一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种碳化钛-MXene掺杂海藻酸钠除磷吸附气凝胶珠的制备方法和应用

2022-08-02 23:29:42 来源:中国专利 TAG:

一种碳化钛-mxene掺杂海藻酸钠除磷吸附气凝胶珠的制备方法和应用
技术领域
1.本发明涉及水污染治理领域,具体涉及一种除磷吸附气凝胶珠的制备方法和应用。


背景技术:

2.磷酸盐在水中的过度富集加速了营养化,从而导致藻类水华、水中氧气耗尽、生物死亡以及当地生态平衡的破坏。此外,藻华过度繁殖对饮用水供应和水生生态系统造成持续性威胁,增加了饮用水处理的难度与费用。
3.城镇污水排放往往是地表水的主要污染源,为达到减少富营养化的目的,对于湖泊、河流、水库和河口等易出现富营养化或用作饮用水源的敏感区域,减少磷输入是最行之有效的方法。
4.添加化学混凝剂(如铁盐或铝盐)是污水处理厂强化磷酸盐去除最常用的方法。然而,化学沉淀除磷最明显的缺点是产生大量剩余污泥,严重影响后续污泥处理。此外,在一般情况下,因为大多数化学试剂对生物除磷有抑制作用,该过程中需分段处理,分别采用化学和生物去除磷,这导致了处理工序复杂,运行成本增加。
5.此外,生物法、膜处理和离子交换法同样因操作复杂、运行维护成本高、效果不稳定等问题而应用受限。对比之下,吸附法除磷则有便于磷回收、不产生剩余污泥、操作简便等优点。然而目前应用中的吸附剂往往对磷选择性不高、吸附容量较低、因粒径小而难以回收等问题,使吸附法除磷在实际应用中受到限制。
6.mxene是一种由过渡金属碳化物、氮化物或多个原子层的碳氮化物组成的新型二维无机化合物。这类新型的二维材料和复合材料具有特殊的结构、高比表面积、小尺寸和化学多样性。mxene在制备过程中带上的-o、-f或-oh基团使其具有很强的亲水性。此外,该材料具有很强的生物相容性。目前二维(2d)mxene材料用于吸附去除水中的磷酸盐的研究发现,mxene与磷酸盐形成表面络合和静电吸引,且mxene内的ti-o末端和磷酸盐化学络合可以实现了对水体磷酸盐的去除。但目前的mxene材料磷吸附能力仍较低,且在干扰阴离子存在的情况下对磷的选择吸附较差,同时纳米颗粒mxene材料的吸附回收存在困难。
7.气凝胶是一类是干燥凝胶材料的总称,其具有高孔隙率、大比表面积、低密度等优越特征。其中多糖凝胶材料海藻酸盐具有良好的化学稳定性、生物相容性、生物降解性、无毒、低成本、温和的凝胶化和螯合能力。其结构中含有大量亲水官能团-oh和-cooh。通过接枝、交联以及其它活性基团的表面功能化等方法可以实现对天然海藻酸盐的修饰从而提高其吸附性能。但目前的改性海藻酸盐磷吸附剂仍然存在缺陷:它们中的大多数需要做成珠状、水凝胶或膜状从而使吸附材料易于分离,然而这种形态大幅减少了吸附剂的比表面积,且改性材料对原始海藻酸盐的亲水性产生了影响,且海藻酸盐气凝胶材料大多机械强度低,这使得吸附剂再生过程中易损耗从而降低材料使用寿命。
8.因此,开发一种生物友好、亲水性强、机械性能和热稳定性高、比表面积大、选择吸
附性好、吸附容量高、易回收且重复吸附效能高的磷吸附材料对实现水环境磷回收、降低生态风险具有重要意义。


技术实现要素:

9.本发明的目的是要解决现有磷吸附剂对磷选择性不高、亲水性差、吸附容量较低、因粒径小而难以回收和机械强度低的问题,而提供一种碳化钛-mxene掺杂海藻酸钠除磷吸附气凝胶珠的制备方法和应用。
10.一种碳化钛-mxene掺杂海藻酸钠除磷吸附气凝胶珠的制备方法,是按以下步骤完成的:
11.一、将ti3c
