一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种多功能消弧变流器及其控制方法

2022-07-23 04:44:01 来源:中国专利 TAG:


1.本发明涉及配电网消弧技术领域,尤其指一种多功能消弧变流器及其控制方法。


背景技术:

2.配电网结构复杂多变,随机性故障频发,其中约70%以上的故障为单相接地故障。且随着配电网容量不断增大以及电缆线路占比不断增高,单相接地故障电流剧增,电弧难以自行熄灭。若不能及时熄灭电弧,易造成绝缘击穿、相间短路和森林火灾等严重电力事故。
3.消弧线圈作为典型的无源消弧装置被广泛应用于配电网中,但其仅能补偿接地电流中的无功分量,无法补偿有功以及谐波分量,难以确保电弧可靠熄灭。基于电力电子器件的有源消弧装置可以实现有功、无功、谐波全补偿,成为当前消弧装置的研究热点。有源消弧装置依据接入配电网的位置不同,可分为中性点有源消弧装置和非中性点有源消弧装置。
4.典型的中性点有源消弧装置如图1所示,有源变流器通过升压变压器与消弧线圈并联接入到z型变压器中性点,并通过z型变压器挂接于配电网母线。当配电网发生接地故障时,有源变流器和消弧线圈向中性点注入消弧电流,以抑制接地点电弧重燃。该消弧方式的有源装置容量小、成本低,但消弧线圈和变压器体积大,设备功能单一、利用率低。并且,在消弧期间,为维持设备直流侧电压的恒定,需额外增加整流装置。
5.典型的非中性点有源消弧装置如图2所示,其采用级联h桥星型连接结构,其星接点与大地直接连接,交流输出侧经滤波电感挂接于配电网母线。在配电网正常时,该装置可实现无功补偿、三相不平衡抑制等功能;在配电网单相接地故障时,级联h桥变流器向配电网注入消弧电流,以抑制接地点电弧重燃。由于消弧时级联h桥承受线电压,该有源装置存在级联数多、成本高、损耗大、功率密度低等问题,导致其尚未能在配电网中推广应用。因此,若能提出一种效率及功率密度更高、成本更优的多功能有源消弧装置,将对有源消弧装置的性能提升与应用推广具有重要意义。


技术实现要素:

6.针对现有有源消弧装置的问题,本发明提供一种可以减少级联数量、提高效率和功率密度、以及降低成本的多功能消弧变流器及其控制方法。
7.为了解决上述技术问题,本发明采用如下技术方法:一种多功能消弧变流器,包括三相的级联h桥整形电路单元,所述级联h桥整形电路单元中各相结构相同,均包括多个子模块,该多功能消弧变流器还包括与级联h桥整形电路单元串联的方波电路单元,所述方波电路单元为三相四桥臂的二极管钳位型电路。
8.进一步地,所述方波电路单元包括三相四桥臂的npc变换器和两个储能电容c
t1
、c
t2
,所述npc变换器包括a相、b相、c相、n相,每相均包括四个igct和两个钳位二极管,该四个igct以上一个igct的阴极与下一个igct的阳极电连接的方式依次串联,第一个钳位二极管
的负极电连接于第一个igct的阴极,第一个钳位二极管的正极连接到的第二个钳位二极管的负极,第二个钳位二极管的正极电连接于第三个igct的阴极;所述储能电容c
t1
、c
t2
安装在npc变换器的直流侧,储能电容c
t1
的正极与npc变换器每相第一个igct的阳极均电连接,储能电容c
t1
的负极与npc变换器每相第一个钳位二极管的正极均电连接,储能电容c
t2
的正极与储能电容c
t1
的负极电连接于o点,储能电容c
t2
的负极与npc变换器每相第四个igct的阴极均电连接;所述npc变换器a相、b相、c相的交流输出端口分别从其对应相的第二个igct和第三个igct之间引出,并与级联h桥整形电路单元中对应相的子模块电连接,所述npc变换器n相的第二个igct和第三个igct之间接地。
9.再进一步地,所述级联h桥整形电路单元每相子模块的数量均为n个,所述子模块包括由t
11
、t
12
