei-irgd/sicdk7组在小鼠体内近红外光照射下的光热性能对比图。
具体实施方式
41.为了便于理解本发明,以下将给出较佳实施例对本发明进行更全面的描述。但是,
本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。
42.除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。
43.以下实施例中,除非特殊说明,试剂、材料、设备为市售购得,实验方法为本领域的常规实验方法。
44.实施例1
45.一种靶向肿瘤的光热基因联合治疗纳米系统(aunr@mpeg-pei-irgd/sicdk7纳米系统),其制备方法如下。
46.一、纳米金棒(aunr)的制备
47.1.1金纳米种子制备
48.将10ml的0.1m的十六烷基三甲基溴化铵(ctab)与0.25ml的0.01m四氯金酸(haucl4)在烧瓶中充分混合,缓慢搅拌30s,再滴入0.6ml的0.01m冰冻的硼氢化钠(nabh4),剧烈搅拌两分钟,置于室温静置1h备用。
49.1.2金纳米棒(aunr)的制备
50.将50ml的ctab(0.2m)置于平底烧瓶中,然后加入50ml的四氯金酸(0.001m),溶液由黄色变为橙色。再加入1ml的硝酸银(0.004m),轻轻搅拌后,加入0.7ml的0.0788m抗坏血酸(aa),缓慢搅拌后得无色生长液,加入1ml hcl溶液(1m),加入金纳米种子100μl,随后保持静置,过夜生长。将金纳米棒溶液离心水洗三次(12000rpm),去掉过多的ctab,然后将离心后的aunr用超纯水分散,4℃保存。
51.二、mpeg-pei-irgd的制备
52.2.1 mpeg-pei的合成
53.称取100mg甲氧基聚乙二醇羧基(mpeg-cooh,分子量2000),溶于10ml去离子水中,加入10mg edc(1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸)活化羧基15min,然后将ph调至7.0,加入15mg nhs(n-羟基琥珀酰亚胺),搅拌15min后,加入120mg pei(聚乙烯亚胺,分子量1800),反应8h,反应完毕,将溶液用截留分子量为3500da的透析袋透析1d,将未反应的mpeg-cooh、pei及其他杂质除去,冻干,得到mpeg-pei。
54.2.2 mpeg-pei-sh的制备
55.吸取2mg 3-巯基丙酸,将其溶于5ml去离子水中,加入2mg edc活化羧基15min,然后将ph调至7.0,加入3mg nhs,搅拌15min后,然后加入40mg mpeg-pei,氮气保护下反应8h,反应完毕,将溶液用截留分子量为3500da的透析袋透析1d,冻干,得到mpeg-pei-sh。
56.2.3 mpeg-pei-irgd的制备
57.取10mg irgd,将其溶于10ml去离子水中,加入10mg edc活化羧基15min,然后将ph调至7.0,加入15mg nhs,搅拌15min后,然后加入100mg mpeg-pei-sh,氮气保护下反应8h,反应完毕,将溶液用截留分子量为3500da的透析袋透析1d,冻干,得到mpeg-pei-irgd。
58.三、mpeg-pei-irgd修饰金纳米棒(aunr@mpeg-pei-irgd)的制备
59.取100mg的mpeg-pei-irgd添加到金含量为20mg的aunr溶液中。将混合溶液在氮气保护下搅拌2d。将合成后的aunr@mpeg-pei-irgd溶液离心并重悬于超纯水中两次,以除去
未反应的mpeg-pei-irgd以及金棒表面的ctab,将溶液于4℃条件下保存。
60.取100mg的mpeg-pei添加到金含量为20mg的aunr溶液中。将混合溶液在氮气保护下搅拌2d。将合成后的aunr@mpeg-pei溶液离心并重悬于超纯水中两次,以除去未反应的mpeg-pei以及金棒表面的ctab,将溶液于4℃条件下保存。
61.四、aunr@mpeg-pei-irgd/sicdk7的制备
62.取定量的aunr@mpeg-pei-irgd和sicdk7(质量比aunr@mpeg-pei-irgd:sicdk7=20:1),将两者混合均匀,室温下孵育30min,得到aunr@mpeg-pei-irgd/sicdk7。
63.取定量的aunr@mpeg-pei和sicdk7(质量比aunr@mpeg-pei:sicdk7=20:1),将两者混合均匀,室温下孵育30min,得到aunr@mpeg-pei/sicdk7。
