一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

力传感器核查装置及力传感器核查方法与流程

2022-07-15 20:28:46 来源:中国专利 TAG:


1.本发明涉及力传感器核查技术领域,尤其涉及一种力传感器核查装置及力传感器核查方法。


背景技术:

2.依据国家或行业检测标准,需对汽车碰撞试验用力传感器和多轴力传感器定期进行期间核查,以保证汽车碰撞试验用力传感器在汽车碰撞试验过程中采集力或力矩的准确性,进而保证汽车碰撞试验的准确性。其中,汽车碰撞试验用力传感器是指汽车碰撞试验用假人力传感器,其广泛分布于各种正碰或侧碰试验用假人颈部、肩部、腹部、髂骨、耻骨、股骨及胫骨等部位,测量假人各部位在碰撞试验中所受到力或力矩、以评估车体结构及约束系统对乘员的保护情况。汽车碰撞试验用力传感器的期间核查是基于自身实际情况及实践经验评估汽车碰撞试验用力传感器的参数是否稳定的自查过程,由于汽车碰撞试验用力传感器在设计里需考虑其结构、质量和性能的适配,使得汽车碰撞试验用力传感器往往为异形传感器,需采用专用的核查装置才可以实现对汽车碰撞试验用力传感器进行期间核查。汽车碰撞试验用力传感器需定期核查(如6个月),若通过委托装配有核查装置的检测试验室进行期间核查,导致汽车碰撞试验用力传感器的期间核查的成本较高。


技术实现要素:

3.本发明实施例提供一种力传感器核查装置及力传感器核查方法,以解决汽车碰撞试验用力传感器进行期间核查过程中存在的成本较高的问题。
4.本发明提供一种力传感器核查装置,包括力传感器夹具、悬挂砝码、升降台和电机控制系统;包括夹具支架、传感器安装结构和传力连接件;所述夹具支架,包括第一支架、第二支架和力矩调节组件;所述力矩调节组件与所述第一支架和所述第二支架相连,用于调节所述第一支架和所述第二支架之间的相对距离;所述升降台和所述电机控制系统装配在所述第一支架上;所述传感器安装结构,装配在所述第一支架或者所述第二支架上,用于固定待测力传感器,以使所述待测力传感器测量力或力矩;所述传力连接件,与所述待测力传感器通过所述传感器安装结构相连;所述悬挂砝码,包括砝码托盘和标准砝码,所述砝码托盘与所述传力连接件相连,所述标准砝码挂载在所述砝码托盘上;所述升降台,设置在所述砝码托盘下方,与所述电机控制系统相连,用于在所述电机控制系统控制下进行升降,所述升降台上升时支撑所述悬挂砝码,下降时与所述悬挂砝码不接触。
5.优选地,所述夹具支架包括第一支架、第二支架和力矩调节组件;所述升降台和所述电机控制系统装配在所述第一支架上;所述力矩调节组件与所述第一支架和所述第二支架相连,用于调节所述第一支架和所述第二支架之间的相对距离。
6.优选地,所述传感器安装结构包括安装连接件、安装固定板、接合板组件和衔接固定组件;两个所述安装连接件平行相对设置在所述第一支架或者第二支架上;所述安装固定板与两个所述安装连接件相连,且所述安装固定板上设有衔接安装孔;所述接合板组件
和所述待测力传感器分别设置在所述安装固定板的两侧,且通过装配在所述衔接安装孔上的衔接固定组件相连;所述接合板组件与所述传力连接件相连。
7.优选地,所述接合板组件包括第一接合板、第二接合板和接合固定件;所述第一接合板包括第一板本体和从所述第一板本体延伸出的第一连接部,所述第一板本体上设置第一固定孔,所述第一连接部上设有第一连接孔;所述第二接合板包括第二板本体和从所述第二板本体延伸出的第二连接部,所述第二板本体上设有第二固定孔,所述第二连接部上设有第二连接孔;所述接合固定件装配在所述第一固定孔和所述第二固定孔内,用于实现所述第一接合板和所述第二接合板固定连接;所述第一接合板通过所述第一连接孔与所述待测力传感器相连,所述第二接合板通过所述第二连接孔与所述传力连接件相连。
8.优选地,所述传感器安装结构包括安装连接件、安装支撑件和传力连接管;两个所述安装连接件平行相对设置在所述第一支架或者第二支架上;所述安装支撑件与两个所述安装连接件相连,用于连接所述待测力传感器;所述传力连接管与所述待测力传感器和所述传力连接件相连。
