一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

从血管内腔电增强取出材料的制作方法

2022-07-24 01:20:25 来源:中国专利 TAG:

从血管内腔电增强取出材料
1.相关申请的交叉引用
2.本技术要求2019年12月12日提交的美国专利申请第16/711,862号和2019年12月12日提交的美国专利申请第16/711,858号的优先权,其中每一个都通过引用整体并入本文。
技术领域
3.本发明技术总体上涉及用于从人体内腔去除障碍物的装置和方法。本发明技术的一些实施方式涉及用于从血管电增强去除凝块材料的装置和方法。


背景技术:

4.许多医疗手术使用一个或多个医疗装置从人体内腔、血管或其它器官中去除障碍物(如凝块材料)。此类手术中的固有风险是,如果障碍物或其碎片从取出装置上移出,则移动或以其它方式干扰障碍物可能潜在地产生进一步伤害。如果障碍物的全部或一部分挣脱装置并且向下游流动,则游离材料将极有可能卡在更小并且更曲折的解剖结构中。在许多情况下,医师将不能够再使用同一取出装置再次去除障碍物,因为装置可能太大和/或不可移动以致不能将装置移动到新障碍物的位点。
5.用于通过恢复脑脉管系统内的流动来治疗缺血性卒中的手术会受上述问题的影响。大脑依赖于其动脉和静脉从心脏和肺供应氧合血液,并且从大脑组织中去除二氧化碳和细胞废物。干扰这种血液供应的堵塞最终导致大脑组织停止运转。如果发生足够长时间的血液中断,则营养物和氧气的持续缺乏会导致不可逆的细胞死亡。因此,期望提供对缺血性卒中的即时医疗治疗。
6.为了进入脑脉管系统,医师通常将导管从身体的远侧部分(通常为腿部)推进穿过腹部脉管系统并且进入脑脉管系统的区域中。一旦在脑脉管系统内,医师就部署装置以取出引起堵塞的障碍物。在血流恢复是关键的时候,对移出障碍物或移出碎片的迁移的关注增加了的手术持续时间。此外,医师可能不知道从初始障碍物中移出并且引起更小更远侧血管的堵塞的一个或多个碎片。
7.许多医师目前用支架进行血栓切除术(即,凝块去除)以解决缺血性卒中。通常,医师将支架部署到凝块中,以试图将凝块推动到血管的侧面并且重新建立血流。组织纤维蛋白溶酶原活化物(“tpa”)通常通过静脉内管线注入到血流中以分解凝块。然而,tpa到达凝块需要时间,因为tpa必须穿行于脉管系统,并且仅在到达凝块材料时才开始分解凝块。还经常施用tpa以补充支架的有效性。然而,如果凝块溶解的尝试无效或不完全的,则医师可在支架扩张抵靠凝块或嵌入凝块时尝试去除支架。在这样做时,医师必须有效地将凝块在近端方向上通过脉管系统拖拽到位于患者颈部(通常是颈动脉)中的血管内的导引导管中。尽管已经显示这种手术在临床上是有效的并且易于医师执行,但是使用这种方法仍然存在一些明显的缺点。
8.例如,一个缺点是支架在将凝块拉到导管时可能无法充分拦住凝块。在这种情况
下,一些或全部凝块可能遗留在脉管系统中。另一个风险是,随着支架使凝块从初始堵塞位点移动,当支架朝向导管撤回时,凝块可能不会粘附到支架上。当穿过杈和曲折的解剖结构时,这是特别的风险。此外,血流可以将凝块(或凝块的碎片)携带到杈的分支血管中。如果将凝块成功地带到颈动脉中的导引导管的端部,则又另一个风险是当支架进入导引导管时,可以从支架“剥离”或“剪切”凝块。
9.鉴于以上情况,仍然需要可以从人体内腔和/或血管去除闭塞的改进的装置和方法。


技术实现要素:

10.机械血栓切除术(即,抓取和去除凝块)已经有效地用于治疗缺血性卒中。尽管大多数凝块可以在单次通过尝试中被取出,但是存在需要多次尝试来完全取出凝块并恢复通过血管的血流的情况。另外,当介入元件和凝块穿过曲折的颅内血管解剖结构时,由于在取出过程期间凝块从介入元件分离而存在并发症。例如,分离的凝块或凝块碎片可能阻塞其它动脉,从而导致继发性卒中。在取出期间导致凝块释放的失效模式是:(a)杈处的边界条件;(b)血管直径的变化;以及(c)血管曲折度等。
11.如血小板和凝血蛋白等某些血液成分显示负电荷。本发明技术的治疗系统提供承载一个或多个电极的介入元件和电流发生器,所述电流发生器被配置为在血栓切除术手术的一个或多个阶段期间使介入元件带正电荷。例如,电流发生器可以向电极施加恒定或脉动直流(dc)。带正电荷的电极和/或介入元件吸引带负电荷的血液组分,从而改善血栓与介入元件的附接并且减少为完全取出凝块装置所必需通过或尝试的次数。
12.向介入元件输送电流的一种方法是沿着耦接到介入元件的近端的芯线传导电流。然而,本发明人已经发现,这种方法可能导致电荷沿着介入元件的近侧部分的不利集中,而在介入元件的更远侧部分中(例如,沿着介入元件的工作长度的一些或全部工作长度)电荷密度不足。这对于具有逐渐变细到与芯线的连接点的近侧部分的介入元件来说尤其如此。由于机械凝块接合主要发生在远离电荷密度最大的区域的位置处,因此近侧部分中的这种电流集中可以降低凝块粘附的静电增强的效力。此外,以这种方式输送电流可能需要海波管或其他附加结构元件耦合到芯线,从而使芯组件变硬并且使曲折的脉管系统的导航变得更加困难。
13.为了克服这些和其他问题,在本技术的一些方面,治疗系统可以包括由介入元件承载或以其他方式耦合到介入元件的一个或多个电极。电极可以采用固定到介入元件的一部分的不透射线标记物的形式,并且可以排布成在治疗期间改善介入元件表面上的电荷分布。例如,通过将电流输送到固定在介入元件上的电极,电荷可以集中在介入元件的选定区域(例如,与输送电极相邻的区域)。
14.电流可以通过在电流发生器(其可以放置在体外)和电极之间延伸的多个电引线流向输送电极。一个或多个返回电极同样可以耦合到介入元件,并且可选地还可以兼任不透射线标记物。另外地或可替代地,返回电极可定位在其他位置(例如,针、接地垫、由治疗系统的一个或多个导管承载的导电元件、导线,和/或被配置为与输送电极和体外定位的电流发生器一起完成电路的任何其它合适的导电元件)。当介入元件在存在血液(或任何其它电解介质)的情况下放置并且在电流发生器的端子处施加电压时,电流沿着引线流到输送
电极和介入元件、穿过血液并且流到返回电极,由此使介入元件的至少一部分带正电荷并且将凝块材料粘附到介入元件。
15.本技术的治疗系统和方法可以通过以改善电荷分布的方式相对于介入元件定位输送电极和/或通过改变介入元件的特性来进一步改善凝块对介入元件的粘附。例如,在一些实施方式中,介入元件中的一些或全部可以涂覆有一种或多种诸如金等高导电材料,以改善凝块粘附。在本发明技术的一些方面,介入元件的工作长度可以涂覆有导电材料,而介入元件的非工作长度可以涂覆有绝缘材料。
16.例如,根据下文描述的各个方面例示本发明技术。为了方便起见,本发明技术的各个方面的各个实施例被描述为已编号条款(1、2、3等)。提供这些条款作为实施例但不限制本发明技术。应当注意,任何从属条款可以以任何组合来组合,并且被放置在相应的独立条款中。其它条款可以以类似的方式呈现。
17.1.一种医疗装置,其包括:
18.具有远侧部分的细长芯构件,所述远侧部分被配置为血管内定位于血管内腔内的治疗位点处;和
19.介入元件,其耦联到芯构件的远侧部分,所述介入元件包括:
20.主体,其可从第一配置扩展至第二配置;
21.耦合到主体的不透射线元件,所述不透射线元件包括导电材料;
22.导电引线,其具有电耦合到不透射线元件的远侧部分和配置为电耦合到电流源的近侧部分。
23.2.条款1所述的装置,其中,所述主体包括导电材料。
24.3.根据前述条款中任一项所述的装置,其中,所述主体与所述不透射线元件电连通。
25.4.根据前述条款中任一项所述的装置,其中,所述导电引线沿其长度的至少一部分是电绝缘的。
26.5.根据前述条款中任一项所述的装置,其中,所述导电引线沿所述芯构件向近侧延伸。
27.6.根据前述条款中任一项所述的装置,其中,所述导电引线和所述芯构件沿它们各自长度的至少一部分耦合在一起。
28.7.根据前述条款中任一项所述的装置,其中,所述导电引线包括以下中的至少一种:铜或镍钛诺。
29.8.根据前述条款中任一项所述的装置,其中,所述导电引线包括直径在约0.005和0.02mm之间的导线(wire)。
30.9.根据前述条款中任一项所述的装置,其中,所述不透射线元件包括耦合到所述主体的一部分的线圈。
31.10.根据前述条款中任一项所述的装置,其中,所述不透射线元件耦合到所述主体的向远侧延伸尖端。
32.11.根据前述条款中任一项所述的装置,其中,所述主体包括形成多个单元的多个支柱,并且其中所述不透射线元件耦合到所述支柱中的一个。
33.12.根据前述条款中任一项所述的装置,其中,所述主体包括形成多个单元的多个
支柱,并且其中所述不透射线元件耦合到从所述支柱中的一个延伸的突出部。
34.13.根据前述条款中任一项所述的装置,其中,所述不透射线元件包括带。
35.14.根据前述条款中任一项所述的装置,其进一步包括:
36.耦合到所述主体的多个不透射线元件,每个元件包括导电材料;和
37.多个导电引线,每个具有电耦合到所述多个不透射线元件中的一个的远侧部分并且具有配置为电耦合到电流源的近侧部分。
38.15.根据前述条款中任一项所述的装置,其中,所述多个导电引线沿它们各自长度的至少一部分捆束在一起。
39.16.根据前述条款中任一项所述的装置,其中,所述多个不透射线元件中的第一组被配置为用作输送电极,并且其中所述多个不透射线元件中的第二组被配置为用作返回电极。
40.17.根据前述条款中任一项所述的装置,其中,所述输送电极布置在所述主体的工作长度内,并且其中所述返回电极布置在所述主体的非工作长度内。
41.18.根据前述条款中任一项所述的装置,其中,所述输送电极布置在所述返回电极附近。
42.19.根据前述条款中任一项所述的装置,其中,所述多个不透射线元件被配置为用作输送电极,所述装置进一步包括被配置为耦合到所述电流源的返回电极。
43.20.根据前述条款中任一项所述的装置,其中,所述不透射线元件被配置为用作输送电极,并且其中所述导电引线是第一导电引线,所述装置进一步包括:
44.返回电极;和
45.第二导电引线,其具有电耦合到所述返回电极的远侧部分和配置为电耦合到所述电流源的近侧部分。
46.21.根据前述条款中任一项所述的装置,其中,所述返回电极包括针或接地垫。
47.22.根据前述条款中任一项所述的装置,其中,所述返回电极包括暴露的导电构件,所述暴露的导电构件布置在所述介入元件的近侧部分附近。
48.23.根据前述条款中任一项所述的装置,其中,暴露的导电构件不由所述主体承载。
49.24.根据前述条款中任一项所述的装置,其中,所述不透射线元件是第一不透射线元件,并且所述返回电极包括耦合到所述主体并且包括导电材料的第二不透射线元件。
50.25.根据前述条款中任一项所述的装置,其中,所述第一不透射线元件布置在所述主体的工作长度内,并且其中所述第二不透射线元件布置在所述主体的非工作长度内。
51.26.根据前述条款中任一项所述的装置,其中,所述第一不透射线元件和所述第二不透射线元件各自布置在所述主体的工作长度内。
52.27.根据前述条款中任一项所述的装置,其中,所述第一不透射线元件布置在所述主体的中心部分内,并且其中所述第二不透射线元件布置在所述主体的远侧部分。
53.28.根据前述条款中任一项所述的装置,其中,所述第一导电引线和所述第二导电引线各自沿所述芯构件向近侧延伸。
54.29.根据前述条款中任一项所述的装置,其中,所述第一导电引线、所述第二导电引线和所述芯构件沿它们各自长度的至少一部分不可滑动地耦合在一起。
55.30.根据前述条款中任一项所述的装置,其中,所述第一导电引线、所述第二导电引线和所述芯构件沿它们各自长度的至少一部分捆束在一起。