、t
21
、t
22
四个igbt构成的单相全桥变换器以及安装在单相全桥变换器直流侧的储能电容ch;在每个子模块中,单相全桥变换器t
11
的发射极与t
12
的集电极电连接在一起作为输出端口,t
21
的发射极和t
22
的集电极电连接在一起作为输入端口,储能电容ch的正极与t
11
、t
21
的集电极电连接,储能电容ch的负极与t
12
、t
22
的发射极电连接;在级联h桥整形电路单元中,每相的n个子模块均以上一个子模块的输入端口电连接于下一个子模块的输出端口的方式依次串联,且第一个子模块的输出端口串联滤波电感l后接入并网点,最后一个子模块的输入端口电连接于方波电路单元中对应相的交流输出端口。
10.作为本发明的另一面,前述多功能消弧变流器的控制方法为:将所述多功能消弧变流器的调制分为方波电路单元调制和级联h桥整形电路单元调制,所述多功能消弧变流器输出电压为由级联h桥整形电路单元输出的整形电压将方波电路单元输出的电压整形而成的正弦波,计算公式如下:
[0011][0012]
当配电网正常时,所述方波电路单元中npc变换器的n相封锁,所述多功能消弧变流器工作于无功补偿模式;
[0013]
当配电网发生单相接地故障时,所述多功能消弧变流器工作于消弧模式,其利用非故障相的一相或两相注入消弧电流以补偿配电网对地电容电流,从而抑制故障点的电流为0。
[0014]
进一步地,当配电网正常时,所述方波电路单元和级联h桥整形电路单元的调制过程如下:
[0015]
1)方波电路单元
[0016]
方波电路单元采用最近电平逼近控制,其npc变换器的n相封锁,a相、b相、c相配合,在一周期内方波电路单元输出的电压有u
dc
、0、-u
dc
三种电平;
[0017]
设定多功能消弧变流器的输出参考电压为在的正半周期内,当大于方波电路单元直流侧储能电容c
t1
或c
t2
的电压时,即方波电路单元输出的电压为正电平电压u
dc
;在的负半周期内,当时,方波电路单元输出的电压为负电平电压-u
dc
,其他情况时,方波电路单元输出的电压为0;
[0018]
2)级联h桥整形电路单元
[0019]
所述级联h桥整形电路单元采用单极性载波移相控制,其输出的整形参考电压由多功能消弧变流器的输出参考电压及方波电路单元输出的电压计算得到,如下式:
[0020][0021]
的标幺值作为每个子模块的调制波,每个子模块的三角载波相位依次相差π/n,级联h桥整形电路单元输出整形电压
[0022]
再进一步地,当配电网发生单相接地故障时,所述方波电路单元和级联h桥整形电路单元的调制过程如下:
[0023]
1)方波电路单元
[0024]
方波电路单元采用最近电平逼近控制,其n相与b、c相配合,在一周期内方波电路单元输出的电压有2u
dc
、u
dc
、0、-u
dc
、-2u
dc
五种电平;
[0025]
设定多功能消弧变流器的输出参考电压为在的正半周期内,当与方波电路单元直流侧储能电容c
t1
或c
t2
的电压为时,方波电路单元输出的电压为正电平电压u
dc
,当时,方波电路单元输出的电压为正电平电压2u
dc
;在的负半周期内,当时,方波电路单元输出的电压为负电平电压-u
dc
,当时,方波电路单元输出的电压为正电平电压-2u
dc
;其他情况时,方波电路单元输出的电压为0;
[0026]
2)级联h桥整形电路单元
[0027]
所述级联h桥整形电路单元采用单极性载波移相控制,其输出的整形参考电压由多功能消弧变流器的输出参考电压及方波电路单元输出的电压计算得到,如下式:
[0028][0029]
的标幺值作为每个子模块的调制波,每个子模块的三角载波相位依次相差π/n,级联h桥整形电路单元的b、c相输出整形电压
[0030]