2-mxene粉末加入到通入惰性气体的超纯水中,再超声分散,mxene由多层变为少层或单层,得到少层或单层ti3c
2-mxene粉末分散液;
12.二、将海藻酸钠粉末加入到少层或单层ti3c
2-mxene粉末分散液中,机械搅拌,得到混合溶液;
13.三、将混合溶液逐滴滴入到交联溶液中,再在4℃下交联,得到交联凝胶小球;
14.四、使用超纯水对交联凝胶小球洗涤数次,再将小球沥出;
15.五、将沥出的小球放入冷冻干燥机中冷冻干燥,得到碳化钛-mxene掺杂海藻酸钠除磷吸附气凝胶珠。
16.一种碳化钛-mxene掺杂海藻酸钠除磷吸附气凝胶珠作为磷吸附剂使用。
17.与现有技术相比,本发明的有益效果是:
18.(1)、与纯海藻酸钠气凝胶珠相比,本技术中使用了mxene材料,mxene材料的投加使海藻酸钠气凝胶珠在冷冻干燥的过程中维持了良好的三维交联网络形貌,避免了纯海藻酸钠在冷冻干燥过程中的塌陷以及交联过程中结构过于密实的情况,这使得本发明制备的碳化钛-mxene掺杂海藻酸钠除磷吸附气凝胶珠作为吸附材料使用时拥有数量更多的接触位点,更利于磷吸附行为的发生;
19.(2)、本发明制备的碳化钛-mxene掺杂海藻酸钠除磷吸附气凝胶珠为介孔材料,具有较一般吸附材料更大的比表面积(约92.288m2/g),同时其由于具有较大的小球状外形,材料回收更加简便;
20.(3)、本发明制备的碳化钛-mxene掺杂海藻酸钠除磷吸附气凝胶珠具有更高的热稳定性和机械强度,使得本材料吸附适用的温度范围更广,同时也降低了其保存要求。材料在解吸和材料复用中损失减少,降低了投入成本,材料使用寿命显著增加;
21.(4)、本发明制备的碳化钛-mxene掺杂海藻酸钠除磷吸附气凝胶珠由于碳化钛纳米片表面附着的-f基团、-oh基团、-o基团,以及海藻酸钠上的-cooh、-oh、-co基团,本材料拥有更高的亲水性,大大增加了吸附材料与水溶液的接触概率,使得磷的吸附可能性大幅增加;
22.(5)、本发明制备的碳化钛-mxene掺杂海藻酸钠除磷吸附气凝胶珠除优异的物理吸附条件外,由于同时存在ti和zr两种功能元素,可以分别与p发生反应形成ti-o-p和zr-o-p产物,即发生化学吸附,使得本材料对水体中磷的吸附选择性增加,磷吸附容量大大增加,可减少吸附材料投加量,降低成本;
23.(6)、本发明制备的碳化钛-mxene掺杂海藻酸钠除磷吸附气凝胶珠材料生物相容
性高,在实际应用范围更广,在后续生物处理环节或者实际水体处理中不易降低生物处理活性;
24.(7)、由于该气凝胶珠吸附材料ti、zr双重化学吸附作用和多孔道三维结构,其亲水性强、机械性能和热稳定性高、比表面积大、选择吸附性好、吸附容量高、易回收且重复吸附效能高,降低了水体磷吸附处理难度。
25.本发明可获得一种碳化钛-mxene掺杂海藻酸钠除磷吸附气凝胶珠。
附图说明
26.图1为实施例1制备的碳化钛-mxene掺杂海藻酸钠除磷吸附气凝胶珠的宏观形貌;
27.图2为实施例1制备的碳化钛-mxene掺杂海藻酸钠除磷吸附气凝胶珠的截面扫描电子显微镜1万倍放大后的形貌;
28.图3为实施例1制备的碳化钛-mxene掺杂海藻酸钠除磷吸附气凝胶珠氮气吸脱附曲线;
29.图4为实施例1制备的碳化钛-mxene掺杂海藻酸钠除磷吸附气凝胶珠的孔径分布图;
30.图5为热重曲线图,图中1为碳化钛-mxene粉末,2为对比例制备的海藻酸钠气凝胶珠,3为实施例1制备的碳化钛-mxene掺杂海藻酸钠除磷吸附气凝胶珠;
31.图6为实施例1制备的碳化钛-mxene掺杂海藻酸钠除磷吸附气凝胶珠的接触角;