56.31.根据前述条款中任一项所述的装置,其中,所述不透射线元件包括不透射线标记物。
57.32.根据前述条款中任一项所述的装置,其中,所述电流源包括电流发生器。
58.33.根据前述条款中任一项所述的装置,其中,所述介入元件包括血栓切除装置。
59.34.根据前述条款中任一项所述的装置,其中,所述介入元件包括支架取栓装置(stent retriever)。
60.35.根据前述条款中任一项所述的装置,其中,所述介入元件包括去除装置。
61.36.根据前述条款中任一项所述的装置,其中,所述介入元件的一部分涂覆有导电材料。
62.37.根据前述条款中任一项所述的装置,其中,所述导电材料包括金。
63.38.根据前述条款中任一项所述的装置,其中,所述介入元件的一部分涂覆有导电材料。
64.39.根据前述条款中任一项所述的装置,其中,所述非导电材料包括聚对二甲苯。
65.40.一种系统,其包括:
66.根据前述条款中任一项所述的装置;和
67.电流源,其电耦合到所述导电引线。
68.41.一种医疗装置,其包括:
69.血栓切除元件,其包括:
70.主体,其配置为接合血栓;和
71.导电不透射线元件,其耦合到所述主体;和
72.导电引线,其与所述不透射线元件电连通,该引线被配置为电耦合到电流源。
73.42.根据前述条款中任一项所述的装置,其中,所述主体包括导电材料。
74.43.根据前述条款中任一项所述的装置,其中,所述主体与所述不透射线元件电连通。
75.44.根据前述条款中任一项所述的装置,其中,所述导电引线沿其长度的至少一部分是电绝缘的。
76.45.根据前述条款中任一项所述的装置,其中,所述不透射线元件包括不透射线标记物。
77.46.根据前述条款中任一项所述的装置,其中,所述不透射线元件包括缠绕在所述主体的一部分周围的线圈。
78.47.根据前述条款中任一项所述的装置,其中,所述不透射线元件耦合到所述主体的远侧尖端。
79.48.根据前述条款中任一项所述的装置,其中,所述主体包括形成多个单元的多个支柱,并且其中所述不透射线元件耦合到所述支柱中的一个。
80.49.根据前述条款中任一项所述的装置,其中,所述主体包括形成多个单元的多个支柱,并且其中所述不透射线元件耦合到从所述支柱中的一个延伸的突出部。
81.50.根据前述条款中任一项所述的装置,其中,所述不透射线元件包括带。
82.51.根据前述条款中任一项所述的装置,其进一步包括:
83.多个导电不透射线元件,其与所述主体耦合;和
84.多个导电引线,每个电耦合到所述多个不透射线元件中的一个并且被配置为电耦合到电流源。
85.52.根据前述条款中任一项所述的装置,其中,所述多个导电引线沿它们各自长度的至少一部分捆束在一起。
86.53.根据前述条款中任一项所述的装置,其中,所述多个不透射线元件中的第一组被配置为用作输送电极,并且其中所述多个不透射线元件中的第二组被配置为用作返回电极。
87.54.根据前述条款中任一项所述的装置,其中,所述输送电极布置在所述主体的工作长度内,并且其中所述返回电极布置在所述主体的非工作长度内。
88.55.根据前述条款中任一项所述的装置,其中,所述多个不透射线元件被配置为用作输送电极,所述装置进一步包括被配置为耦合到所述电流源的返回电极。
89.56.根据前述条款中任一项所述的装置,其中,所述不透射线元件被配置为用作输送电极,并且其中所述导电引线是第一导电引线,所述装置进一步包括:
90.返回电极;和
91.第二导电引线,其具有电耦合到所述返回电极的远侧部分和配置为电耦合到所述电流源的近侧部分。
92.57.根据前述条款中任一项所述的装置,其中,所述返回电极包括针或接地垫。
93.58.根据前述条款中任一项所述的装置,其中,所述返回电极包括暴露的导电构件,所述暴露的导电构件布置在所述血栓切除元件的近侧部分附近。
94.59.根据前述条款中任一项所述的装置,其中,暴露的导电构件不由所述主体承载。
95.60.根据前述条款中任一项所述的装置,其中,所述不透射线元件是第一不透射线元件,并且所述返回电极包括耦合到所述主体并且包括导电材料的第二不透射线元件。
96.61.根据前述条款中任一项所述的装置,其中,所述第一不透射线元件布置在所述主体的工作长度内,并且其中所述第二不透射线元件布置在所述主体的非工作长度内。
97.62.根据前述条款中任一项所述的装置,其中,所述第一不透射线元件和所述第二不透射线元件各自布置在所述主体的工作长度内。
98.63.根据前述条款中任一项所述的装置,其中,所述第一不透射线元件布置在所述主体的中心部分内,并且其中所述第二不透射线元件布置在所述主体的远侧部分。
99.64.根据前述条款中任一项所述的装置,其中,所述电流源包括电流发生器。
100.65.根据前述条款中任一项所述的装置,其中,所述血栓切除元件包括支架取栓装置。
101.66.根据前述条款中任一项所述的装置,其中,所述血栓切除元件的一部分涂覆有导电材料。
102.67.根据前述条款中任一项所述的装置,其中,所述血栓切除元件的一部分涂覆有非导电材料。
103.68.一种方法,其包括:
104.将血栓切除装置通过导管推进到血管内治疗位点,所述血栓切除装置包括:
105.主体,其可从第一配置扩展至第二配置;
106.不透射线元件,其耦合到所述主体,所述不透射线元件包括导电材料;以及
107.向不透射线元件供应电流。
108.69.根据前述条款中任一项所述的方法,其中,向所述不透射线元件供应电流使得电流传递到血栓切除装置。
109.70.根据前述条款中任一项所述的方法,其中,所述血栓切除装置包括导电材料。
110.71.根据前述条款中任一项所述的方法,其中,所述血栓切除装置进一步包括多个不透射线元件,所述多个不透射线元件耦合到所述主体并且包括导电材料,所述方法进一步包括向所述多个不透射线元件供应电流。
111.72.根据前述条款中任一项所述的方法,其中,所述不透射线元件耦合到从所述主体的支柱延伸的突出部。
112.73.根据前述条款中任一项所述的方法,其中,所述不透射线元件耦合到所述主体的向远侧延伸尖端。
113.74.根据前述条款中任一项所述的方法,其中,所述不透射线元件包括以下中的至少一个:线圈或带。
114.75.根据前述条款中任一项所述的方法,其中,所述不透射线元件包括不透射线标记物。
115.76.根据前述条款中任一项所述的方法,其中,供应电流沿所述主体的至少一部分产生正电荷。
116.77.根据前述条款中任一项所述的方法,其进一步包括沿所述主体的工作长度集中所述正电荷,其中所述工作长度的近端位于所述主体的近端的远侧,并且所述工作长度的远端位于所述主体的远端的近侧。
117.78.根据前述条款中任一项所述的方法,其中,供应电流包括向不透射线元件输送直流电。
118.79.根据前述条款中任一项所述的方法,其中,供应电流包括将脉动电流输送到不透射线元件。
119.80.根据前述条款中任一项所述的方法,其中,供应电流包括向不透射线元件输送电流,所述电流具有约0.5ma至约5ma之间的振幅。
120.81.根据前述条款中任一项所述的方法,其中,供应电流包括向不透射线元件输送电流,所述电流具有约2ma的振幅。
121.82.根据前述条款中任一项所述的方法,其中,所述血栓切除装置包括支架取栓装置。
122.83.根据前述条款中任一项所述的方法,其中,血栓切除装置是激光切割支架或网状物。
123.84.一种血栓切除装置,其包括:
124.主体,其可从第一配置扩展到第二配置,所述主体具有工作长度部分和布置在工作长度部分近侧的非工作长度部分;
125.一个或多个电极,其在所述工作长度部分内耦合到所述主体;
126.一根或多根导电引线,其电耦合到所述一个或多个电极,所述导电引线配置为电耦合到电流源,
127.其中,所述电极被配置为使得当电流经由所述电流源供应到所述导电引线时,所述工作长度部分中的电荷密度大于所述非工作长度部分中的电荷密度。
128.85.根据前述条款中任一项所述的装置,其中,所述非工作长度部分包括近侧锥形段,并且其中所述工作长度部分包括非锥形段。
129.86.根据前述条款中任一项所述的装置,其中,所述工作长度部分包括被配置为与血栓机械地接合的所述主体的一段。
130.87.根据前述条款中任一项所述的装置,其中,所述一个或多个电极是不透射线的。
131.88.根据前述条款中任一项所述的装置,其中,所述一个或多个电极包括铂、金或铜。
132.89.根据前述条款中任一项所述的装置,其中,所述一个或多个电极包括线圈、带、帽或管。
133.90.根据前述条款中任一项所述的装置,其中,所述主体包括形成多个单元的多个支柱,并且其中所述电极的所述一个或多个耦合到所述支柱的一个。
134.91.根据前述条款中任一项所述的装置,其中,所述主体包括形成多个单元的多个支柱,并且其中所述电极中的一个或多个耦合到从所述支柱的一个延伸的突出部。
135.92.根据前述条款中任一项所述的装置,其中,所述主体包括导电材料。
136.93.根据前述条款中任一项所述的装置,其中,所述主体与所述一个或多个电极电连通。
137.94.根据前述条款中任一项所述的装置,其中,所述主体包括导电材料。
138.95.根据前述条款中任一项所述的装置,其中,所述一个或多个电极在所述工作长度部分内电耦合到所述主体。
139.96.根据前述条款中任一项所述的装置,其中,所述导电引线沿其长度的至少一部分是电绝缘的。
140.97.根据前述条款中任一项所述的装置,其进一步包括:
141.多个电极,其耦合到所述主体;和
142.多个导电引线,每个电耦合到所述多个电极的一个并且被配置为电耦合到所述电流源。
143.98.根据前述条款中任一项所述的装置,其中,所述多个导电引线沿它们各自长度的至少一部分捆束在一起。
144.99.根据前述条款中任一项所述的装置,其中,所述多个电极中的第一组被配置为用作输送电极,并且其中所述多个电极中的第二组被配置为用作返回电极。
145.100.根据前述条款中任一项所述的装置,其中,所述输送电极布置在所述主体的工作长度内,并且其中所述返回电极布置在所述主体的非工作长度内。
146.101.根据前述条款中任一项所述的装置,其中,所述多个电极被配置为用作输送电极,所述装置进一步包括被配置为耦合到所述电流源的返回电极。
147.102.根据前述条款中任一项所述的装置,其中,所述一个或多个电极被配置为用
作输送电极,并且其中所述导电引线是第一导电引线,所述装置还包括:
148.返回电极;和
149.第二导电引线,其具有电耦合到所述返回电极的远侧部分和配置为电耦合到所述电流源的近侧部分。
150.103.根据前述条款中任一项所述的装置,其中,所述返回电极包括针或接地垫。
151.104.根据前述条款中任一项所述的装置,其中,所述返回电极包括暴露的导电构件,所述暴露的导电构件布置在所述主体的近侧部分附近。
152.105.根据前述条款中任一项所述的装置,其中,暴露的导电构件不由所述主体承载。
153.106.根据前述条款中任一项所述的装置,其中,所述返回电极包括不透射线标记物,所述不透射线标记物耦合到所述主体并且包括导电材料。
154.107.根据前述条款中任一项所述的装置,其中,所述输送电极布置在所述主体的工作长度内,并且其中所述返回电极布置在所述主体的非工作长度内。
155.108.根据前述条款中任一项所述的装置,其中,所述输送电极和所述返回电极各自布置在所述主体的工作长度内。
156.109.根据前述条款中任一项所述的装置,其中,所述主体包括支架取栓装置。
157.110.根据前述条款中任一项所述的装置,其中,所述主体的一部分涂覆有导电材料。
158.111.根据前述条款中任一项所述的装置,其中,所述主体的一部分涂覆有非导电材料。