9.优选地,所述传力连接件为传力支架,所述传力支架包括横向光轴、竖向光轴、连接光轴和光轴十字夹;所述横向光轴的两端各通过一个所述光轴十字夹与一所述竖向光轴相连,所述横向光轴与所述传感器安装结构相连;所述竖向光轴远离所述横向光轴的一端通过一所述光轴十字夹与一所述连接光轴相连,所述连接光轴与所述砝码托盘相连。
10.优选地,所述传力连接件为力杆连接组件,所述力杆连接组件包括加载力杆、固定光轴和光轴推止环;所述加载力杆与所述传感器安装结构相连,且所述加载力杆设有用于装配所述固定光轴的光轴通孔;两个所述光轴推止环装配在所述固定光轴上,分别位于所述加载力杆的光轴通孔两侧;所述固定光轴的末端与所述砝码托盘相连。
11.优选地,所述砝码托盘包括托盘本体、砝码限位杆和受力连接件;所述砝码限位杆设置在所述托盘本体的中心且所述托盘本体固定连接;所述标准砝码上设有与所述砝码限位杆相匹配的限位凹槽;所述受力连接件为矩形连接件,所述矩形连接件的底边与所述砝码限位杆远离所述托盘本体的一端相连,所述矩形连接件的左侧边和右侧边上相对设有连接凹槽,用于通过所述连接凹槽与所述传力连接件相连。
12.本发明提供一种力传感器核查方法,应用在上述力传感器核查装置上,包括:
13.将待测力传感器沿目标核查通道对应的方向装配在力传感器夹具上,在砝码托盘上挂载k个标准砝码,控制所述升降台升降n次,采集n个第一力信号值;
14.根据n个所述第一力信号值,获取第一力平均值;
15.根据所述砝码托盘上挂载的k个标准砝码,获取第一标准力值;
16.根据所述第一力平均值和所述第一标准力值,获取误差实测值;
17.根据所述误差实测值,获取测量误差核查结果。
18.本发明提供一种力传感器核查方法,应用在上述力传感器核查装置上,包括:
19.将待测力传感器沿目标核查通道对应的方向装配在力传感器夹具上,在砝码托盘上依次挂载h个标准砝码,控制升降台升降,依次采集w个第二力信号值,0≦h≦w-1;
20.根据每一所述第二力信号值和所述目标核查通道的计量灵敏度,确定每一所述第二力信号值对应的实测电压输出值;
21.根据每一所述第二力信号值采集过程中,所述砝码托盘上挂载的h个标准砝码,获
取每一所述第二力信号值对应的第二标准力值;
22.根据所述实测电压输出值和所述第二标准力值,获取每一所述第二力信号值对应的核查灵敏度;
23.根据所述计量灵敏度和w个所述第二力信号值对应的核查灵敏度,获取灵敏度实测值;
24.根据所述灵敏度实测值,获取灵敏度核查结果;
25.从w个所述第二力信号值对应的核查灵敏度中确定对比灵敏度,根据每一所述第二力信号值对应的第二标准力值和对比灵敏度,获取所述第二力信号值对应的拟合电压输出值;
26.根据w个所述第二力信号值对应的实测电压输出值和拟合电压输出值以及所述对比灵敏度对应的实测电压输出值,获取线性度实测值;
27.根据所述线性度实测值,获取线性度核查结果。
28.本发明提供一种力传感器核查方法,应用在上述力传感器核查装置上,包括:
29.将待测力传感器沿目标核查通道对应的方向装配在力传感器夹具上,在砝码托盘上挂载q个标准砝码,控制升降台升降,采集第三力信号值;
30.将待测力传感器沿关联核查通道对应的方向装配在力传感器夹具上,在砝码托盘上挂载q个标准砝码,控制升降台升降,采集第四力信号值;
31.获取所述目标核查通道的目标满量程和所述关联核查通道的关联满量程;
32.根据所述第三力信号值、所述第四力信号值、所述目标满量程和所述关联满量程,获取轴向串扰核查值;
33.根据所述轴向串扰核查值,获取轴向串扰核查结果。
34.本发明实施例提供力传感器核查装置及力传感器核查方法,在待测力传感器固定在力传感器夹具之后,将悬挂砝码与待测力传感器相连,再采用电机控制系统控制升降台升降,以实现对待测力传感器的卸载和加载,以使待测力传感器可以采集到悬挂砝码的重力,将所采集到的重力与依据悬挂砝码的质量确定的重力进行比较,从而确定待测力传感器是否满足期间核查的要求,该力传感器核查装置结构简单,操作方便,使得力传感器的期间核查无需通过专用检测试验室进行期间核查,有助于降低力传感器的期间核查成本。