32.图7为实施例1制备的碳化钛-mxene掺杂海藻酸钠除磷吸附气凝胶珠磷吸附前后的xps元素全谱图,图中1为吸附前,2为吸附后;
33.图8为实施例1制备的碳化钛-mxene掺杂海藻酸钠除磷吸附气凝胶珠磷吸附前后的zr3d及p2sxps元素窄谱图;
34.图9为实施例1制备的碳化钛-mxene掺杂海藻酸钠除磷吸附气凝胶珠磷吸附前后的ti2pxps元素窄谱图;
35.图10为实施例1制备的碳化钛-mxene掺杂海藻酸钠除磷吸附气凝胶珠在干扰阴离子共存情况下的磷吸附容量,图中1为so
42-,2为cl-,3为no
3-,4为hco
3-;
36.图11为实施例1制备的碳化钛-mxene掺杂海藻酸钠除磷吸附气凝胶珠使用0.1mnaoh再生后的磷吸附容量;
37.图12为实施例1制备的碳化钛-mxene掺杂海藻酸钠除磷吸附气凝胶珠在溶液不同初始ph下的磷吸附容量;
38.图13为实施例1制备的碳化钛-mxene掺杂海藻酸钠除磷吸附气凝胶珠实际水体除磷效果,图中1为进水,2为出水。
具体实施方式
39.以下实施例进一步说明本发明的内容,但不应理解为对本发明的限制。在不背离本发明实质的情况下,对本发明方法、步骤或条件所作的修改和替换,均属于本发明的范围。
40.具体实施方式一:本实施方式一种碳化钛-mxene掺杂海藻酸钠除磷吸附气凝胶珠的制备方法是按以下步骤完成的:
41.一、将ti3c
2-mxene粉末加入到通入惰性气体的超纯水中,再超声分散,mxene由多层变为少层或单层,得到少层或单层ti3c
2-mxene粉末分散液;
42.二、将海藻酸钠粉末加入到少层或单层ti3c
2-mxene粉末分散液中,机械搅拌,得到混合溶液;
43.三、将混合溶液逐滴滴入到交联溶液中,再在4℃下交联,得到交联凝胶小球;
44.四、使用超纯水对交联凝胶小球洗涤数次,再将小球沥出;
45.五、将沥出的小球放入冷冻干燥机中冷冻干燥,得到碳化钛-mxene掺杂海藻酸钠除磷吸附气凝胶珠。
46.具体实施方式二:本实施方式与具体实施方式一不同点是:步骤一中所述的ti3c
2-mxene粉末与超纯水的质量比为(2.5~4):(100~130)。其它步骤与具体实施方式一相同。
47.具体实施方式三:本实施方式与具体实施方式一或二之一不同点是:步骤一中所述的超声分散的功率为300w~400w,超声分散的时间为15min~30min。其它步骤与具体实施方式一或二相同。
48.具体实施方式四:本实施方式与具体实施方式一至三之一不同点是:步骤二中所述的海藻酸钠粉末与步骤一中超纯水的质量比为(2.5~4):(100~130)。其它步骤与具体实施方式一至三相同。
49.具体实施方式五:本实施方式与具体实施方式一至四之一不同点是:步骤二中所述的机械搅拌的速度为1000r/min~2000r/min,机械搅拌的时间为4h~12h。其它步骤与具体实施方式一至四相同。
50.具体实施方式六:本实施方式与具体实施方式一至五之一不同点是:步骤三中所述的交联溶液为质量分数为3%~5%的zrocl2·
8h2o水溶液。其它步骤与具体实施方式一至五相同。
51.具体实施方式七:本实施方式与具体实施方式一至六之一不同点是:步骤三中所述的交联的时间为8h~24h;步骤三中所述的混合溶液与交联溶液的体积比为(0.8~1.2):(1.6~2.4)。其它步骤与具体实施方式一至六相同。
52.具体实施方式八:本实施方式与具体实施方式一至七之一不同点是:步骤四中使用超纯水对交联凝胶小球洗涤的次数为3次~5次。其它步骤与具体实施方式一至七相同。