64.实验例1
65.1透射电镜(tem)测试
66.将制备的aunr溶液用0.22μm滤膜过滤,滤液滴在铜网的碳支持膜上,空气中自然干燥后,置于高分辨透射电镜中观察纳米粒子的总体形貌和粒径分布。图1为实施例1中纳米金棒(aunr)的透射电镜图,从图中可看到,所制得的aunr大部分为棒状,且aunr分散性较好。
67.2核磁测试
68.分别称取约3-5mg mpeg-cooh、mpeg-pei、mpeg-pei-sh和mpeg-pei-irgd溶解于适量的氘代试剂中(重水d2o),然后装入干净的核磁管中,利用核磁共振光谱仪在室温条件下进行核磁结构测定。
69.图2为mpeg-cooh及实施例1中所制备的mpeg-pei、mpeg-pei-sh、mpeg-pei-irgd的核磁共振氢谱图,相对于mpeg-cooh,mpeg-pei的核磁共振氢谱图中,在a区域(化学位移分别为2.77及2.92)出现宽峰,对应为pei结构中伯胺基及仲胺上氢原子的吸收峰;mpeg-pei与巯基丙酸通过酰胺化反应,所得的mpeg-pei-sh在b区域(化学位移为3.11)处出现一较明显的吸收峰,对应为巯基丙酸结构中β氢(与-sh相连-ch2上的氢)的吸收峰;mpeg-pei-sh与irgd通过酰胺化反应,所得的mpeg-pei-irgd在c区域(化学位移为3.04)处出现一吸收峰,对应为所用irgd的半胱氨酸结构中β氢(与-s-s-相连-ch2上的氢)的吸收峰。
70.3红外测试
71.采用溴化钾压片法,傅立叶红外光谱仪测定mpeg-cooh、mpeg-pei、mpeg-pei-sh和mpeg-pei-irgd在4000-399cm-1
范围内的红外光谱。
72.图3为mpeg-cooh及实施例1中所制备的mpeg-pei、mpeg-pei-sh、mpeg-pei-irgd的红外光谱图,mpeg-cooh红外图谱中,1731cm-1
处归属为羧基上c=o双键的伸缩振动吸收峰;接枝pei后,mpeg-pei在3284cm-1
处出现一宽峰,归属为pei结构中n-h的伸缩振动吸收峰,因羧基与氨基发生酰胺化反应,c=o键由于与氨基p-π共轭使得其伸缩振动吸收峰向低波数迁移,1641cm-1
处吸收峰归属为酰胺键c=o键的吸收峰,1562cm-1
归属为n-h键的弯曲振动吸收峰;mpeg-pei在巯基改性后,氨基的伸缩振动吸收峰向高波数处迁移,可能是部分氨基被巯基乙酸甲酯改性后被消耗,减弱了氨基之间的缔合,使得其向高波数方向移动,改性后生成的酰胺键与mpeg-pei中本身的酰胺键的吸收峰重合,c=o键吸收峰出现在1649cm-1
处,n-h键的弯曲振动吸收峰出现在1573cm-1
处,这两处吸收峰相较于mpeg-pei略有偏移;mpeg-pei-sh接枝irgd后,在1467cm-1
处出现一中强度吸收峰,对应为irgd精氨酸结构中c=n双键
的伸缩振动吸收峰。
73.4紫外测试
74.紫外分光光度计测定mpeg-pei-irgd、aunr、aunr@mpeg-pei-irgd在400-1000nm范围内的吸光度。
75.图4为实施例1中制备的mpeg-pei-irgd、aunr、aunr@mpeg-pei-irgd的紫外吸收光谱图,aunr在516nm和890nm左右具有吸收峰,分别对应金棒的横轴(宽端)和纵轴(长端)的等离子共振吸收峰,mpeg-pei-irgd在对应位置无吸收峰,当aunr外围的ctab被替换成mpeg-pei-irgd后,金棒横轴(宽端)和纵轴(长端)的等离子共振吸收峰均发生红移,分别对应为533nm及937nm,这可能归因于mpeg-pei-irgd的分子共振与aunr的等离子体激元共振之间的耦合。
76.5粒径电位
77.先按照不同质量比配制aunr@mpeg-pei-irgd/sicdk7复合物(1:1、2:1、5:1、10:1、15:1、20:1),然后利用纳米激光粒度仪表征aunr、aunr@mpeg-pei-irgd以及aunr@mpeg-pei-irgd/sicdk7复合物在不同n/p的条件下的粒径和电位,测试温度为25℃,并且对每个样品进行至少测量3次。