159.112.一种血栓切除装置,其包括:
160.主体,其可从第一配置扩展到第二配置,所述主体具有近侧锥形部分和远侧部分;
161.多个电极,其耦合到所述主体;
162.多个导电引线电耦合到所述电极,所述导电引线配置为电耦合到电流源,
163.其中,所述电极被配置为使得当电流经由所述电流源供应到所述导电引线时,所述远侧部分中的电荷密度大于所述近侧锥形部分中的电荷密度。
164.113.根据前述条款中任一项所述的装置,其中,所述电极是不透射线的。
165.114.根据前述条款中任一项所述的装置,其中,所述电极包括铂、金或铜。
166.115.根据前述条款中任一项所述的装置,其中,所述电极各自包括线圈、带、帽或管。
167.116.根据前述条款中任一项所述的装置,其中,所述电极在所述远侧部分中耦合到所述主体。
168.117.根据权利要求112所述的装置,其中,所述电极电耦合到所述主体。
169.118.根据前述条款中任一项所述的装置,其中,所述主体包括形成多个单元的多个支柱,并且其中所述电极中的至少一个耦合到所述支柱中的一个。
170.119.根据前述条款中任一项所述的装置,其中,所述主体包括形成多个单元的多个支柱,并且其中所述电极中的至少一个耦合到从所述支柱的一个延伸的突出部。
171.120.根据前述条款中任一项所述的装置,其中,所述主体包括导电材料。
172.121.根据前述条款中任一项所述的装置,其中,所述主体与所述电极电连通。
173.122.根据前述条款中任一项所述的装置,其中,所述导电引线沿其各自长度的至少一部分电绝缘。
174.123.根据前述条款中任一项所述的装置,其中,所述多个导电引线沿它们各自长度的至少一部分捆束在一起。
175.124.根据前述条款中任一项所述的装置,其中,所述多个电极中的第一组被配置为用作输送电极,并且其中所述多个电极中的第二组被配置为用作返回电极。
176.125.根据前述条款中任一项所述的装置,其中,所述输送电极布置在所述主体的工作长度内,并且其中所述返回电极布置在所述主体的非工作长度内。
177.126.根据前述条款中任一项所述的装置,其中,所述多个电极被配置为用作输送电极,所述装置进一步包括被配置为耦合到所述电流源的返回电极。
178.127.根据前述条款中任一项所述的装置,其中,所述多个电极被配置为用作输送电极,所述装置进一步包括:
179.返回电极;和
180.导电返回引线,其具有电耦合到所述返回电极的远侧部分和配置为电耦合到所述电流源的近侧部分。
181.128.根据前述条款中任一项所述的装置,其中,所述返回电极包括针或接地垫。
182.129.根据前述条款中任一项所述的装置,其中,所述返回电极包括暴露的导电构件,所述暴露的导电构件布置在所述主体的近侧部分附近。
183.130.根据前述条款中任一项所述的装置,其中,暴露的导电构件不由所述主体承载。
184.131.根据前述条款中任一项所述的装置,其中,所述返回电极包括不透射线标记物,所述不透射线标记物耦合到所述主体并且包括导电材料。
185.132.根据前述条款中任一项所述的装置,其中,所述输送电极布置在所述主体的工作长度内,并且其中所述返回电极布置在所述主体的非工作长度内。
186.133.根据前述条款中任一项所述的装置,其中,所述输送电极和所述返回电极各自布置在所述主体的工作长度内。
187.134.根据前述条款中任一项所述的装置,其中,所述主体包括支架取栓装置。
188.135.根据前述条款中任一项所述的装置,其中,所述主体的一部分涂覆有导电材料。
189.136.根据前述条款中任一项所述的装置,其中,所述主体的一部分涂覆有非导电材料。
190.137.一种医疗装置,其包括:
191.介入元件,包括可从第一配置扩展至第二配置的主体,所述主体具有工作长度;
192.轴,其耦合到所述主体近端并从其纵向延伸;
193.至少一个电极位于所述工作长度内并被配置用于连接到电流源,使得当至少一个电极通电时,所述主体周围的电荷密度在所述工作长度内最大。
194.138.根据前述条款中任一项所述的装置,其中,所述至少一个电极电耦合到所述主体。
195.139.根据前述条款中任一项所述的装置,其中,所述至少一个电极包括不透射线
元件,所述不透射线元件耦合到所述主体并且包括导电材料。
196.140.根据前述条款中任一项所述的装置,其中,所述主体包括形成多个单元的多个支柱,并且其中所述至少一个电极耦合到所述支柱中的一个。
197.141.根据前述条款中任一项所述的装置,其中,所述主体包括形成多个单元的多个支柱,并且其中所述电极中的至少一个耦合到从所述支柱的一个延伸的突出部。
198.142.根据前述条款中任一项所述的装置,其中,所述至少一个电极包括输送电极,所述装置还包括至少一个返回电极。
199.143.根据前述条款中任一项所述的装置,其中,所述至少一个返回电极布置在所述主体的非工作长度内。
200.144.根据前述条款中任一项所述的装置,其中,所述至少一个返回电极与所述主体电绝缘。
201.145.根据前述条款中任一项所述的装置,其中,所述返回电极包括不透射线元件,所述不透射线元件耦合到所述主体并且包括导电材料。
202.146.根据前述条款中任一项所述的装置,其中,所述介入元件包括支架取栓装置(stent retriever)。
203.147.一种方法,其包括:
204.将血栓切除装置通过导管推进到所述主体的目标位点,所述血栓切除装置包括:
205.可扩张构件,其具有工作长度和非工作长度;
206.一个或多个输送电极,其在工作长度内耦合到所述可扩张构件;
207.向所述输送电极供应电流,使得所述可扩张构件的所述工作长度中的电荷密度大于沿所述可扩张构件的所述非工作长度的电荷密度。
208.148.根据前述条款中任一项所述的方法,其中,供应电流使得氢气在目标位点形成。
209.149.根据前述条款中任一项所述的方法,其中,向所述输送电极供应电流使得电流传递到所述血栓切除装置。
210.150.根据前述条款中任一项所述的方法,其中,所述血栓切除装置包括导电材料。
211.151.根据前述条款中任一项所述的方法,其中,所述血栓切除装置进一步包括耦合到所述可扩张构件的多个输送电极,所述方法进一步包括向所述多个输送电极供应电流。
212.152.根据前述条款中任一项所述的方法,其中,所述输送电极耦合到从所述可扩张构件的支柱延伸的突出部。
213.153.根据前述条款中任一项所述的方法,其中,所述输送电极耦合到所述可扩张构件的向远侧延伸尖端。
214.154.根据前述条款中任一项所述的方法,其中,所述输送电极包括以下中的至少一个:线圈或带。
215.155.根据前述条款中任一项所述的方法,其中,供应电流沿所述可扩张构件的至少一部分产生正电荷。
216.156.根据前述条款中任一项所述的方法,其中,所述工作长度的近端在所述可扩张构件的近端的远侧,并且所述工作长度的远端在所述可扩张构件的远端的近侧。
217.157.根据前述条款中任一项所述的方法,其中,供应电流包括将直流电输送到所述输送电极。
218.158.根据前述条款中任一项所述的方法,其中,供应电流包括将脉冲电流输送到所述输送电极。
219.159.根据前述条款中任一项所述的方法,其中,供应电流包括向所述输送电极输送电流,所述电流具有约0.5ma至约5ma的振幅。
220.160.根据前述条款中任一项所述的方法,其中供应电流包括向输送电极输送电流,该电流具有约2ma的振幅。
221.161.根据前述条款中任一项所述的方法,其中,所述血栓切除装置包括支架取栓装置。
222.162.根据前述条款中任一项所述的方法,其中,所述血栓切除装置是激光切割支架或网状物。
223.下文描述了本发明技术的另外的特征和优点,并且部分地将从描述中变得显而易见,或可以通过实践本发明技术来学习。本发明技术的优点将通过在书面描述和其权利要求书以及附图中具体指出的结构来实现和获得。
附图说明
224.参考以下附图可以更好地理解本发明技术的许多方面。附图中的部件不一定成比例。而是将重点放在清楚地展示本公开的原理。
225.图1a示出了根据本发明技术的一个或多个实施方式的用于从身体内腔取出材料的电增强治疗系统的透视图。
226.图1b和1c是图1a所展示的电流发生器的不同实施方式的示意图。
227.图2是图1a的治疗系统的远侧部分的侧面示意图。
228.图3a示出了根据本技术实施方式的处于展开状态的承载多个电极的介入元件。
229.图3b图示了处于展开状态的承载多个电极的介入元件的另一个实施方式。
230.图4是图3a中所示的4-4段的详细视图。
231.图5是图3a所示部分5-5的详细视图。
232.图6是图3b所示部分6-6的详细视图。
233.图7-10示出了根据本技术的实施方式安装在介入元件上的电极的剖视图。
234.图11-13示出了承载电极的介入元件的另外的实施方式。
235.图14a是根据本技术的实施方式的引线捆束组件(lead bundle assembly)的侧剖视图。
236.图14b是图14a的引线捆束组件的剖视图。
237.图15a是根据本技术实施方式的引线捆束组件的侧剖视图。
238.图15b是图15a的引线捆束组件的剖视图。
239.图16a是根据本技术的实施方式的引线捆束组件的侧剖视图。
240.图16b是图16a的引线捆束组件的剖视图。
241.图17a-17d示出了使用电增强治疗系统从血管内腔去除凝块材料的方法。
242.图18a

18e示出了根据本公开的一个或多个实施方式的用于从血管内腔电增强去
除材料的样品波形。
具体实施方式
243.本发明技术提供了用于从血管内腔去除凝块材料的装置、系统和方法。尽管下文关于用于治疗脑栓塞或颅内栓塞的装置、系统和方法描述了许多实施方式,但是除了本文所述的那些应用和实施例之外的其它应用和其它实施例也在本发明技术的范围内。例如,本发明技术的治疗系统和方法可以用于从除了血管之外的人体内腔(例如,消化道等)去除栓子和/或可以用于从大脑外部的血管(例如,肺部、腹部、子宫颈或胸部血管,或包括腿或臂内的那些的外周血管等)去除栓子。另外,本发明技术的治疗系统和方法可以用于去除除了凝块材料之外的内腔障碍物(例如,斑块、切除的组织、异物等)。
244.i.电增强治疗系统的概述
245.图1a示出了根据本发明技术的一个或多个实施方式的电增强治疗系统10的视图。如图1a所示,治疗系统10可以包括电流发生器20和治疗装置40,所述治疗装置具有近侧部分40a和远侧部分40b,所述近侧部分被配置为耦合到电流发生器20,所述远侧部分被配置为在血管内定位在血管(如,颅内血管)内、在血栓处或接近血栓的治疗位点处。治疗装置40包括在远侧部分10b处的介入元件100、在近侧部分10a处的手柄16以及在其间延伸的多个细长轴或构件。例如,在一些实施方式中,如图1a所示,治疗装置40包括第一导管14(例如,气囊引导导管);第二导管13(如远侧进入导管或抽吸导管),所述第二导管被配置为滑动布置在第一导管14的内腔内;第三导管12(如微导管),所述第三导管被配置为滑动布置在第二导管13的内腔内;以及芯构件11,所述芯构件被配置为滑动布置在第三导管12的内腔内。在一些实施方式中,治疗装置40不包括第二导管13。第一导管14可以耦合到手柄16,所述手柄提供到芯构件11的近侧进入,所述芯构件在其远端处接合介入元件100。电流发生器20可以耦合到一根或多根引线(未示出)的近侧部分,以将电流输送到介入元件100,从而在治疗装置40的远侧部分40b处提供带电环境,如在下面更详细。