附图说明
35.为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
36.图1是本发明一实施例中力传感器核查装置的一示意图;
37.图2是本发明一实施例中悬挂砝码的一示意图;
38.图3是本发明一实施例中力传感器核查装置的另一示意图;
39.图4是本发明一实施例中力传感器核查装置的另一示意图;
40.图5是本发明一实施例中接合板组件和衔接固定组件的一示意图;
41.图6是本发明一实施例中力传感器核查装置的另一示意图;
42.图7是本发明一实施例中力传感器核查装置的另一示意图;
43.图8是本发明一实施例中力传感器核查装置的另一示意图;
44.图9是本发明一实施例中力传感器核查装置的另一示意图;
45.图10是本发明一实施例中力传感器核查方法的一流程图;
46.图11是本发明一实施例中力传感器核查方法的另一流程图;
47.图12是本发明一实施例中力传感器核查方法的另一流程图。
48.图中:10、力传感器夹具;11、夹具支架;111、第一支架;112、第二支架;113、力矩调节组件;12、传感器安装结构;121、安装连接件;122、安装固定板;123、接合板组件;1231、第一接合板;1232、第二接合板;124、衔接固定组件;1241、连接销;1242、连接垫片;1243、衬套;1244、缓冲橡胶块;125、安装支撑件;126、传力连接管;13、传力连接件;131、传力支架;1311、横向光轴;1312、竖向光轴;1313、连接光轴;1314、光轴十字夹;132、力杆连接组件;1321、加载力杆;1322、固定光轴;1323、光轴推止环;20、悬挂砝码;21、砝码托盘;211、托盘本体;212、砝码限位杆;213、受力连接件;22、标准砝码;221、限位凹槽;30、升降台;40、电机控制系统;50、待测力传感器。
具体实施方式
49.为了使本发明所解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
50.在本发明的描述中,需要理解的是,术语“纵向”、“径向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。
51.在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
52.一般来说,在汽车碰撞试验领域中,需使用到不同假人型号的汽车碰撞试验用假人,这些假人型号的汽车碰撞试验用假人的不同部位上设有不同的力传感器,每一个力传感器需进行期间核查的核查通道不同,此处的核查通道是指在特定方向上的力或力矩。例如,在常规使用的四种假人型号hybrid iii 50th、hybrid iii 5th、es2和worldsid 50th,其力传感器类型以及核查通道的力或力矩所形成的力传感器核查通道矩阵如下表一所示,表一中,f为力,m为力矩,x/y/z指方向,如fx是指x方向上的力,mx是指x方向的力矩。
53.表一力传感器核查通道矩阵
[0054][0055]
本发明实施例提供一种力传感器核查装置,如图1所示,力传感器核查装置包括力传感器夹具10、悬挂砝码20、升降台30和电机控制系统40;力传感器夹具10,包括夹具支架11、传感器安装结构12和传力连接件13;传感器安装结构12安装在夹具支架11上,用于固定待测力传感器50;传力连接件13与待测力传感器50通过传感器安装结构12相连;悬挂砝码20,包括砝码托盘21和标准砝码22,砝码托盘21与砝码托盘21相连,标准砝码22挂载在砝码托盘21上;升降台30,设置在砝码托盘21下方,与电机控制系统40相连,用于在电机控制系统40控制下进行升降,升降台30上升时支撑悬挂砝码20,下降时与悬挂砝码20不接触。
[0056]