与传统的消弧装置相比,本发明提供的多功能消弧变流器能够同时实现无功补偿功能以及柔性消弧功能,大大提高了设备的利用率和实用性。本发明主要利用三相四桥臂的方波电路单元与级联h桥整形电路单元结构串联,降低chb的级联模块数,减少电力电子器件及直流电容数量,提高装置的功率密度和效率。且本发明提供的多功能消弧变流器其混合拓扑中方波电路单元选择开关频率低、耐压等级高、成本低的igct器件,故可以降低装置的整体成本。综合来说,本发明可有效减少装置级联数量,降低成本、减小损耗、提高效率和功率密度。
附图说明
[0031]
图1为传统的中性点有源消弧装置的拓扑结构示意图;
[0032]
图2为传统的非中性点有源消弧装置的拓扑结构示意图;
[0033]
图3为本发明所涉多功能消弧变流器的混合拓扑结构示意图;
[0034]
图4为本发明所涉多功能消弧变流器无功补偿期间无功电流流动图;
[0035]
图5为本发明所涉多功能消弧变流器消弧期间消弧电流流动图;
[0036]
图6为本发明实施方式中配电网正常时方波电路单元调制原理图;
[0037]
图7为本发明实施方式中配电网正常时级联h桥整形电路单元调制原理图;
[0038]
图8为本发明实施方式中配电网正常时mf-asc调制原理图;
[0039]
图9为本发明实施方式中配电网单相接地故障时方波电路单元调制原理图;
[0040]
图10为本发明实施方式中配电网单相接地故障时级联h桥整形电路单元调制原理图;
[0041]
图11为本发明实施方式中配电网单相接地故障时mf-asc调制原理图。
具体实施方式
[0042]
为了便于本领域技术人员的理解,下面结合实施例与附图对本发明作进一步的说明,实施方式提及的内容并非对本发明的限定。
[0043]
如图3所示,本实施方式提供的多功能消弧变流器(multi-functional arc suppression converter,mf-asc)的拓扑结构由三相四桥臂的二极管钳位型(neutral point clamped,npc)方波电路单元和级联h桥(cascaded h-bridge,chb)整形电路单元构成。图3中,为三相电源电压,为并网点电压,为中性点零序电压;ra=rb=rc=r0为三相线路对地电阻ca=cb=cc=c0为三相线路对地电容,rf为接地故障电阻。为级联h桥整形电路单元输出的整形电压;为方波电路单元输出的电压,也即对于o点的电压;uc为级联h桥整形电路单元中子模块直流侧储能电容ch的电压值,u
dc1
、u
dc2
分别为方波电路单元直流侧储能电容c
t1
、c
t2
的电压值,u
dc1
=u
dc2
=u
dc

[0044]
具体而言,如图3所示,本实施方式提供的多功能消弧变流器的方波电路单元包括三相四桥臂的npc变换器和两个储能电容c
t1
、c
t2
,npc变换器共有四相(a相、b相、c相、n相),每相结构相同,每相均由四个集成门极换流晶闸管(insulated gate-commutated transistor,igct;注:每个igct中包含一个反并联二极管)和两个钳位二极管构成,具体连接方式以a相为例介绍:t
a1
、t
a2
、t
a3
、t
a4
四个igct以上一个igct的阴极与下一个igct的阳极电连接的方式依次串联,钳位二极管d1的负极电连接于t
a1
的阴极(t
a2
的阳极),钳位二极管d1的正极电连接于钳位二极管d2的负极,钳位二极管d2的正极连接到t
a3
的阴极(t
a4
的阳极)。储能电容c
t1
、c
t2
安装在npc变换器的直流侧,储能电容c
t1
的正极与npc变换器每相第一个igct(t
a1
、t
b1
、t
c1
、t
n1
)的阳极均电连接,储能电容c
t1
的负极与钳位二极管d
a1
、d
b1
、d
c1
、d
n1
的正极(即d
a2
、d
b2
、d
c2
、d
n2
的负极)均电连接;储能电容c
t2
的正极与储能电容c
t1
的负极电连接于o点,储能电容c