246.在一些实施方式中,治疗系统10包括抽吸源25(例如,注射器、泵等),所述抽吸源被配置为流体地耦合(例如,通过连接器23)到第一导管14、第二导管13和/或第三导管12中的一个或多个的近侧部分,以通过其中施加负压。在一些实施方式中,治疗系统10包括流体源27(例如,流体储存器、注射器、泵等),所述流体源被配置为流体地耦合(例如,通过连接器23)到第一导管14、第二导管13和/或第三导管12中的一个或多个的近侧部分,以向治疗位点供应流体(例如,盐水、造影剂、如血栓溶解剂等药物等)。
247.根据一些实施方式,导管12、13和14可以各自形成为沿着并绕中心轴线延伸的大致管状构件。根据一些实施方式,第三导管12通常被配置成在子宫颈解剖结构中的常规导丝上跟踪并进入与大脑相关联的脑血管中,并且还可以根据通常可用的若干标准设计进行选择。因此,第三导管12的的长度可以为至少125cm,并且更具体地可以介于约125cm与约175cm之间。可以考虑其它设计和尺寸。
248.第二导管13的大小可以被设定且被配置为可滑动地收纳穿过其中的第三导管12。如上所述,第二导管13可以在近侧部分处耦接到抽吸源25(图1a),如泵或注射器,以便向治疗位点供应负压。第一导管14的大小可以被设定成并被配置为可滑动地收纳穿过其中的第二导管13和第三导管12两者。在一些实施方式中,第一导管14是球囊导引导管,所述球囊导
引导管具有在其远端处或附近围绕导管轴的可充气球囊或其它可扩张构件。如下文关于图17a-17d的更详细描述,在操作中,第一导管14可以首先推进穿过血管,并且然后其球囊可以被扩张以将第一导管14锚定在适当位置和/或阻止来自球囊近侧区域的血流,例如以增强通过第一导管14和/或其它导管执行的抽吸的有效性。接下来,第二导管13可以推进穿过第一导管14,直到其远端向远侧延伸超过第一导管14的远端。第二导管13可以被定位成使得其远端邻近治疗位点(例如,血管内的血凝块的部位)。然后,第三导管12可以推进穿过第二导管13,直到其远端向远侧延伸超过第二导管13的远端。然后,介入元件100可以推进穿过第三导管12,用于输送到治疗位点。
249.根据一些实施方式,导管12、13和14的主体可以由各种热塑性塑料制成,例如聚四氟乙烯(ptfe或)、氟化乙烯丙烯(fep)、高密度聚乙烯(hdpe)、聚醚醚酮(peek)等,其可以任选地在导管的内表面或邻近表面上衬有亲水材料,如聚乙烯吡咯烷酮(pvp)或一些其它塑料涂层。另外,根据期望结果,任一表面可以涂覆有不同材料的各种组合。
250.根据一些实施方式,电流发生器20可以包括发电机,所述发电机被配置为输出医学上有用的电流。图1b和1c是电流发生器20的不同实施方式的示意图。参考图1b,电流发生器20可以包括电源22、第一端子24、第二端子26和控制器28。控制器28包含处理器30,所述处理器耦合到存储器32,所述存储器存储用于使电源22根据软件、代码等提供的某些参数输送电流的指令(例如,以处理器或控制器可执行的软件、代码或程序指令的形式)。电流发生器20的电源22可以包括直流电源、交流电源和/可在直流与交流之间切换的电源。电流发生器20可以包括可以用于控制电源或发生器输出的能量的各个参数(如强度、振幅、持续时间、频率、占空比和极性)的合适的控制器。例如,电流发生器20可以提供约2伏到约28伏的电压和约0.5ma到约20ma的电流。
251.图1c示出了电流发生器20的另一个实施方式,其中图1b的控制器28用驱动电路系统34代替。在此实施方式中,电流发生器20可以包括提供期望的波形递送的硬连线电路元件,而不是图1b的基于软件的发生器。驱动电路系统34可以包括例如模拟电路元件(例如,电阻器、二极管、开关等),所述模拟电路元件被配置为使电源22根据期望的参数通过第一端子24和第二端子26输送电流。例如,驱动电路系统34可以被配置为使电源22通过第一端子24和第二端子26输送周期性波形。下文关于图18a-18e对由电流发生器20提供的能量的特定参数进行更详细描述。
252.在一些实施方式中,一个或多个电极可以由介入元件100承载、耦合到或安装在介入元件100上(或者电极可以包括除了不透射线元件/标记物(如果有的话)之外的导电元件或表面)。电极可以可选地采用固定到介入元件100的一部分的不透射线的元件或标记的形式,并且可以排布成在治疗期间提供和/或改善介入元件100的表面上的电荷分布。电流可以通过在电流发生器20和固定到介入元件100的电极之间延伸的多个相应的电引线输送到电极。电极可以包括输送电极以及一个或多个返回电极,它们同样可以耦合到介入元件100或形成在介入元件100上,或者可以定位在别处(例如,作为外部电极29或其他,下文将对此进行更详细的解释)。当介入元件100在血液(或血栓,和/或可能存在的任何其他电解介质,例如盐水)存在的情况下被放置并且在电流发生器20的端子处施加电压时,电流从发生器流出沿着引线到达输送电极(以及,可选地,到达介入元件100本身),且通过血液(和/或其他介质)到达返回电极,从而使介入元件100的至少一部分带正电荷且促进凝块粘附。
253.图2是图1a中所示的治疗装置40的远侧部分40b的侧面示意图。如图所示,介入元件100可以包括布置在其上的多个电极202。电极202可以采用导电构件或表面的形式,该导电构件或表面在不同位置耦合到或结合到介入元件100的主体中。例如,每个电极202可以耦合到支柱、远离支柱延伸的突出部、向远侧延伸尖端或介入元件100的任何其他合适的部分。在一些实施方式中,电极202可以是不透射线的以便在荧光透视下可见。(一般而言,如本文所用的“不透射线”是指在荧光透视下比介入元件100本身的相邻部分更可见的元件或组件。)在这样的配置中,电极202可以用作不透射线标记物和电极。根据一些实施方式,电极202中的一些或全部可以采用线圈、管、带、板、迹线或任何其他合适的导电结构,或既导电又不透射线的结构的形式。用于电极的示例性材料包括铜、不锈钢、镍钛诺、铂、金、铱、钽、其合金,或任何其他合适的导电材料,或既导电又不透射线的材料。在一些实施方式中,电极202不是不透射线的,并且单独的不透射线标记物可以或可以不与这种非不透射线的电极202结合使用。
254.电极202可以各自耦合到相应的电引线204,该电引线可以在芯构件11旁边延伸,和/或耦合到、缠绕于或结合到芯构件11。因此,当血栓切除装置与导管12一起使用时,引线可以延伸穿过导管12的内腔。电引线204可以捆束在一起或以其他方式在引线捆束组件205中组合在一起,该引线束组件穿过导管12向近侧延伸邻近的芯构件11。捆束组件205可以在近端部分处耦合到电流发生器(例如,电流发生器20;图1a),每个单根引线204电耦合到电流发生器以将电流传送到相应的电极202。尽管图2示出了耦合到每个单独电极202的单根电引线204,但在一些实施方式中,电极202的任何子集可以经由一根或多根引线204共享电连接。例如,引线可以在两个电极202之间延伸,从而使这两个电极在耦合到其上时彼此电连通以及与发电机或其他电流源电连通。
255.在一些实施方式中,电极202的第一子集可以通过它们各自的引线204电耦合到电流发生器20的正极端子,并因此用作输送电极。同时,电极202的第二子集可以通过它们各自的引线204电耦合到电流发生器20的负极端子,并相应地用作返回电极。在一些实施方式中,输送电极202的一些或全部可以与介入元件100的主体电连通(或与其电绝缘),其本身可以是导电的。当输送电极202中的一些或全部与介入元件100的(导电)主体电连通时,正极/输送引线204(例如,单个这样的引线)可以电耦合到介入元件100的主体(例如,在其近端处或附近),从而与输送电极202的一些或全部电连通。因此,由输送电极202承载的电流可以流入介入元件100,从而沿着介入元件100的至少一部分(以及耦合到介入元件主体的任何输送电极202;在一些实施方式中,可以省略单独的输送电极202并且介入元件的主体(或其暴露的部分)可以用作输送电极)生成正电荷。在一些实施方式中,介入元件100的一个或多个区域可以涂覆有绝缘材料,使得从输送电极202传输到介入元件100承载的电流将不会被涂覆区域中的介入元件100的表面承载。结果,在介入元件100的表面上或沿着长度的电荷分布可以位于介入元件100的未涂覆绝缘材料的区域中。
256.在一些实施方式中,返回电极202可由介入元件100承载但与介入元件100的主体电绝缘。例如,返回电极202可以安装在介入元件100的一部分上,电绝缘材料布置在它们之间,使得由返回电极202承载的电流不通过介入元件100的主体,而是通过相应的引线204耦合到返回电极202。在一些实施方式中,返回电极202可以与介入元件100的至少一部分电连通。
257.在操作期间,治疗系统10可以提供电路,其中电流从电流发生器20的正极端子向远侧通过输送引线204流到输送电极202和(可选地)到介入元件100。然后,电流从介入元件100的表面(当适当配置时)穿过并到达周围介质(例如,血液、组织、血栓等),然后通过介入元件100承载的返回电极202向近侧通过返回引线204返回到电流发生器的负极端子。
258.替代或除了作为介入元件100承载的返回电极202,返回电极可以采用多种不同的配置。例如,在一些实施方式中,返回电极是外部电极29(图1a),如施加到患者皮肤的针或接地垫。针或接地垫可以经由一根或多根引线耦合到电流发生器20,以完成电路。在一些实施方式中,返回电极由周围导管(例如,第三导管12、第二导管13和/或第一导管14)承载。在一些实施方式中,返回电极可以是在其远端处具有暴露的导电部分的绝缘导线,或是在其远端附近具有芯构件11的暴露的导电部分。
259.ii.与本文所公开的治疗系统一起使用的介入元件的精选实施方式
260.仍参考图2,在一些实施方式中,介入元件100可以是金属或导电血栓切除装置。例如,介入元件100可以包括或由不锈钢、镍钛诺、钴铬、铂、钽、其合金或任何其它合适的材料制成。介入元件100可以具有用于在第三导管12内向治疗位点血管内输送低剖面、受约束或压缩配置(未示出),以及用于固定和/或接合凝块材料和/或用于恢复治疗位点处的血流的扩展配置。在一些实施方式中,介入元件100是由超弹性材料(例如,镍钛诺)或被配置为在从第三导管12释放时自扩张的其它弹性的或自扩张材料形成的网状结构(例如,编织物、支架等)。介入元件100具有近侧部分100a和远侧部分100b,所述近侧部分可以耦合到芯构件11。介入元件100进一步包含开放单元框架(open cell framework)或主体208以及从主体208向近侧延伸的耦合区域210。在一些实施方式中,介入元件100的主体208可以为大致管状(例如,圆柱形),并且介入元件100的近侧部分100a可以在耦合区域210内向近侧逐渐变细。
261.在各种实施方式中,介入元件100可以采取多种形式,例如去除装置、血栓切除装置或其它合适的医疗装置。例如,在一些实施方式中,介入元件100可以是支架和/或支架取栓装置,如美敦力公司(medtronic)的solitaire
tm
血管重建装置、史赛克神经介入(stryker neurovascular)的provue
tm
支架取出器或其它合适的装置。在一些实施方式中,介入元件100可以是由多根编织细丝形成的盘绕的导线、织物和/或编织物。合适的介入元件100的实例包含于2007年11月5日提交的美国专利第7,300,458号、于2010年11月22日提交的美国专利第8,940,003号、于2010年10月1日提交的美国专利第9,039,749号以及于2010年12月28日提交的美国专利第8,066,757号中所公开的介入元件中的任何介入元件,所述美国专利中的每一个通过引用整体并入本文。