78.阳离子聚合物与基因通过静电相互作用结合形成复合物,但只有形成具有适当粒径和表面电势的纳米复合物才能够通过细胞内吞作用进入细胞发挥应有的生物效应。因此,利用动态光散射和zeta电位对aunr@mpeg-pei-irgd与cdk7复合物的粒径和电位进行分析表征。如图5所示,aunr平均粒径约为45nm,aunr@mpeg-pei-irgd平均粒径约为116nm,aunr@mpeg-pei-irgd与sicdk7通过静电相互作用形成复合物,粒径有所增加,当n/p比为5:1时,粒径上升至498nm左右,表明aunr@mpeg-pei-irgd/sicdk7复合物在该条件下出现一定程度的聚沉。而当n/p为20:1时,复合物的粒径又减小至167nm左右,表明材料与基因在该质量比下能够形成稳定的复合物。因此,aunr@mpeg-pei-irgd作为基因载体能够与sicdk7形成合适粒径大小的复合物。
79.aunr、aunr@mpeg-pei-irgd以及aunr@mpeg-pei-irgd/sicdk7复合物在不同n/p比下的zeta电位结果,如图6所示,aunr的zeta电位约为 24mv,aunr@mpeg-pei-irgd的zeta电位约为 19.4mv,当n/p比为1:1时,aunr@mpeg-pei-irgd/sicdk7的zeta电位急剧下降至-10.8mv,这很可能是由于sicdk7过量,产生了显著的电荷屏蔽效应。随着n/p比的增加,aunr@mpeg-pei-irgd/sicdk7的zeta电位逐渐升高,在n/p比为15:1或更高时,aunr@mpeg-pei-irgd/sicdk7复合物的zeta电位变成初始的aunr@mpeg-pei-irgd的zeta电位电位水平。该结果表明aunr@mpeg-pei-irgd能够与sicdk7形成带正电的复合物,这为基因复合物进入细胞提供了有利的条件。
80.6流式分析
81.首先将小鼠肺癌细胞(llc)接种于24孔板中,接种密度为5
×
104个/孔。然后将其置于二氧化碳培养箱中贴壁过夜。待细胞密度达70%时,吸出原来培养基,更换新鲜的质量比为20:1的aunr@mpeg-pei/sicdk7及aunr@mpeg-pei-irgd/sicdk7复合物(sicdk7用cy5标记,2μg/孔)的完全培养基,以pbs作为空白对照组,以商品化的脂质体转染试剂lipo 2000作为对照组。然后将培养板置于培养箱中继续培养一天。转染完成后,利用胰蛋白酶消化细胞,离心吸出上清并加入pbs重悬细胞,最后用流式细胞仪来定量分析sicdk7转染效果。
82.图7为pbs/sicdk7组、aunr@mpeg-pei/sicdk7、aunr@mpeg-pei-irgd/sicdk7以及lipo 2000/sicdk7组体外转染流式结果图,从图中看到,相较于aunr@mpeg-pei/sicdk7组,aunr@mpeg-pei-irgd/sicdk7组中的cy5荧光强度要更高,这说明接枝irgd对于llc具有靶向性,更利于细胞对材料的内吞。同时,aunr@mpeg-pei-irgd/sicdk7组与商品化的lipo 2000/sicdk7组的荧光强度相近,这说明aunr@mpeg-pei-irgd具有良好的负载基因的功能。
83.7体内光热治疗
84.动物实验选用spf级balb/c裸鼠(3~4周龄,雌性),在进行实验前,所有的小鼠需要在动物房饲养观察10天,进行各种指标测试,指标合格后再进行动物实验。小鼠肿瘤模型建立步骤具体如下:将预先培养好的llc细胞用胰酶消化后离心,用适量pbs重悬,并加入相同体积的高浓度基质胶,以2
×
106个/100μl的细胞密度接种到balb/c裸鼠的右后肢腋下,每天观察肿瘤大小。当小鼠的肿瘤体积均达100mm3左右时,对荷瘤小鼠分别尾静脉注射pbs、aunr@mpeg-pei-irgd/sicdk7,用功率密度为1.5w/cm
2 808nm激光照射,通过红外热成像仪拍摄照片并记录温度。
85.图8为pbs组跟aunr@mpeg-pei-irgd/sicdk7组在小鼠体内近红外光照射下的光热性能对比图,从图中看到,pbs组在肿瘤部位的温度在26s后为37.1℃,与小鼠体温接近,而aunr@mpeg-pei-irgd/sicdk7组在肿瘤部位的温度于30s后就升到了46.3℃,说明aunr@mpeg-pei-irgd/sicdk7在肿瘤部位进行了富集,表现出良好的靶向性,并发挥治疗作用。
86.以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
87.以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献