t2
的负极与npc变换器每相第四个igct(t
a4
、t
b4
、t
c4
、t
n4
)的阴极均电连接。npc变换器a相的交流输出端口从t
a2
的阴极和t
a3
的阳极连接节点处引出,并和级联h桥整形电路单元a相的子模块电连接。npc变换器n相的t
n2
和t
n3
之间接地。
[0045]
如图3所示,本实施方式提供的级联h桥整形电路单元有三相(a相、b相、c相),每相结构相同,每相均由n个相同的子模块构成,a相子模块sm
ai
(i=1~n),b相子模块sm
bi
(i=1~n),c相子模块sm
ci
(i=1~n)。每个子模块均包括由t
11
、t
12
、t
21
、t
22
四个绝缘栅双极型晶体管(insulated gate bipolar transistor,igbt;注:每个igbt中包含一个反并联二极管)构成的单相全桥变换器以及安装在单相全桥变换器直流侧的储能电容ch。具体连接方式以a相为例介绍:各子模块sm
ai
(i=1~n)的单相全桥变换器t
11
的发射极与t
12
的集电极电连接在一起作为输出端口,t
21
的发射极和t
22
的集电极电连接在一起作为输入端口,储能电容ch的正极与t
11
、t
21
的集电极电连接,储能电容ch的负极与t
12
、t
22
的发射极电连接,子模块sm
a1
的输出端口串联滤波电感l后接入并网点,此并网点电压为子模块sm
a1
的输入端口电连接于子模块sm
a2
的输出端口,剩余子模块sm
ai
(i=3~n)分别以上一个子模块的输入端口电连接于下一个子模块的输出端口的方式依次串联,最后一个子模块sm
an
的输入端口电连接于方波电路单元中a相的交流输出端口。
[0046]
从整体上讲,前述多功能消弧变流器的控制方法可归结为:将多功能消弧变流器的调制分为方波电路单元调制和级联h桥整形电路单元调制,多功能消弧变流器的输出电压为由级联h桥整形电路单元输出的整形电压将方波电路单元输出的电压整形而成的正弦波,计算公式如下:
[0047][0048]
当配电网正常时,如图4所示,方波电路单元中npc变换器的n相封锁,多功能消弧变流器工作于无功补偿模式。
[0049]
当配电网发生单相接地故障时,如图5所示,多功能消弧变流器工作于消弧模式,其利用非故障相的一相或两相注入消弧电流以补偿配电网对地电容电流,从而抑制故障点的电流为0。
[0050]
下面详细阐述方波电路单元和级联h桥整形电路单元的调制过程。
[0051]
一、当配电网正常时,mf-asc中npc变换器的n相封锁,mf-asc工作于无功补偿模式,由于三相对称,下面以a相为例详细说明mf-asc调制过程。
[0052]
1)方波电路单元调制
[0053]
方波电路单元采用最近电平逼近控制,其npc变换器的n相封锁,a相、b相、c相配合,在一周期内方波电路单元输出的电压有u
dc
、0、-u
dc
三种电平。具体而言,如图6所示,设定多功能消弧变流器的输出参考电压为在的正半周期内,当大于方波电路单元直流侧储能电容c
t1
或c
t2
的电压时,即方波电路单元输出的电压为正电平电压u
dc
;在的负半周期内,当时,方波电路单元输出的电压为负电平电压-u
dc
,其他情况时,方波电路单元输出的电压为0。npc变换器的a相器件开关状态如下表1所示。
[0054]
表1三电平开关状态表
[0055]
[0056][0057]
2)级联h桥整形电路单元调制
[0058]
级联h桥整形电路单元采用单极性载波移相控制,其输出的整形参考电压由多功能消弧变流器的输出参考电压及方波电路单元输出的电压计算得到,如下式:
[0059][0060]
如图7所示,的标幺值作为每个子模块的调制波,每个子模块的三角载波相位依次相差π/n,级联h桥整形电路单元输出整形电压
[0061]
3)mf-asc混合调制
[0062]