262.芯构件11可以包括轴,例如,具有足够的抗压强度(column strength)和抗拉强度(tensile strength)以促进血栓切除装置通过导管移动。芯构件11可以包括导线,如果需要,该金属丝可以随着其向远侧延伸而逐渐变细以呈较小的直径。这种锥度可以实现为逐渐或连续的锥度,或者在由恒定直径部分分离的多个分离的锥形部分中实现。芯构件11可替代地包括管,例如海波管,并且管/海波管可以以螺旋或开槽型式(或以其他型式)被激光切割,以在需要的地方赋予额外的柔韧性。芯构件还可以包括导线、管、编织轴等的组合。
263.为了便于理解,图3a以“平面”视图示出了在其上承载多个电极202的示例性介入元件100。图3a所示的介入元件100包括工作长度wl和位于工作长度wl近侧的非工作长度
nwl。例如,如图3a所示,非工作长度nwl布置在工作长度wl和与芯构件11的连接之间。在一些实施方式中,介入元件100可以包括具有多个支柱302和位于支柱之间的多个单元304的框架或主体,形成网状物。纵向且串联地互连的支柱302的组合可以形成在大致纵向方向上延伸的波状构件306。支柱302可以通过接头308相互连接。虽然支柱显示为具有特定的波状或曲折的配置,但在一些实施方式中,所述支柱可以具有其他配置。在卷起配置中,介入元件100的框架在一些实施方式中可以具有大致管状或大致圆柱形的形状,而在其他实施方式中,框架可以具有既不是管状也不是圆柱形的形状。
264.图3a中所示的介入元件的工作长度wl包括一些单元304。在其中介入元件100包括单元的实施方式中,工作长度中的单元304和形成它们的介入元件部分的尺寸和形状可以被设计成使得它们在工作长度扩张进血栓时穿透血栓、捕获血栓或两者兼有。在一些实施方式中,介入元件100在工作长度中的部分可以用单个单元304和/或扩张的介入元件100的外部或径向外部捕获血栓。附加地或替代地,在一些实施方式中,介入元件100在工作长度中的部分可以用单个单元304和/或扩张的介入元件100的内部或径向内部来接触、互锁、捕获或接合血栓的部分。
265.如图3a所示,例如,非工作长度nwl可以包括介入元件100的锥形近侧部分310。介入元件100的近侧部分310可以朝着介入元件100的近端逐渐变细。在一些实施方式中,近侧的非工作部分310的锥形可以有利地促进治疗装置40和介入元件100的缩回和重新定位。例如,在一些实施方式中,非工作长度nwl有助于介入元件100缩回到导管12中。
266.介入元件100可以包括第一边缘314和第二边缘316。例如,第一边缘314和第二边缘316可以通过切割片材或管材来形成。虽然第一边缘和第二边缘被示为具有波状或曲折的配置,但在一些实施方式中,第一边缘和第二边缘可以具有直的或线性的配置或其他配置。在一些实施方式中,边缘314、316可以是沿着锥形近侧部分310弯曲的、直的或其组合。
267.图3a还示出了多个突出部318,在其上可以安装电极202或不透射线标记物。每个突出部318可以附接到介入元件100的一部分,其在介入元件的使用期间可能接触血栓。在一些实施方式中,突出部318可以附接到介入元件100在工作长度wl中的部分。在介入元件包括支柱302的实施方式中,突出部318可以附接到支柱302。如果存在的话,突出部318可以布置在单元304内,或者布置在介入元件100的另一个表面上。在一些实施方式中,多个突出部318可以分别附接到多个支柱302。在一些实施方式中,突出部318中的一些或全部可各自附接到和/或仅在单个支柱302。在一些实施方式中,突出部318可以附接到和/或在接头308处。在一些实施方式中,在介入元件100的完全扩张的配置中,突出部318可以与所有其他突出部318分开一定距离,例如至少2mm或至少3mm。在一些实施方式中,突出部318可以与所有其他突出部318分开一个单元的宽度或一个支柱的长度(例如,支柱的整个长度将相邻的突出部分开)。一个或多个突出部318可位于工作长度wl的近端320、工作长度wl的远端322、或在近端322和远端322之间工作长度wl的中间区域中的一些或全部。工作长度wl可以在近端320和远端322之间连续或间歇地延伸。
268.在一些实施方式中,介入元件100可以包括从介入元件100的远端延伸的一个或多个向远侧延伸尖端324。例如,图3a所示出的装置包括从介入元件100的远端延伸的五个细长的向远侧延伸尖端324。例如,如图3a所示,在其中介入元件包括支柱的一些实施方式中,这些远侧尖端324可以从支柱的最远侧的一排延伸。在一些实施方式中,如果存在,一个或
多个电极202和/或一个或多个不透射线标记物可以附接到远侧尖端324。例如,如图3a所示,在其中一个或多个标记物或电极附接到远侧尖端的一些实施方式中,远侧尖端324上的一个或多个标记物或电极202可以定位在工作长度wl的远端322处。
269.如图3a所示,多个电极202可以耦合到介入元件100的主体。电极202的每一个可以耦合到电引线204,电引线204反过来又可以耦合到电流发生器(例如,电流发生器20;图1a),或其他合适的电流源。电极202中的一些或全部可以采取固定到介入元件100的部分的导电元件的形式。例如,电极202中的一些或全部可以是金属的、导电的和可选的不透射线的(例如,包括铜、铂、金、其合金或任何其他合适的材料)。在一些实施方式中,电极202中的一些或全部采用线圈、带、管、帽或可以安装到介入元件100并放置成与对应的引线204电连通的任何其他合适的结构元件的形式。在一些实施方式中,电极202可以被焊合、焊接、卷压(crimp)、粘附安装或以其他方式粘附到介入元件100。如本文别处更详细描述的,在一些实施方式中,电极202的至少一些(或全部)可以与介入元件100的主体电连通,其本身可以包括导电材料(例如,镍钛诺、不锈钢等),使得电流流过电极202并流进介入元件100。在一些实施方式中,电极202中的至少一些(或全部)可由介入元件100承载,但仍保持与介入元件电绝缘,例如通过在电极202和介入元件100的主体之间布置电绝缘材料。在这样的配置中,流过这样的绝缘的电极202的电流不会传递到下方的介入元件100,电极202被安装在或以其他方式耦合在下方的介入元件100上。
270.如所指出的,电极202的每一个可以与电引线204电连通。引线204的一些或全部可以采取沿其长度的一些或全部绝缘的细长的导电构件的形式。例如,引线204的一些或全部可以采用沿其长度的至少一部分具有绝缘涂层的导线的形式。引线的一些或全部可以包括其他导电结构,例如迹线(例如,印刷或沉积的迹线)、管、总线(buse)、条、线圈、掺杂的聚合物链等。作为一个实施例,引线204可以采用金属导线(例如,镍钛诺、铜、不锈钢等)的形式。在一些实施方式中,线材可以具有约0.005mm至约0.125mm之间或约0.005mm至约0.05mm之间的厚度或直径(例如,58awg线)。这种线可沿其长度具有基本一致厚度,或者可以向远侧或近侧逐渐变细。引线204可以具有大于约125cm、约150cm、约175cm或约200cm的长度。围绕导线的绝缘涂层可以包括任何合适的电绝缘材料(例如,聚酰亚胺、聚对二甲苯、ptfe等)。可以将引线204焊合、焊接或以其他方式粘附到它们各自的电极202。尽管一些引线204在图3a中示意性地显示为延伸到介入元件100的主体或内腔之外,但在各种实施方式中,引线204的一些或全部可以沿着介入元件100径向向内或径向向外的表面布线,或可选地可以穿过一个或多个单元304,例如以波浪方式布线,使得引线204以上下型式编织通过交替的单元304。在一些实施方式中,引线204可以缠绕(一次或多次)围绕一个或多个支柱302中的每一个,该支柱302位于与耦合到引线的电极的近侧,以更牢固地将引线204固定到介入元件100的主体上。
271.单根引线204a-d可以在近端接合处耦合在一起并且在引线捆束组件(未示出)中汇合,如本文别处(例如,关于图14a-16b)更详细描述的。无论是排布在引线捆束组件中还是作为分离和独立的元件,引线204a-d可以向近侧延伸穿过周围导管(和/或耦合到或集成到芯构件11中)以电耦合到电流发生器或其他电流源。
272.在图3a所示的实施方式中,第一和第二电极202a和202b耦合到向远侧延伸尖端324,并且第一和第二电极202a和202b电耦合到第一电引线204a,该第一电引线204a沿着介
入元件100的长度向近侧延伸。图4示出了安装在向远侧延伸尖端324上的第一电极202a的详细视图。电极202a可以采用线圈、带、帽或管的形式,其装配在向远侧延伸尖端324上。在各种实施方式中,电极202a可以围绕远端延伸尖端324的一些或全部圆周延伸。在一些实施方式中,电极202a的长度可以在大约0.5至2.0mm之间,或约0.85mm。在一些实施方式中,电极202a的宽度可以在大约0.05至0.4mm之间,或大约0.20mm。第一引线204a可以电耦合到电极202a。例如,第一引线204a可以被焊合、焊接或以其他方式粘附到电极202a并且与其电连通。在一些实施方式中,引线204a的远端部分延伸到电极202a和向远侧延伸尖端324之间的空间中。根据一些实施方式,电极202a和/或引线204a可以与远侧延伸末端324的材料电连通。在其他实施方式中,绝缘材料可以布置在电极202a和向远侧延伸尖端324之间(和/或绝缘材料可以布置在引线204a和向远侧延伸尖端324之间),使得流过电极202a和/或引线204a的电流被抑制传递到介入元件100的下方的向远侧延伸尖端端324。
273.返回来参考图3a,第三和第四电极202c和202d可以类似地采用耦合到向远侧延伸尖端324的导电(并且可选地不透射线)元件的形式。在所示实施方式中,第三和第四电极202c和202d电耦合到沿介入元件100的长度向近侧延伸的第二电引线204b。
274.继续参考图3a,第五和第六电极202e和202f采取安装在突出部318上的导电构件的形式,该突出部318远离(和/或在旁边)介入元件100的支柱302(和/或在单元304内)延伸,第三电引线204c电耦合到第五和第六电极202e和202f。图5示出了安装在突出部318上的第五电极202e的详细视图。电极202e可以采用装配在突出部318上的线圈或带的形式。在各种实施方式中,电极202e可以围绕突出部318的一些或全部圆周延伸。在一些实施方式中,电极202e的长度可以在大约0.5mm和大约2mm之间,例如大约0.80mm。在一些实施方式中,电极202e的宽度可以在大约0.05至0.2mm之间,或约0.11mm。第三引线204c可以电耦合到电极202e。例如,引线204c可以焊合、焊接或以其他方式粘附到电极202e并与其电连通。在一些实施方式中,引线204c的远端部分延伸到电极202e和突出部318之间的空间中。根据一些实施方式,电极202e和/或引线204c可以与突出部318的材料电连通。在其他实施方式中,绝缘材料可以布置在电极202e和突出部318之间(和/或绝缘材料可以布置在引线204c和突出部318之间),使得流过电极202e和/或引线204c的电流被抑制传递到介入元件100的下方的突出部318。
275.返回来参考图3a,第七和第八电极202g和202h可以类似地采用耦合到突出部318的导电(并且可选地不透射线的)元件的形式。在所示实施方式中,第七和第八电极202g和202h电耦合到沿介入元件100的长度向近侧延伸的第四电引线204d。
276.在图3a所示的实施例中,有四个分离的电引线204,每个电引线耦合到两个电极202,总共有八个可寻址电极202。该配置仅是示例性的;在其他实施方式中,可以有更少或更多个电极(例如,由介入元件100承载的1个、2个、3个、4个、5个、6个、7个、9个、10个、11个、12个或更多个电极)。类似地,可能有更少或更多根引线204。