53.具体实施方式九:本实施方式与具体实施方式一至八之一不同点是:步骤五中所述的冷冻干燥的温度为-50℃~-40℃,冷冻干燥的时间为12h~24h。其它步骤与具体实施方式一至八相同。
54.具体实施方式十:本实施方式是一种碳化钛-mxene掺杂海藻酸钠除磷吸附气凝胶珠作为磷吸附剂使用。
55.采用以下实施例验证本发明的有益效果:
56.实施例1:一种碳化钛-mxene掺杂海藻酸钠除磷吸附气凝胶珠的制备方法,是按以下步骤完成的:
57.一、将0.25g ti3c
2-mxene粉末加入到通入惰性气体的12.5ml超纯水中,再超声分散,mxene由多层变为少层或单层,得到少层或单层ti3c
2-mxene粉末分散液;
58.步骤一中所述的超声分散的功率为300w,超声分散的时间为15min;
59.二、将0.25g海藻酸钠粉末加入到少层或单层ti3c
2-mxene粉末分散液中,在搅拌速
度为1000r/min下机械搅拌10h,得到混合溶液;
60.三、将混合溶液逐滴滴入到交联溶液中,再在4℃下交联24h,得到交联凝胶小球;
61.步骤三中所述的交联溶液为质量分数为3%的zrocl2·
8h2o水溶液;
62.步骤三中所述的混合溶液与交联溶液的体积比为1:2;
63.四、使用超纯水对交联凝胶小球洗涤数5次,再将小球沥出;
64.五、将沥出的小球放入温度为-50℃的冷冻干燥机中冷冻干燥24h,得到碳化钛-mxene掺杂海藻酸钠除磷吸附气凝胶珠(吸附剂)。
65.实施例1步骤一中ti3c
2-mxene粉末的制备方法如下:
66.将0.8glif固体和10ml 9m hcl溶液加入聚四氟乙烯烧杯中,搅拌15min至lif颗粒完全溶解,再称取0.5g ti3alc2固体粉末,分多次加入前述溶液中,得到的固液混合物在40℃恒温水浴锅中连续搅拌反应24h(转速为500rpm),反应结束后使用离子水作为洗涤液洗涤至离心后的洗涤液ph为5~7;离心后弃去上清液,产物冷冻干燥24h,得到ti3c
2-mxene粉末。
67.对比例:海藻酸钠气凝胶珠的制备方法是按以下步骤完成的:
68.一、将0.25g海藻酸钠粉末加入到12.5ml超纯水中,在搅拌速度为1000r/min下机械搅拌10h,得到海藻酸钠溶液;
69.二、将海藻酸钠溶液逐滴滴入到交联溶液中,再在4℃下交联24h,得到交联凝胶小球;
70.步骤二中所述的交联溶液为质量分数为3%的zrocl2·
8h2o水溶液;
71.步骤二中所述的海藻酸钠溶液与交联溶液的体积比为1:2;
72.三、使用超纯水对交联凝胶小球洗涤数5次,再将形成的小球沥出;
73.四、将沥出的小球放入温度为-50℃的冷冻干燥机中冷冻干燥24h,得到海藻酸钠气凝胶珠(吸附剂)。
74.实施例1制备的碳化钛-mxene掺杂海藻酸钠除磷吸附气凝胶珠的宏观形态如图1所示;
75.图1为实施例1制备的碳化钛-mxene掺杂海藻酸钠除磷吸附气凝胶珠的宏观形貌;
76.从图1可知,实施例1制备的碳化钛-mxene掺杂海藻酸钠除磷吸附气凝胶珠为3-4mm的水滴状光滑小球,其截面在10000倍放大后拍摄的扫描电子显微镜图如图2所示;
77.图2为实施例1制备的碳化钛-mxene掺杂海藻酸钠除磷吸附气凝胶珠的截面扫描电子显微镜1万倍放大后的形貌;
78.从图2可以看出气凝胶珠内部为网络状多孔道结构,而mxene材料则以薄片形式均匀分散其中,并被海藻酸钠网络结构连接。
79.图3和图4展示了实施例1制备的碳化钛-mxene掺杂海藻酸钠除磷吸附气凝胶珠经过低温氮气吸脱附表征后的吸脱附曲线和bjh脱附和dft法得到的孔径分布图。
