一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种基于能量传递的低阈值黄光固体激光器

2022-08-03 05:37:25 来源:中国专利 TAG:


1.本发明属于固体激光器领域,具体涉及一种基于能量传递的低阈值黄光固体激光器。


背景技术:

2.黄激光(550~620nm)在光谱分析、激光雷达、医疗美容以及生物化学监测方面具有重要应用。获得黄光波段主要有以下几种方式:非线性晶体倍频(专利cn105071217)、双波长和频、结合非线性光学技术的光纤激光器以及拉曼激光器等。然而上述方法主要通过红外激光的非线性频率转换方式实现。这就造成了:一方面,非线性转换过程中基频光模式竞争导致黄光输出功率的稳定性较差、光束质量不佳;另一方面,系统的复杂程度直接导致了激光器的体积较大,从而对激光器的可靠性造成了严重的影响。而能够直接发射黄色波段激光的材料最近几年受到了格外重视。从目前国内外的研究来看,主要在有机固体燃料、有机无机杂化晶体、掺杂稀土离子的激光晶体、色心lif品体等领域不仅有利于系统的小型化,但由于激光染料本身的物理化学稳定性以及激光循环冷却系统的复杂性,限制了全固态染料激光器的发展。
3.半导体激光抽运掺镝激光介质激光器是一种最为直接产生激光的方式。根据掺镝激光介质的特殊能级结构,采用半导体激光抽运,利用4f
9/2
→6h
13/2
的能级跃迁,可以直接获得黄光波段的激光。这种结构无需进行非线性频率转换,具有体积小,稳定性好,噪声低等优点。
4.文献(鞠乔俊,沈华,姚文明,陈建生,檀慧明,刘文鹏,罗建乔,张庆礼,高静.半导体激光抽运dy:yag黄光激光器[j].中国激光,2017,44(04):23-28.)中报道采用dy:yag实现半导体直接泵浦黄光激光输出,但是所获得的激光输出功率较低,无法满足实际应用需求。


技术实现要素:

[0005]
本发明的目的是提供一种基于能量传递的低阈值黄光固体激光器,能够在泵浦源的激发下,实现高效率黄光激光输出。
[0006]
为实现上述目的,本发明采用的技术方案如下:一种基于能量传递的低阈值黄光固体激光器,包括泵浦源、聚焦耦合系统、谐振腔;所述谐振腔包括在谐振腔体中相对布置的输入镜、输出镜、以及设置在输入镜和输出镜之间的激光增益介质,所述激光增益介质为ce,dy:lugdag透明陶瓷,其化学式为(gd
1-x-y-z
lu
x
dyycez)3al5o
12
,其中0.30≤x≤0.5,0.03≤y≤0.3,0.005≤z≤0.02,所述ce,dy:lugdag透明陶瓷采用共沉淀法制备得到。
[0007]
本发明采用ce,dy:lugdag透明陶瓷作为激光增益介质,其中,通过ce
3
共掺杂,dy
3
离子可以将吸收的波长的光子能量传递给ce
3
离子,从而增加了ce
3
离子的5d-4f跃迁,gd
3
离子的掺杂改善了离子间的能级损耗,此外,gd
3
作为半径大的离子,掺入使得多离子掺入的晶格更加稳定,最终实现高效黄光激光输出。
[0008]
优选的,采用共沉淀法制备ce,dy:lugdag透明陶瓷的具体步骤包括:
[0009]
(1)根据(gd
1-x-y-z
lu
x
dyycez)3al5o
12
中各元素的化学计量比,分别量取dy(no3)3、gd(no3)3、eu(no3)3和lu(no3)3溶液,混合搅拌均匀,并逐滴加入分散剂(nh4)2so4溶液;
[0010]
(2)将所述混合溶液滴加到沉淀剂溶液中并不断搅拌,沉淀剂为nh3·
h2o和/或nh4hco3,调节体系ph值在7.2-7.8之间;经陈化、过滤得到的前驱体沉淀物;将所述前驱体沉淀物烘干,研磨过筛,煅烧,得到陶瓷粉体;
[0011]
(3)将所述陶瓷粉体压制成型、冷等后得到素坯,将所述素坯在真空条件下预烧结,之后将真空烧结后的样品进行热等静压处理,经退火得到透明陶瓷。
[0012]
优选的,步骤(2)中所述煅烧的温度为1000-1200℃,保温时间为3-8h。
[0013]
优选的,步骤(3)中真空烧结的温度为1500-1750℃,保温时间为3-15h。
[0014]
优选的,步骤(3)中所述热等静压的压强为150-200mpa,烧结温度为1500-1750℃,保温时间为3-8h。
[0015]
优选的,步骤(3)中所述退火在空气气氛下进行,退火温度为1200-1400℃,保温时间为12-20h。
[0016]
优选的,所述泵浦源由多个450nm gan或ingan激光二极管组成,或者所述泵浦源为腔内倍频光泵半导体激光器,输出光的波长范围为440-480nm。
[0017]
优选的,所述聚焦耦合系统包括准直透镜和聚焦透镜,透镜为凸透镜,聚焦比例为1:0.8。
[0018]
优选的,所述谐振腔为平平腔或者平凹腔,所述输入镜为全反镜,所述全反镜为平面镜、平凸镜或平凹镜中的一种,所述输入境靠近泵浦源一测镀对泵浦光波段的抗反射膜、激光的全反射膜或者高反膜中的一种;所述输出镜为平面镜、平凸镜或平凹镜中的一种,镀对所需波段(如550-620nm等)激光高反的膜,对激光透过率为1-40%。
[0019]
与现有技术相比,本发明具有如下有益效果:
[0020]
1、本发明能够直接实现半导体泵浦固体激光(黄光)输出,有利于黄光固体激光器的小型化与集成化;
[0021]
2、ce,dy:lugdag透明陶瓷作为激光增益介质,其中,通过ce
3
共掺杂,dy
3
离子可以将吸收的波长的光子能量传递给ce
3
离子,从而增加了ce
3
离子的5d-4f跃迁,gd
3
离子的掺杂改善了离子间的能级损耗,此外,gd
3
作为半径大的离子,掺入使得多离子掺入的晶格更加稳定,最终实现高效黄光激光输出。
[0022]
3、在制备陶瓷粉体方面,采用共沉淀法,使得粉体混合更均匀、烧结活性更高;在烧结方式方面,采用真空预烧结结合热等静压法烧结陶瓷,可以更加有效的获得致密化、光学质量高的ce,dy:lugdag透明陶瓷。
附图说明
[0023]
图1是本发明实施例提供的一种固体激光器的结构示意图。
[0024]
图中,1-泵浦源,2-聚焦耦合系统,3-输入镜,4-激光增益介质,5-输出镜,6-黄光激光输出,7-谐振腔。
[0025]
图2是本发明实施例1烧结退火后陶瓷样品sem图。
具体实施方式
[0026]
下面结合附图和具体实施例对本发明作进一步详细说明。需要说明的是,本实施例中所提供的图示仅以示意方式说明本发明的基本构想,虽图示中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的形态、数量及比例可为一种随意的改变,且其组件布局形态也可能更为复杂。
[0027]
如图1所示,本发明提供一种基于能量传递的低阈值黄光固体激光器,包括泵浦源1、聚焦耦合系统2、谐振腔7;所述谐振腔7包括在谐振腔体中相对布置的输入镜3、输出镜5、以及设置在输入镜3和输出镜5之间的激光增益介质4。所述泵浦源1通过聚焦耦合系统2将泵浦光汇聚照射激光增益介质4。
[0028]
所述泵浦源1可以是450nm左右gan或ingan激光二极管或者为腔内倍频光泵半导体激光器,其输出光的波长范围为440-480nm。
[0029]
所述聚焦耦合系统2包括准直透镜和聚焦透镜,透镜为凸透镜,聚焦比例为1:0.8。
[0030]
所述激光增益介质4为ce,dy:lugdag透明陶瓷,其化学式为(gd
1-x-y
lu
x
dyycez)3al5o
12
,其中0.30≤x≤0.5,0.03≤y≤0.3,0.005≤z≤0.02,其中,通过ce
3
共掺杂,dy
3
离子可以将吸收的波长的光子能量传递给ce
3
离子,从而增加了ce
3
离子的5d-4f跃迁,gd
3
离子的掺杂改善了离子间的能级损耗,此外,gd
3