277.通过选择各个电极202的定位,可以调整介入元件100上的电荷分布以在治疗期间实现期望的结果。例如,通过将电极202e、202f、202g和202h耦合到电流发生器的正极端子(例如,通过将引线204c和204d耦合到电流发生器的正极端子),这些电极202e、202f、202g和202h可以将正电荷输送到介入元件100的相应部分。因此,这些可以用作输送电极。如果这些电极中的任何一个与介入元件100电连通,则该正电流可以流入介入元件100,从而使
介入元件100的大部分表面带正电。在一些实施方式中,介入元件100的一部分可以涂覆有电绝缘材料以便选择性地将电荷集中在某些区域(例如,在工作长度wl内)。根据一些实施方式,输送电极202e、202f、202g和202h中的一些或全部不与介入元件100电连通(例如,由于布置在输送电极和它们各自的突出部318之间的绝缘材料的存在)。
278.在一些实施方式中,耦合到位于工作长度wl的近端320处的突出部318的电极202可被近侧或远侧地布置在近端320的5mm内、4mm内、3mm内、2mm内或1mm内。在一些实施方式中,耦合到位于近端320的突出部318的电极202可被近侧或远侧地布置在近端322的一个单元或一个支柱的长度内。
279.在一些实施方式中,耦合到位于工作长度wl的远端322处的突出部318的电极202可被近侧或远侧地布置在远端322的5mm内、4mm内、3mm内、2mm内或1mm内。在一些实施方式中,连接到位于远端322的突出部318的电极可被近侧或远侧地布置在远端322的一个单元或一个支柱的长度内。
280.除了电极定位之外,电荷分布还受输送电极的配置(例如,材料、尺寸、表面积)、输送引线(例如,材料、横截面尺寸)和输送的电流量的影响。例如,电极数量或表面积的减少导致电极处的电荷密度的增加。如果电荷密度过高,则在人体内使用时可能会带来健康风险。然而,在电荷密度的某些阈值下,可以在电极202处或介入元件100的其他部分上产生氢气。在一些情况下,氢气可以是神经保护的,并因此提供有选择的足够高的电荷密度以在患者的神经脉管系统内产生氢气可能是有利的。
281.在所示实施方式中,位于远侧的电极202a、202b、202c和202d耦合到电流发生器的负极端子(例如,通过将引线204a和204b耦合到电流发生器的负极端子)并且因此这些电极用作作为返回电极。在一些实施方式中,返回电极可以与介入元件100电绝缘,例如通过在向远侧延伸尖端324和相应电极202a、202b、202c和/或202d之间布置绝缘材料。
282.在操作中,提供在其中电流从电流发生器的正极端子向远侧通过输送引线204c和204d流向输送电极202e、202f、202g和202h,并流向介入元件100(如果一个或多个输送电极与介入元件100电连通)的电路。然后,电流从介入元件100的表面和/或从输送电极传递到周围介质(例如,血液、组织、血栓等),然后返回到返回电极202a、202b、202c和202d。然后,电流向近端流过返回引线204a和204b,并返回到电流发生器的负极端子。或者,可以在别处提供返回电极,例如通过外部针或接地垫,通过具有芯构件11的暴露的远端部分或暴露的电极部分的绝缘导线,其耦合到导管的远侧部分等。在这种情况下,可以可选地从介入元件100中省略返回电极。
283.在一些实施方式中,介入元件100的非工作长度nwl部分可以涂覆有非导电或绝缘材料(例如,聚对二甲苯、ptfe或其它合适的非导电涂层),使得涂覆区域不与周围介质(例如,血液)电接触。因此,由输送电极202承载到介入元件100的电流仅沿介入元件100的工作长度wl部分暴露于周围介质。这可以有利地将电增强附接效果沿介入元件100的工作长度wl集中,其中这种效果是最有用的,并且由此将由工作长度wl提供的机械互锁与由输送的电信号提供的电增强两者结合。在一些实施方式中,介入元件100的远侧区域(例如,工作长度wl的远侧)可以同样涂覆有非导电材料(例如,聚对二甲苯、ptfe或其它合适的非导电涂层),从而仅留下具有暴露的导电表面的介入元件100的中心部分或工作长度wl。
284.在一些实施方式中,工作长度的近端可以位于介入元件形成完整圆周的最近侧的
位置处。在一些实施方式中,工作长度的近端可以位于介入元件在完全扩张状态下具有其最大横向尺寸的最近侧的位置处。在一些实施方式中,工作长度的近端可以处于介入元件在完全扩张状态下具有在横向尺寸上的峰、冠或嵴的最近侧的位置处。
285.在一些实施方式中,工作长度的远端可以位于介入元件形成完整圆周的最远侧的位置处。在一些实施方式中,工作长度的远端可以位于介入元件在完全扩张状态下具有其最大横向尺寸的最远侧的位置处。在一些实施方式中,工作长度的远端可以位于介入元件在完全扩张状态下具有在横向尺寸上的峰、冠或嵴的最远侧的位置处。
286.在一些实施方式中,介入元件100可以包括定位在其一些或全部的外表面上的导电材料。导电材料例如可以是金和/或另一合适的导体,所述导体的电导率大于(或小于)包括介入元件100的材料的电导率。可以通过电化学沉积、溅射、气相沉积、浸涂和/或其它合适的方式向介入元件100施加导电材料。在本发明技术的一些方面,导电材料仅安置在介入元件100的工作长度wl部分上,例如,使得介入元件100的近端和远端部分被暴露或不被覆盖在导电材料中。在这种配置中,因为导电材料的电阻比包括介入元件100的下方材料的电阻低得多,所以向介入元件100输送的电流沿工作长度wl部分被集中。在几个这样的实施方式中,导电材料可以仅布置在沿工作长度wl部分的径向面向外的支柱表面上。在其它实施方式中,导电材料可以沿介入元件100的长度的全部或一部分被布置在支柱表面的全部或一部分上。
287.在一些实施方式中,介入元件100的第一部分由导电材料覆盖,并且介入元件100的第二部分由绝缘材料或介电材料(例如,聚对二甲苯)覆盖。例如,在一些实施方式中,支柱表面的径向面向外的表面被导电材料覆盖,而支柱表面的径向面向内的表面被绝缘材料覆盖。在一些实施方式中,介入元件100的工作长度wl部分可以由导电材料覆盖,而非工作长度nwl部分可以由绝缘材料覆盖。在一些实施方式中,导电材料可以沿介入元件100的长度的全部或一部分布置在支柱表面的全部或一部分上,并且绝缘材料可以布置在支柱表面和/或工作长度的未被导电材料覆盖的那些部分上。
288.为了便于理解,图3b以“平面”视图示出了另一个在其上承载多个电极202的示例性介入元件100。图3b中所示的配置可以类似于之前关于图3a所描述的配置,除了如图3b中所示,有四根引线204a-d分别耦合到四个电极202a-d。第一电极202a和第四电极202d采用耦合到介入元件100的支柱302的导电构件的形式,而第二电极202b和第三电极202c采用耦合到突出部318的导电构件的形式,类似于那些上面关于图3a进行了描述。
289.安装在支柱302上的第四电极202d的详细视图如图6所示。电极202d可以采用装配在支柱302上的线圈、带、帽或管的形式。在各种实施方式中,电极202d可以围绕支柱302的一些或全部圆周延伸。第四引线204d可以电耦合到第四电极202d。例如,可以将引线204d焊合、焊接或以其他方式粘附到电极202d并与其电连通。在一些实施方式中,引线204d的远端部分延伸到电极202d和支柱302之间的空间中。根据一些实施方式,电极202d和/或引线204d可以与支柱302的材料电连通。在其他实施方式中,绝缘材料可以布置在电极202e和支柱302之间(和/或绝缘材料可以布置在引线204d和支柱302之间),使得流过电极202d和/或引线204d的电流被抑制传递到介入元件100的下方的支柱302。
290.返回来参考图3b,电极202可以通过它们各自的引线204耦合到电流发生器的端子,使得第二电极202b和第四电极202d用作输送电极(例如,耦合到正极端子)并且第一电
极202a和第三电极202c用作返回电极(例如,耦合到负极端子)。与图3a的配置相反,其中输送电极布置在介入元件100的中心部分上并且返回电极沿着远侧尖端定位,在图3b所示的实施方式中,返回电极和输送电极都定位在介入元件100的中心部分(例如,在工作长度wl内)上。这种配置可以在介入元件100的表面上提供不同的电荷分布,例如通过在输送电极和返回电极之间提供更短的路径。另外,如图3b所示,至少一个输送电极202d位于至少一个返回电极202c的远侧,而至少一个输送电极202b也位于至少一个返回电极202a的近侧。
291.图3a和3b中所示的实施方式说明了电极202和引线204的示例性配置,然而各种其他配置也是有可能的。例如,电极的一些或全部可以在任何合适的位置安装到介入元件100,例如沿着支柱302、突出部318、向远侧延伸尖端324或任何其他合适的位置。类似地,可以选择电极202的数量、它们各自的极性以及它们的相对定位以实现期望的电荷分布和其他操作参数。
292.图7和8示出了在每种情况下,安装在介入元件100上的电极202的剖视图,介入绝缘材料702布置在电极202和介入元件的下方的部分之间。在图7的实施方式中,介入元件100在电极202下方的部分具有矩形横截面(例如,支柱302),而在图8的实施方式中,介入元件100在电极202下方的部分具有圆形横截面(例如,向远侧延伸尖端324)。这些形状仅是示例性的,并且在各种实施方式中,介入元件100可以呈现任何合适的横截面形状。在图7和图8中,电极202围绕介入元件100的段,绝缘材料702布置在它们之间。绝缘材料702可以是例如聚对二甲苯、ptfe、聚酰亚胺或任何合适的电绝缘材料。结果,由电极202承载的电流不传递到支柱302或向远侧延伸尖端324。根据需要,这种绝缘配置可用于输送电极或返回电极。
293.图9和10示出了安装在介入元件100上以便与介入元件100电连通的电极202的截面图。这里没有介入绝缘材料,使得电极202直接接触并因此与下方支柱302或介入元件100的向远侧延伸尖端324电连通。在一些实施方式中,一种或多种非绝缘(例如,导电)涂层可以布置在电极202和介入元件100的支柱302或向远侧延伸尖端324之间。在该配置中,输送到电极202的电流传递到介入元件100的下方支柱302或向远侧延伸尖端324,特别是,如果介入元件100由诸如不锈钢或镍钛诺的导电材料所制成。这种电耦合配置可以根据需要用于输送电极或返回电极。
294.除了另有规定,图11-13示出了其上携带多个电极202的介入元件1100、1200、1300的另外的实施方式,这些介入元件和电极布置可以类似于本文所述的介入元件100和相关电极布置的各种实施方式。如本文其他地方所述,多根引线(未示出)可以电耦合到电极202以提供在电流发生器和单个电极202之间的电连接。如图11-13所示,介入元件可以采用多种不同的形式,同时受益于电极202提供的对凝块材料的电增强粘附力。例如,关于图11,介入元件1100是具有内部管状构件和直径大于内部管状构件的外部可扩张构件的凝块取出装置。外部构件可以具有径向向外延伸的支柱,支柱限定了入口,该入口配置成在其中接收凝块材料。关于图12,介入元件1200是凝块取出装置的另一个实施例,在这种情况下,包括多个相互连接的笼子,这些笼子具有防损伤引导表面并且配置成径向向外扩张以接合血栓。图13示出了凝块取出装置形式的另一个示例性介入元件1300,这里包括被配置为扩张到血栓中或血栓远端的圈形或螺旋形构件,从而在圈的匝之间接合血栓并便于从人体中去除。除了这些说明性示例之外,介入元件100可以采取其他形式,例如去除装置、血栓切除装置、取出装置、编织物、网状物、激光切割支架或任何合适的结构。