80.图3为实施例1制备的碳化钛-mxene掺杂海藻酸钠除磷吸附气凝胶珠氮气吸脱附曲线;
81.图4为实施例1制备的碳化钛-mxene掺杂海藻酸钠除磷吸附气凝胶珠的孔径分布图;
82.multi-point bet法得到材料比表面积92.288m2/g(相关系数r=0.999321);
bjhdsorption法得到材料比表面积137.56m2/g,平均孔径3.023mm,孔容0.414cc/g;dft法得到材料比表面积82.302m2/g,平均孔径3.169mm,孔容0.32cc/g。
83.图5为热重曲线图,图中1为碳化钛-mxene粉末,2为对比例制备的海藻酸钠气凝胶珠,3为实施例1制备的碳化钛-mxene掺杂海藻酸钠除磷吸附气凝胶珠;
84.图5的热重分析tg-dtg曲线说明实施例1制备的碳化钛-mxene掺杂海藻酸钠除磷吸附气凝胶珠的随着温度升高,失重率均小于普通海藻酸钠气凝胶珠,且失重发生的温度均高于普通海藻酸钠气凝胶珠;由此可以看出mxene材料的引入使碳化钛-mxene掺杂海藻酸钠除磷吸附气凝胶珠的热稳定性要更优。
85.图6为实施例1制备的碳化钛-mxene掺杂海藻酸钠除磷吸附气凝胶珠的接触角;
86.图6展示的实施例1制备的碳化钛-mxene掺杂海藻酸钠除磷吸附气凝胶珠接触角表明本材料具有很好的亲水性(平均接触角为33.41
°
)。
87.应用实施例1:实施例1制备的碳化钛-mxene掺杂海藻酸钠除磷吸附气凝胶珠作为磷吸附剂使用是按以下步骤完成的:
88.将50mg实施例1制备的碳化钛-mxene掺杂海藻酸钠除磷吸附气凝胶珠投加到1l浓度为50mg/l的磷溶液中,吸附24h,吸附前后的xps元素全谱图、zr3d及p2sxps元素窄谱图和zr3d及p2sxps元素窄谱图见图7~9所示;
89.图7为实施例1制备的碳化钛-mxene掺杂海藻酸钠除磷吸附气凝胶珠磷吸附前后的xps元素全谱图,图中1为吸附前,2为吸附后;
90.图7的xps全谱图可以看出,在磷吸附后,碳化钛-mxene掺杂海藻酸钠除磷吸附气凝胶珠的谱图于133.5ev出现p2p峰,证明p的成功吸附。
91.图8为实施例1制备的碳化钛-mxene掺杂海藻酸钠除磷吸附气凝胶珠磷吸附前后的zr3d及p2sxps元素窄谱图;
92.图9为实施例1制备的碳化钛-mxene掺杂海藻酸钠除磷吸附气凝胶珠磷吸附前后的ti2pxps元素窄谱图;
93.而图8于190.9ev处出现的p2s zr(hpo4)2·
h2o新峰,图9中于458.8ev出现的ti2p ti3(po4)4·
nh2o峰均证明了zr和ti分别与p发生反应形成zr-o-p和ti-o-p产物。
94.应用实施例2:实施例1制备的碳化钛-mxene掺杂海藻酸钠除磷吸附气凝胶珠作为磷吸附剂使用是按以下步骤完成的:
95.将实施例1制备的碳化钛-mxene掺杂海藻酸钠除磷吸附气凝胶珠(吸附剂)分别投加到100ml浓度为5mm、10mm和50mm的na2so4、nacl、nano3、nahco3且磷含量50mg/l的溶液中,并设置空白组(仅含磷50mg/l,无其他干扰阴离子),吸附剂的投加量为50mg/l,放入恒温震荡箱震荡,设置温度为25℃,转速150r/min,吸附24h。设置平行实验共三组。使用钼酸铵分光光度法测定剩余溶液中的磷浓度,见图10所示;
96.图10为实施例1制备的碳化钛-mxene掺杂海藻酸钠除磷吸附气凝胶珠在干扰阴离子共存情况下的磷吸附容量,图中1为so
42-,2为cl-,3为no
3-,4为hco
3-;
97.图10的吸附结果表明:干扰阴离子对磷吸附干扰作用不大,吸附容量下降不明显。