如图8所示,mf-asc的调制策略分为方波电路单元调制和级联h桥整形电路单元调制两部分,级联h桥整形电路单元输出的整形电压将方波电路单元输出的高压三电平电压进行整形可得到mf-asc的输出电压如下式计算:
[0063][0064]
由于滤波电感l上压降较小,幅值近似等于并网点电压幅值。
[0065]
二、当配电网发生单相接地故障时,mf-asc利用非故障相的一相或两相注入消弧电流以补偿配电网对地电容电流,从而抑制故障点的电流为0,由于三相对称,下面以a相接地故障为例详细说明mf-asc调制过程。
[0066]
1)方波电路单元调制
[0067]
方波电路单元采用最近电平逼近控制,其n相与b、c相配合,在一周期内方波电路单元输出的电压有2u
dc
、u
dc
、0、-u
dc
、-2u
dc
五种电平。具体而言,如图9所示,设定多功能消弧变流器的输出参考电压为在的正半周期内,当与方波电路单元直流侧储能电容c
t1
或c
t2
的电压为时,方波电路单元输出的电压为正电平电压u
dc
,当时,方波电路单元输出的电压为正电平电压2u
dc
;在的负半周期内,当时,方波电路单元输出的电压为负电平电压-u
dc
,当时,方波电路单元输出的电压为正电平电压-2u
dc
;其他情况时,方波电路单元输出的电压为0。以n桥臂与b桥臂配合为例,其器件开关状态如表2所示。
[0068]
表2五电平开关状态表
[0069][0070]
2)级联h桥整形电路单元调制
[0071]
级联h桥整形电路单元采用单极性载波移相控制,其输出的整形参考电压由多功能消弧变流器的输出参考电压及方波电路单元输出的电压计算得到,如下式:
[0072][0073]
如图10所示,的标幺值作为每个子模块的调制波,每个子模块的三角载波相位依次相差π/n,级联h桥整形电路单元的b、c相输出整形电压
[0074]
3)mf-asc混合调制
[0075]
如图11所示,mf-asc的调制策略分为方波电路单元调制和级联h桥整形电路单元调制两部分,级联h桥整形电路单元输出的整形电压将方波电路单元输出的高压三电平电压进行整形可得到mf-asc的输出电压如下式计算:
[0076][0077]
由于滤波电感l上压降较小,幅值近似等于并网点电压幅值。
[0078]
为更好证明本发明所涉多功能消弧变流器及其控制方法的有效性,以下结合实例进行验证,以级联h桥整形电路单元子模块的电力电子器件耐压为1700v、直流侧电压uc=800v为例。在10kv配电网中,消弧装置在消弧期间承受线电压,峰值为14142v。传统的级联h桥型有源消弧装置每相需要h桥子模块数21个,则三相共需h桥子模块为63个。
[0079]
本发明提供的多功能变流器,其方波电路单元的电力电子器件耐压选6500v,直流侧电容电压u
dc1
=u
dc2
=4000v。在消弧期间方波电路单元最高承受电压为8000v,故级联h桥整形电路单元最大承受电压为6142v,因此mf-asc中级联h桥整形电路单元每相的子模块数为9个,三相共需子模块27个。
[0080]
综上,相比于传统的级联h桥型有源消弧装置,本发明所提mf-asc的混合拓扑结构大大降低了级联h桥子模块个数,电力电子器件和直流侧电容数量较少,有源装置的功率密
度、效率更高。
[0081]
上述实施例为本发明较佳的实现方案,除此之外,本发明还可以其它方式实现,在不脱离本技术方案构思的前提下任何显而易见的替换均在本发明的保护范围之内。
[0082]
为了让本领域普通技术人员更方便地理解本发明相对于现有技术的改进之处,本发明的一些附图和描述已经被简化,并且为了清楚起见,本技术文件还省略了一些其他元素,本领域普通技术人员应该意识到这些省略的元素也可构成本发明的内容。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献