295.ii.与本文所公开的治疗系统一起使用的引线捆束组件的精选实施方式
296.如上所述,由介入元件100承载的电极202可以通过纵向延伸的引线204电耦合到体外电流发生器20,该引线可以通过近端延伸的引线捆束组件205耦合或接合在一起。在各种实施方式中,引线捆束组件205可以平行于芯构件11但与其分开延伸,或者在一些实施方式中,引线捆束组件可以耦合到芯构件11或与其集成。引线204可以被配置为在它们各自的近端部分电耦合到电流发生器(例如,电流发生器20;图1a)或其他电流源,并在其各自的远端耦合到如本文别处所述耦合到介入元件100的一个或多个电极202。在一些实施方式中,引线204包括输送电极引线和返回电极引线,而在其他实施例中,引线204仅包括输送电极引线,在这种情况下,一个或多个返回电极可以分别耦合到电流发生器(例如经由外部针或接地垫,通过耦合到导管,或任何其他合适的配置)。类似地,在一些实施方式中,引线204仅包括返回电极引线,只有返回电极202由介入元件100承载。在这样的配置中,输送电极可以提供在别处,例如耦合到导管的远侧部分,由介入元件的另一部分承载的,或任何其他合适的排布。
297.图14a是根据一些实施方式的引线捆束组件205的侧面剖视图,且图14b是图14a所示的组件205的剖视图。如图14a-b所示,引线捆束组件205包括四个沿组件205纵向延伸的引线204a-d。尽管示出了四根引线,但在各种实施方式中可以存在更多或更少的引线,例如1根、2根、3根、5根、6根、7根、8根、9根、10根或更多根引线。引线捆束组件205可以具有足以在近端处的体外电流发生器和远端处的血管内治疗位点之间延伸的长度。例如,引线捆束组件205可具有至少约100cm、至少约125cm、至少约150cm、或至少约175cm的长度,或在约100cm至200cm之间、或在约150cm和约190cm之间的长度。
298.引线204可以各自在组件205的近端部分暴露(例如,不覆盖有绝缘材料),用于耦合到电流发生器(例如,电流发生器20;图1a)。在引线捆束组件205的远端部分,引线204可以远离该捆束组件205单独地向远侧延伸,每个引线204朝向不同的电极延伸。引线204的这种向远侧延伸的部分(此处未示出)可以包括布置在单根引线204上的绝缘材料,其暴露的远端部分(例如,留下大约0.5-5mm的暴露)以便于将单根引线204耦合到单个电极上,如上文关于图3a-6所述。
299.在至少一些实施方式中,引线捆束组件205包括围绕每个引线204延伸的第一绝缘层或材料1402。例如,第一绝缘材料1402可以是聚酰亚胺或任何其他合适的电绝缘涂层(例如,ptfe、氧化物、etfe基涂层或任何合适的介电聚合物)。例如,第一绝缘材料1402可以周向地围绕每个引线204,其厚度在大约0.00005”和大约0.0005”之间,或大约0.0002”。在一些实施方式中,第一绝缘材料1402基本上沿着引线204和组件205的整个长度延伸。在一些实施方式中,第一绝缘材料1402基本上沿着组件205的整个长度将引线204彼此分离和电绝缘。在一些实施方式中,第一绝缘材料1402不覆盖引线204的最近侧部分,从而提供电流发生器20(图1a)可以电耦合到的引线204的暴露区域。在一些实施方式中,第一绝缘材料1402不覆盖引线204的最远侧部分,从而提供电极202(图3a)可以电耦合到的引线204的暴露区域。
300.引线捆束组件205可以另外包括第二绝缘层或材料1404,其沿着引线204各自的至少一部分长度包围该引线204的一些或全部。例如,第二绝缘材料1404可以是聚酰亚胺或任何其他合适的电绝缘涂层(例如,ptfe、氧化物、etfe基涂层或任何合适的介电聚合物)。绝
缘材料1404可以采用大致管状构件的形式,其壁厚在约0.00005”和约0.0005”之间,或约0.0002”。在一些实施方式中,第二绝缘材料1404不覆盖引线204的最近侧部分,从而提供电流发生器20(图1a)可以电耦合到的引线204的暴露区域。如前所述,在第二绝缘材料1404的远端的远侧,单根引线204(以及可选地周围的第一绝缘材料1404)可以朝着单个电极202向远侧延伸。
301.在图14a-b的实施方式中,第二绝缘材料1404限定了捆束组件205的外表面,该外表面可以是基本上圆柱形的。在使用中,捆束组件205可以可滑动地推进穿过芯构件11旁边的导管(例如,第三导管12;图1a)。在一些实施方式中,捆束组件205可以耦合到芯构件11,例如在一个或多个位置处粘合在一起以防止相对滑动运动。在其他实施方式中,捆束组件205和芯构件11可以保持分离并且可相对于彼此滑动和/或旋转。
302.图15a是根据另一个实施方式的引线捆束组件205的侧面剖视图,且图15b是图15a所示的组件205的剖视图。在该实施方式中,两根引线204a和204b嵌入绝缘条带1502内。该条带可以由电绝缘材料制成,例如聚酰亚胺、聚对二甲苯、ptfe或任何其他合适的电绝缘材料,并且可以使引线204a和204b的近侧和远侧部分暴露,如前所述。如图15b所示,该条带可以具有基本上矩形横截面。该条带可具有约0.0005”至约0.001”之间的厚度和小于约0.002”的宽度。
303.通常,图14a-14b和15a-15b中描绘的引线捆束组件可以用作芯构件11,而无需任何额外结构或部件,或具有诸如非导电芯线或轴、编织轴或围绕(或中心)管、线圈或编织物的附加结构。这样的管可以以螺旋或开槽型式(或者其他型式)被激光切割,以在需要的地方赋予额外的柔韧性。
304.图16a是根据另一个实施方式的引线捆束组件205的侧面剖视图,图16b是图16a所示的组件205的剖视图。除了组件205同轴地排布在芯构件11周围(其可以包括如上所述的线材、管、编织轴等),该实施方式可以类似于图14a-14b的实施方式。例如,每根引线204a-d可以涂覆有第一绝缘材料1402,如上文关于图14a-14b所述。然而,在本实施方式中,引线204径向布置在芯件11的周围,并且周围的第二绝缘材料1404包覆引线204和芯构件11。其结果是,能够将芯构件11和引线204相互固定,能够作为一个整体滑动地被推进穿过周围的导管。
305.iv.精选的使用的方法
306.图17a-17g展示了使用本发明技术的治疗系统10从血管v的内腔去除凝块材料cm的方法。如图17a所示,可以将第一导管14推进穿过脉管系统并定位在血管内,使得第一导管14的远侧部分位于凝块材料cm的近侧。如图17b所示,可以将第二导管13推进穿过第一导管14,直到第二导管13的远侧部分位于或接近凝块材料cm。接下来,可以将第三导管12推进穿过第二导管13,使得第三导管12的远侧部分被定位在凝块材料cm处或附近。在一些实施方式中,第三导管12可以被定位成使得第三导管12的远侧末端位于凝块材料cm的远侧。然后,可以将介入元件100以低剖面配置推进穿过第三导管12,直到介入元件100的远侧末端位于第三导管12的远侧末端处或附近。
307.如图17c所示,可以相对于介入元件100向近侧撤回第三导管12,以释放介入元件100,从而允许介入元件100在凝块材料cm内自扩展。随着介入元件100扩展,介入元件100接合和/或固定周围的凝块材料cm,并且在一些实施方式中,可以通过推开血流路径穿过凝块
材料cm来恢复或改善穿过所述凝块材料的血流。在一些实施方式中,介入元件100可以在凝块材料cm的远侧扩展,使得当介入元件100处于朝向血管壁扩展的过程中时,介入元件100的任何部分均不接合凝块材料cm。在一些实施方式中,介入元件100被配置为扩展成与血管v的壁接触,或介入元件100可以扩展到小于血管内腔的直径的直径,使得介入元件100不接合血管壁的整个圆周。
308.一旦介入元件100已经扩展成与凝块材料cm接合,介入元件100就可以借助于其与凝块材料cm机械地互锁的能力来抓持凝块材料cm。电耦接到引线204的近端的电流发生器20可以在介入元件100已经从第三导管12释放到血管中和/或扩展到凝块材料cm中之前或之后向由介入元件100承载的电极202输送电流。在电信号被输送时,介入元件100可以在血管v内被保留在适当的位置或操纵持续期望的时间段。经由电极202向介入元件100输送的正电流可以吸引凝块材料cm的带负电荷的成分,从而增强介入元件100对凝块材料cm的抓持。这允许介入元件100被用于取出凝块材料cm,同时降低了失去对血栓或其一部分的抓持的风险,所述血栓或其一部分可能向下游迁移并且在大脑的更难以到达的区域中引起另外的血管堵塞。
309.在本发明技术的一些方法中,导丝(未示出)可以被推进到治疗位点并且被推动穿过凝块材料cm,直到导丝的远侧部分位于凝块材料cm的远侧。可以将导丝推进穿过导管12-14中的一个或多个导管和/或导管12-14中的一个或多个导管可以在所述导丝上被推进。导丝可以沿其长度的至少一部分绝缘(例如,利用聚对二甲苯、ptfe等),其中暴露部分允许与电流发生器20和介入元件100电连通。例如,在一些实施方式中,可以暴露导丝的远侧部分,并且导丝可以被定位在治疗位点处,使得导丝的暴露部分位于凝块材料cm的远侧。导丝的近端可以耦接到电流发生器,使得导丝的暴露部分充当返回电极。在一些实施方式中,导丝可以耦接到电源的正极端子,并且暴露部分充当输送电极。导丝可以充当输送电极或返回电极,其中任何输送电极或返回电极由治疗系统的任何组件(例如,第一导管14、第二导管13、第三导管12中的一个或多个导管、介入元件100等)承载。
310.在一些方法中,当电流正被输送到介入元件100时,可以通过第二导管13和/或第三导管12向治疗位点输送流体。流体输送可以在介入元件100接合血栓之前或同时发生,并且可以与当前输送的整个持续时间或仅与其一部分一致。在一些情况下,可以通过第二导管13向治疗位点施加抽吸。例如,在介入元件100展开之后,第三导管12可以从第二导管13的内腔缩回和去除。然后可以通过第二导管13抽吸治疗位点,例如通过耦接到第二导管13的近侧部分的抽吸源,如泵或注射器。在一些实施方式中,在介入元件100扩展之后,在通过电流发生器20向介入元件100供应电能的同时抽吸治疗位点。通过将抽吸与电能的施加相结合,任何新形成的凝块(例如,形成的至少部分地可归因于电能的施加的任何凝块)或在手术期间断裂松弛的任何凝块片可以被拉入第二导管13中,从而防止任何此类凝块释放到治疗位点的下游。因此,同时抽吸可以允许使用向介入元件100输送的更高功率或电流水平,而不冒新凝块形成的有害影响的风险。另外,抽吸可以在向介入元件100施加电能期间捕获沿介入元件100形成的任何气泡,这可以改善手术期间的患者安全性。
311.在一些实施方式中,在介入元件100被缩回到第二导管13中时施加抽吸。在此阶段的抽吸可以帮助将凝块材料cm固定在第二导管13内并且防止凝块材料cm的任何移出部分从第二导管13逸出并被释放回血管v中。在各个实施方式中,可以在向介入元件100输送电
信号之前、期间或之后以及在介入元件100缩回到第二导管13中之前、期间或之后连续地抽吸治疗位点。
312.在介入元件100展开之前、期间和/或之后的任何时间,止流元件(例如,球囊导管的球囊或其他合适的止流元件)可以展开在凝块材料cm近侧的血管内,以部分地或完全地阻止血流到达治疗位点。在一些方法中,止流元件可以展开在沿凝块材料cm近侧的血管的位置处(例如,在颈内动脉的近侧部分处),并且可以在展开介入元件100并最终撤回以去除血栓时保持充气。