其中,力传感器夹具10是用于固定待测力传感器50的夹具。待测力传感器50是指本次期间核查所需检测的力传感器,即本次期间核查所需检测的汽车碰撞试验用力传感器。力传感器夹具10,包括夹具支架11、传感器安装结构12和传力连接件13。夹具支架11是用于支承传感器安装结构12的支架,以保障传感器安装结构12安装固定的待测力传感器50位于悬挂砝码20的上方,从而使得升降台30进行升降,可实现对待测力传感器50的卸载和加载。传感器安装结构12是用于实现连接待测力传感器50和夹具支架11,以实现将待测力传感器50固定在夹具支架11的目的。传力连接件13与待测力传感器50通过传感器安装结构12相连,并与砝码托盘21相连,以使待测力传感器50可以测量悬挂砝码20的重力,有助于保障对待测力传感器50进行期间核查的可行性。
[0057]
本示例中,如图3所示,夹具支架11包括第一支架111、第二支架112和力矩调节组件113;力矩调节组件113与第一支架111和第二支架112相连,用于调节第一支架111和第二支架112之间的相对距离,从而实现力矩调节;升降台30和电机控制系统40装配在第一支架111上。
[0058]
升降台30和电机控制系统40装配在第一支架111上,在需要对待测力传感器50在特定方向的力对应的核查通道进行期间核查时,可将待测力传感器50装配在第一支架111上;在需要对待测力传感器50在特定方向的力矩对应的核查通道进行期间核查时,可将待测力传感器50装配在第二支架112上,通过调节第一支架111和第二支架112之间的相对距离,以方便进行力矩调节,有助于保障对待测力传感器50的特定核查通道进行期间核查操作的可行性,使其操作过程更简单方便。
[0059]
其中,悬挂砝码20是用于悬挂在待测力传感器50下的砝码组件,包括砝码托盘21
和至少一个标准砝码22,砝码托盘21与砝码托盘21相连,标准砝码22挂载在砝码托盘21上。
[0060]
其中,升降台30是可以进行上升或下降操作的平台。电机控制系统40是可以控制升降台30进行往复进行上升或下降的电机控制系统40。
[0061]
本示例中,在需要对待测力传感器50进行期间核查时,先将待测力传感器50装配在力传感器夹具10上并固定;再将待测力传感器50的主要受力点与砝码托盘21相连,并根据实际需要确定在砝码托盘21上挂载数量不同的标准砝码22;接着,采用电机控制系统40控制升降台30上升,使得升降台30与砝码托盘21的底部接触,使得悬挂砝码20的重力完全由升降台30支撑,此时,待测力传感器50不检测到悬挂砝码20的重力,即检测到悬挂砝码20的力为0,实现对待测力传感器50的卸载;再采用电机控制系统40控制升降台30下降,使得升降台30与砝码托盘21的底部不接触,使得悬挂砝码20的重力完全由待测力传感器50承担,即待测力传感器50检测到的力为悬挂砝码20的重力,实现对待测力传感器50的加载。
[0062]
由于物体的重力为物体的质量与重力加速度的乘积,在悬挂砝码20的砝码托盘21和标准砝码22的质量确定的情况下,可将根据质量与重力加速度的乘积确定的重力,与待测力传感器50检测到的重力进行比较,确定待测力传感器50是否满足期间核查的要求。
[0063]
本发明实施例提供一种力传感器核查装置中,在待测力传感器50固定在力传感器夹具10之后,将悬挂砝码20与待测力传感器50相连,再采用电机控制系统40控制升降台30升降,以实现对待测力传感器50的卸载和加载,以使待测力传感器50可以采集到悬挂砝码20的重力,将所采集到的重力与依据悬挂砝码20的质量确定的重力进行比较,从而确定待测力传感器50是否满足期间核查的要求,该力传感器核查装置结构简单,操作方便,使得力传感器的期间核查无需通过专用检测试验室进行期间核查,有助于降低力传感器的期间核查成本。
[0064]
在一实施例中,如图2所示,砝码托盘21包括托盘本体211、砝码限位杆212和受力连接件213;砝码限位杆212设置在托盘本体211的中心且托盘本体211固定连接;标准砝码22上设有与砝码限位杆212相匹配的限位凹槽221;受力连接件213为矩形连接件,矩形连接件的底边与砝码限位杆212远离托盘本体211的一端相连,矩形连接件的左侧边和右侧边上相对设有连接凹槽,通过连接凹槽与传力连接件13相连。