98.将应用实施例2中吸附实验结束后的吸附剂通过离心收集后,放入0.1m naoh溶液温和搅拌1h,随后滤出吸附剂,用去离子水洗涤5遍,冷冻干燥后得到再生吸附剂;配置一定初始浓度的磷溶液(50mg/l),取100ml磷溶液于250ml锥形瓶中,吸附剂投加量为200mg/l,
其余操作同上。循环再生5-6次以检验吸附材料再生后的磷吸附效能;使用钼酸铵分光光度法测定溶液中的磷浓度,见图11所示;
99.图11为实施例1制备的碳化钛-mxene掺杂海藻酸钠除磷吸附气凝胶珠使用0.1mnaoh再生后的磷吸附容量;
100.图11的吸附结果表明,吸附剂经过六次再生后,吸附容量由56.289mgp/g下降至39.231mg p/g,其中前三次吸附再生后吸附容量下降不大。表明制备的本吸附剂具有良好的可再生性。
101.配置一定初始浓度的磷溶液(50mg/l),分别取100ml磷溶液于若干个250ml锥形瓶中,使用1m hcl和1m naoh调节初始溶液ph至2-10,称取一定质量的吸附剂(50mg/l)于其中,其余条件同上;设置平行实验共三组;使用钼酸铵分光光度法测定溶液中的磷浓度,见图12所示;
102.图12为实施例1制备的碳化钛-mxene掺杂海藻酸钠除磷吸附气凝胶珠在溶液不同初始ph下的磷吸附容量;
103.图12的吸附结果表明,在ph=3-4时,吸附剂对磷取得最优吸附容量135.75mg p/g。
104.应用实施例3:
105.从哈尔滨某城镇生活污水处理厂取二沉池出水,并从某自然河道中取水,各取100ml溶液置于若干个250ml锥形瓶中,投加实施例1制备的碳化钛-mxene掺杂海藻酸钠除磷吸附气凝胶珠于其中,投加量按50mg/l,锥形瓶放入恒温震荡箱震荡,设置温度为25℃,转速150r/min,吸附24h,使用钼酸铵分光光度法测定进出水的磷浓度,见图13所示;
106.图13为实施例1制备的碳化钛-mxene掺杂海藻酸钠除磷吸附气凝胶珠实际水体除磷效果,图中1为进水,2为出水。
107.实验结果如图13所示,二沉池出水吸附后tp达到一级a出水标准,自然水体的tp则变为0mg/l。
108.应用实施例4:
109.从哈尔滨某生活污水处理厂二沉池取污泥接种于实验室规模aao反应器(总有效容积28.5l,分为6个区室,单个区室有效体积为4.75l,第一个区室为厌氧池,第二个区室为缺氧池,第3-6个区室为好氧池,厌氧、缺氧、好氧段体积比为1:1:4),低温(10~12℃)驯化15d至aao反应器运行稳定。aao反应器的进水基本水质指标为:cod 350-450mg/l,nh
4 -n 18-26mg/l,tp 4.5-5.5mg/l,ph 7.0
±
0.1,进水水温和反应器内水温均在10~12℃。反应器稳定运行期间出水cod、氨氮、tn均可达一级a出水标准,tp在0.8~1.0mg/l,未达到一级a出水标准要求的0.5mg/l。
110.在好氧池至二沉池间的过水管段设置10cm长实施例1制备的碳化钛-mxene掺杂海藻酸钠除磷吸附气凝胶珠填料柱(直径30mm),二沉池出水tp达一级a出水标准,tp浓度在0.2~0.3mg/l。出水cod、氨氮、tn未受影响,均可达一级a出水标准。
111.上述实施例只是本发明的优选方案,本发明还可有其他实施案,如固定床吸附除磷等。本领域的技术人员在不违背本发明精神的前提下还可作出等同变形或替换,这些等同的变形或替换均包含在本技术权利要求所设定的范围内。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献