313.至少在介入元件100被部署并接合血栓cm时,可以向介入元件100(例如,经由引线204和电极202)输送电流以使介入元件100带正电荷,从而增强凝块对介入元件100的粘附力。参考图17d,在介入元件100与凝块材料cm接合时,可以去除凝块材料cm。例如,在凝块材料cm被抓持的情况下,介入元件100可以向近侧缩回(例如,连同第二导管13,并且任选地第三导管12一起)。第二导管13、介入元件100和相关联的凝块材料cm然后可以任选地通过一个或多个更大的周围导管从患者体内撤回。在此缩回期间,介入元件100可以例如通过施加来自如本文所讨论的电流发生器的电流电或静电地抓持凝块材料cm。(如本文参考抓持或取出血栓或其它血管/内腔材料或出于此目的的设备所使用的,“电(electrical)”及其派生词将被理解为包含“静电(electrostatic)”及其派生词)。因此,介入元件100可以在缩回期间维持对凝块材料cm的增强的或电和/或静电地增强的抓持。在其它实施例中,在介入元件100相对于血管v缩回之前,电流发生器20可以停止向由介入元件100承载的电极202输送电信号。在一些实施方式中,介入元件100和凝块材料cm形成可去除的、集成的血栓装置团块,其中血栓与装置的连接例如通过如本文所讨论的电流的施加而被电增强。
314.v.用于电增强取出的波形的精选实施方式
315.图18a-18e示出了用于与本发明技术的治疗系统一起使用的不同电波形。尽管本文所公开的波形和其它电力输送参数可以与上文关于图1a-17d的装置和方法一起使用,但是波形和其它参数也适用于其它装置配置和技术。例如,返回电极可以沿导管壁设置,作为在导管内腔内延伸的单独的导电构件,作为设置在人体其它地方这些装置配置的每个装置配置中,电力输送参数和波形可以有利地用于在不损伤周围组织的情况下促进凝块粘附力。另外,尽管本文所公开的波形和其它电力输送参数可以用于治疗脑栓塞或颅内栓塞,但是除了本文所描述的应用和实施例之外的其它应用和其它实施方式也在本发明技术的范围内。例如,本文所公开的波形和电力输送参数可以用于从除了血管之外的人体内腔(例如,消化道等)电增强去除栓子,和/或可以用于从大脑外部的血管(例如,肺部血管、腿部内的血管等)电增强去除栓子。
316.如上所述,治疗系统可以包括由介入元件承载的多个输送电极和/或多个返回电极。在一些实施方式中,可以用相同的波形驱动两个或更多个输送电极。然而,在一些实施方式中,可以用不同的波形驱动两个或更多个输送电极以在介入元件100处实现期望的电荷分布特性。
317.尽管施加连续的均匀直流(dc)电信号(如图18e所示)以使介入元件带正电荷可以改善对血栓的附接,但是这可能有损伤周围组织(例如,消融)的风险,并且相对高水平的持续电流也可能是形成血栓的(即,可能产生新凝块)。为了在不消融组织或在治疗位点处产生大量新凝块的情况下实现有效的凝块抓取,已经发现周期性波形是特别有用的。在不希
望受理论束缚的情况下,凝块粘附效应似乎与输送的电信号的峰值电流最密切相关。周期性波形可以有利地提供期望的峰值电流,而不会输送过多的总能量或总电荷。具体地,与均匀施加的电流或正方形波形相比,周期性非正方形波形非常适合于输送期望的峰值电流,同时减少总输送的能量或电荷的量。
318.图18a-18d示出了可以与上文关于图1a-17d所述的装置和方法以及与其它装置和技术一起使用的各种周期性波形。图18e展示了也可以在一些实施方式中使用的连续均匀dc电信号。参考图18a-18d,电力可以根据这些波形以脉冲直流的形式输送。图18a和18b分别展示了周期性正方形波形和三角形波形。这两个波形具有同一振幅,但是三角形波形能够输送与正方形波形相同的峰值电流,而仅输送总电荷的一半,并且所输送的总能量更少。图18c展示了另一种脉冲dc或周期性波形,所述周期性波形是正方形波形和三角形波形的复合。与图18b的三角形波形相比,图18c所示的三角形波形和正方形波形的这种叠加输送另外的功效,同时仍输送比图18a的正方形波形更少的总能量。这是因为输送的能量与电流的平方成比例,并且图18c的复合波形中的短暂高峰值确保在不分配过多能量的情况下供应电流。图18d展示了又另一种非正方形波形(在这种情况下是梯形波形),其中在每个脉冲的开始和结束处的“斜升”和“斜降”部分提供了与正方形波形相比电流减小的周期。在其它实施方式中,可以使用不同的非正方形波形,包含正方形波形与任何非正方形波形的叠加,这取决于期望的电力输送特性。
319.波形形状(例如,脉冲宽度、占空比、振幅)和时间长度可以各自被选择以实现期望的电力输送参数,如向介入元件和/或导管输送的总电荷、总能量和峰值电流。在一些实施方式中,向介入元件和/或导管输送的总电荷可以介于约30-1200mc之间,或介于约120-600mc之间。根据一些实施方式,向介入元件和/或导管输送的总电荷可以小于600mc、小于500mc、小于400mc、小于300mc、小于200mc或小于100mc。
320.在一些实施方式中,向介入元件和/或抽吸导管输送的总能量可以介于约0.75-24,000mj之间或介于约120-24,000mj之间或介于约120-5000mj之间。根据一些实施方式,向介入元件和/或抽吸导管输送的总能量可以小于24,000mj、小于20,000mj、小于15,000mj、小于10,000mj、小于5,000mj、小于4,000mj、小于3,000mj、小于2000mj、小于1,000mj、小于900mj、小于800mj、小于700mj、小于600mj、小于500mj、小于400mj、小于300mj或小于200mj或小于120mj或小于60mj或小于48mj或小于30mj或小于12mj或小于6mj或小于1.5mj。
321.在一些实施方式中,所输送的峰值电流可以介于约0.5-20ma之间或介于约0.5-5ma之间。根据一些实施方式,所输送的峰值电流可以大于0.5ma、大于1ma、大于1.5ma、大于2ma、大于2.5ma或大于3ma。
322.电力输送的持续时间是另一个重要的参数,所述参数可以被控制以实现期望的凝块粘附效应,而不损伤治疗位点处的组织或产生新凝块。在至少一些实施方式中,总能量输送时间可以不超过1分钟、不超过2分钟、不超过3分钟、不超过4分钟或不超过5分钟。根据一些实施方式,总能量输送时间可以小于约30秒、小于约1分钟、小于约90秒或小于约2分钟。如本文所用,“总能量输送时间”是指向介入元件和/或导管供应波形的时间段(包含电流脉冲之间的那些时间段)。
323.也可以选择所施加的电信号的占空比,以在不消融组织或促进新凝块形成的情况
下实现期望的凝块粘附特性。在一些实施方式中,占空比可以介于约5%到约99%之间或介于约5%到约20%之间。根据一些实施方式,占空比可以为约10%、约20%、约30%、约40%或约50%。在又其它实施方式中,可以使用恒定电流,其中占空比为100%。对于100%占空比的实施方式,可以使用较低的时间或电流来避免向治疗位点输送过多的总能量。
324.表1呈现了不同波形的电力输送参数的值范围。对于表1中阐述的每个条件,使用1千欧姆的电阻和1khz的频率(对于方形条件、三角形条件和复合条件)。恒定条件表示在持续时间内(即,100%占空比)施加的连续稳定电流。峰值电流1列表示对应波形的峰值电流。对于复合条件,峰值电流2列表示波形的第二部分的峰值电流。例如,返回参考图18c,峰值电流1将与波形的三角形部分顶部处的电流相对应,而峰值电流2将与波形的正方形部分顶部处的电流相对应。
[0325][0326]
表1
[0327]
如表1所见,与对应的恒定条件相比,周期性波形(正方形、三角形和复合条件)实现更高的峰值电流,其中所输送的总电荷更低。例如,在条件恒定4中,20ma的峰值电流与24,000mj的所输送总能量相对应,而条件正方形3输送20ma的峰值电流,其中总能量仅为4,800mj。条件三角形2和复合1类似地输送较低的总能量,同时保持20ma的峰值电流。由于凝块粘附似乎是由峰值电流驱动的,因此这些周期性波形可以提供改善的凝块粘附,同时降低损伤治疗位点处的组织或促进新凝块形成的风险。表1还表明,与对应的正方形条件相比,三角形条件和复合条件实现更高的峰值电流,其中所输送的总电荷更低。例如,条件正方形3的峰值电流为20ma,并且所输送总电荷为240mc,而条件三角形2的峰值电流为20ma但所输送总电荷仅为120mc,并且条件复合1的峰值电流为20ma并且所输送总电荷仅为wl mc。如此,这些非正方形波形通过输送期望的峰值电流同时减少向治疗位点输送的总电荷来提供另外的益处。
[0328]
尽管表1表示具有单个频率(1khz)的一系列波形,但是在一些实施方式中,可以控制脉冲dc波形的频率以实现期望的效果。例如,在一些实施方式中,波形的频率可以介于1hz与1mhz之间,介于1hz与1khz之间或介于500hz到1khz之间。
[0329]
vi.结论
[0330]
本公开并非旨在是穷尽性的或将本发明技术限制于本文所公开的精确形式。尽管本文出于说明性目的公开了具体实施方式,但是如相关领域的普通技术人员将认识到的,在不偏离本发明技术的情况下,各种等效的修改是可能的。在一些情况下,尚未详细示出和/或描述众所周知的结构和功能,以避免不必要地使本发明技术的实施方式的描述模糊。尽管本文中可以以特定顺序呈现方法的步骤,但是在替代性实施方式中,步骤可以具有另一种合适的顺序。类似地,在其它实施方式中,可以组合或省略在特定实施例的上下文中公开的本发明技术的某些方面。此外,尽管已经在某些实施方式的上下文中公开了与那些实施例相关联的优点,但是其它实施方式也可以表现出这些优点,并且并非所有实施方式都必需表现出这种优点或本文所公开的其它优点才能落入本发明技术的范围内。因此,本公开和相关联的技术可涵盖未在本文明确示出和/或描述的其它实施方式。
[0331]
除非另有说明,否则在说明书和权利要求书中使用的所有数值应理解为在所有情况下都由术语“约”修饰,因此,除非指明为相反的,否则说明书和所附权利要求书中所阐述的数字参数是可能是试图通过本技术获得的所需性质而变化的近似值。最低限度地,并且不试图限制等效物原则应用于权利要求书的范围,至少应根据所报告的有效位的数目并且通过应用一般四舍五入技术来解释每个数值参数。另外,本文公开的所有范围都应理解为涵盖其中包含的任何和所有子范围。举例来说,范围“1到10”包含在最小值1与最大值10之间(并且包含其)的任何和所有子范围,即,具有等于或大于1的最小值与等于或小于10的最大值的任何和所有子范围,例如5.5到10。
[0332]
贯穿本公开,除非上下文另外清楚地指示,否则单数形式“一个(a)”、“一种(an)”和“所述(the)”包含复数指代物。类似地,除非词语“或”被明确地限制为仅意指除了关于具有两个或更多项的列表的其它项之外的单个项,否则在这种列表中使用“或”应被解释为包含(a)列表中的任何单个项、(b)列表中的所有项或(c)列表中的项的任何组合。另外,贯穿本公开使用术语“包括”等意指至少包含所述特征,使得不排除任何更多数量的相同特征和/或一种或多种另外类型的特征。如“上”、“下”、“前”、“后”、“竖直”和“水平”等方向术语在本文中可以用于表达和阐明各个元件之间的关系。应当理解,这种术语不表示绝对朝向。本文对“一个实施方式”、“实施方式”或类似表达方式的引用意味着结合实施方式描述的特定特征、结构、操作或特性可以包含在本发明技术的至少一个实施方式中。因此,这种短语或表达方式在本文的出现不一定全部指代同一个实施方式。此外,各个特定特征、结构、操作或特性可以以任何合适的方式组合在一个或多个实施方式中。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献