作为半径大的离子,掺入使得多离子掺入的晶格更加稳定,最终实现高效黄光激光输出。
[0031]
所述谐振腔7为平平腔或者平凹腔,所述输入镜3为全反镜,所述全反镜为平面镜、平凸镜或平凹镜中的一种,所述输入境3靠近泵浦源1一测镀对泵浦光波段的抗反射膜、激光的全反射膜或者高反膜中的一种;所述输出镜5为平面镜、平凸镜或平凹镜中的一种,镀对所需波段(如550-620nm等)激光高反的膜,对激光透过率为1-40%。
[0032]
光路传输路径为:泵浦源1发出的泵浦光被聚焦耦合系统2聚焦在位于谐振腔7里的激光增益介质4;激光增益介质4吸收泵浦光,在谐振腔7产生振荡,激发出黄光激光,经过输出镜5,输出黄光激光。
[0033]
利用上述的激光器装置对产生578nm激光进行了实验模拟:
[0034]
实施例1:当使用的激光增益介质的化学式为(gd
0.18
lu
0.5
dy
0.3
ce
0.02
)3al5o
12
,即x,y,z的取值分别为x=0.500、y=0.30、z=0.02时,使用450nm gan作为ld泵浦源,共沉淀法制备时,首先将dy2o3、lu2o3、eu2o3及gd2o3原料溶解在稀hno3中,分别配制成dy(no3)3、gd(no3)3、eu(no3)3和lu(no3)3溶液,将标定好的硝酸盐溶液作为原料,按照化学计量配比(gd
0.18
lu
0.5
dy
0.3
ce
0.02
)3al5o
12
,分别量取一定体积的硝酸盐溶液,将上述五种硝酸盐混和在一起,并持续剧烈搅拌混和。为了改善粉体性质,选用浓度为98.5%的(nh4)2so4溶液为分散剂,逐滴滴加到持续搅拌的混和硝酸盐溶液中,采用1.4mol/l的nh4hco3溶液作为沉淀剂,最后调节ph值至7.2,搅拌后陈化24小时。之后将沉淀物倒入离心机中,用去离子水洗涤过滤,烘干,研磨过筛,1000℃煅烧3h后得到对应粉体,之后将粉体压制成型、冷等后得到素坯,将所述素坯在真空条件下于1500℃预烧结3h,之后将真空烧结后的样品放置在热等静压炉腔中,设置压强为150mpa,烧结温度为1500℃,时间为3h,最后在空气气氛中退火,退火温度为1200℃,时间为12h,得到透明陶瓷。
[0035]
图1为本实施例烧结退火后陶瓷样品的sem图,可以看出晶粒尺寸不超过1μm,且无气孔出现,说明陶瓷致密化良好,具有较好的光学质量。
[0036]
之后材料通过加工镀膜,使用以上激光测试装置,ld泵浦578nm黄色激光的产生。
[0037]
实施例2:当使用的激光增益介质的化学式为(gd
0.44
lu
0.4
dy
0.15
ce
0.01
)3al5o
12
,即x,y,z的取值分别为x=0.40、y=0.15、z=0.01时,使用450nm gan作为ld泵浦源,共沉淀法制备时,首先将dy2o3、lu2o3、eu2o3及gd2o3原料溶解在稀hno3中,分别配制成dy(no3)3、gd(no3)3、eu(no3)3和lu(no3)3溶液,将标定好的硝酸盐溶液作为原料,按照化学计量配比(gd
0.44
lu
0.4
dy
0.15
ce
0.01
)3al5o
12
,分别量取一定体积的硝酸盐溶液,将上述五种硝酸盐混和在一起,并持续剧烈搅拌混和。为了改善粉体性质,选用浓度为99.0%的(nh4)2so4溶液为分散剂。逐滴滴加到持续搅拌的混和硝酸盐溶液中,采用1.5mol/l的nh4hco3溶液作为沉淀剂,最后调节ph值至7.5,搅拌后陈化24小时。之后将沉淀物倒入离心机中,用去离子水洗涤过滤,放置烘箱干燥,研磨过筛,1100℃煅烧6h后得到对应粉体,之后将粉体压制成型、冷等后得到素坯,将所述素坯在真空条件下于1600℃预烧结8h,之后将真空烧结后的样品放置在热等静压炉腔中,设置压强为180mpa,烧结温度为1600℃,时间为5h,最后在空气气氛中退火,退火温度为1300℃,时间为15h,得到透明陶瓷。
[0038]
本实施例烧结退火后陶瓷样品的sem图同实施例1类似。
[0039]
之后材料通过加工镀膜使用以上激光测试装置,ld泵浦578nm黄色激光的产生。
[0040]
实施例3:当使用的激光增益介质的化学式为(gd
0.45
lu
0.5
dy
0.03
ce
0.02
)3al5o
12
,即x,y,z的取值分别为x=0.500、y=0.03、z=0.02时,使用450nm gan作为ld泵浦源,共沉淀法制备时,首先将dy2o3、lu2o3、eu2o3及gd2o3原料溶解在稀hno3中,分别配制成dy(no3)3、gd(no3)3、eu(no3)3和lu(no3)3溶液,将标定好的硝酸盐溶液作为原料,按照化学计量配比(gd
0.45
lu
0.5
dy
0.03
ce
0.02
)3al5o
12
,分别量取一定体积的硝酸盐溶液,将上述五种硝酸盐混和在一起,并持续剧烈搅拌混和。为了改善粉体性质,选用浓度为99.5%的(nh4)2so4溶液作分散剂,逐滴滴加到持续搅拌的混和硝酸盐溶液中,采用1.6mol/l的nh4hco3溶液作为沉淀剂,最后调节ph值至7.8,搅拌后陈化24小时。之后将沉淀物倒入离心机中,用去离子水洗涤过滤,放置烘箱干燥,研磨过筛,1200℃煅烧8h后得到对应粉体,之后将粉体压制成型、冷等后得到素坯,将所述素坯在真空条件下于1750℃预烧结15h,之后将真空烧结后的样品放置在热等静压炉腔中,设置压强为200mpa,烧结温度为1750℃,时间为8h,最后在空气气氛中退火,退火温度为1400℃,时间为20h,得到透明陶瓷。
[0041]
本实施例烧结退火后陶瓷样品的sem图同实施例1类似。
[0042]
之后材料通过加工镀膜使用以上激光测试装置,ld泵浦578nm黄色激光的产生。
[0043]
通过比较发现实施例2激光器输出效果较佳,模拟激光稳定性更好,斜效率最高为9.7%。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献