[0065]
其中,托盘本体211是用于支承标准砝码22的部件。砝码限位杆212是用于实现对放置在托盘本体211上的标准砝码22进行限位的连接杆。受力连接件213是用于实现连接待测力传感器50的连接件。
[0066]
本示例中,砝码限位杆212设置在托盘本体211的中心且托盘本体211固定连接,而标准砝码22上设有与砝码限位杆212相匹配的限位凹槽221,使得标准砝码22可沿其限位凹槽221装配在砝码托盘21的砝码限位杆212上,以保障砝码托盘21和标准砝码22的重心重合,避免重力偏移影响检测的准确性。砝码限位杆212与托盘本体211固定,具体可以是在生产过程中将砝码限位杆212与托盘本体211一体成型,也可以是实际应用中采用焊接或者其他方式固定。
[0067]
本示例中,受力连接件213与砝码限位杆212远离托盘本体211的一端相连,用于连接待测力传感器50,以使待测力传感器50与整个悬挂砝码20相连。
[0068]
作为一示例,受力连接件213为矩形连接件,矩形连接件的底边与砝码限位杆212远离托盘本体211的一端相连,具体为矩形连接件的底边外侧延伸出两个平行相对设置的
第一安装块,每一第一安装块设有第一装配孔;砝码限位杆212远离托盘本体211的一末端设有第二装配孔,砝码限位杆212装配在两个第一安装块之间,采用第一连接轴穿过第一装配孔和第二装配孔,并将第一连接轴固定在两个第一安装块上,以实现受力连接件213与砝码限位杆212可活动连接,以使受力连接件213与待测力传感器50相连时,可在自身重力作用下,实现受力连接件213与砝码限位杆212的角度调整。
[0069]
相应地,受力连接件213为矩形连接件,矩形连接件的左侧边和右侧边上设有连接凹槽,用于通过连接凹槽与传力连接件13相连。
[0070]
作为一示例,夹具支架11仅包括第一支架111,升降台30和电机控制系统40装配在第一支架111上,使得传感器安装结构12安装在第一支架111上,用于实现对待测力传感器50在特定方向的力对应的核查通道进行期间核查。
[0071]
在一实施例中,如图3和图4所示,传感器安装结构12包括安装连接件121、安装固定板122、接合板组件123和衔接固定组件124;两个安装连接件121平行相对设置在第一支架111或者第二支架112上;安装固定板122与两个安装连接件121相连,且安装固定板122上设有衔接安装孔;接合板组件123和待测力传感器50分别设置在安装固定板122的两侧,且通过装配在衔接安装孔上的衔接固定组件124相连;接合板组件123与传力连接件13相连。
[0072]
其中,安装连接件121是用于安装在夹具支架11上的连接件。安装固定板122是设置在两个安装连接件121上的固定板,是用于支承固定待测力传感器50的固定板。接合板组件123是用于与待测力传感器50相连,以实现受力方向转变的组件。衔接固定组件124是用于实现连接接合板组件123和待测力传感器50的组件。
[0073]
本示例中,在需要对特定方向的力对应的核查通道进行期间核查时,可将传感器安装结构12装配在第一支架111或者第二支架112上,具体将两个安装连接件121平行相对设置在第一支架111或者第二支架112上,使得装配在第一支架111或者第二支架112上的电机控制系统40控制升降台30进行升降,以实现对特定方向的力对应的核查通道进行期间核查。一般来说,在需要对特定方向的力的核查通道进行核查时,将两个安装连接件121平行相对设置在第一支架111上;在需要对特定方向的力矩进行核查时,将两个安装连接件121平行相对设置在第二支架112上。
[0074]
具体地,将安装固定板122装配在两个安装连接件121上,再将接合板组件123和待测力传感器50分别设置在安装固定板122的两侧,再通过装配在衔接安装孔的衔接固定组件124相连。衔接固定组件124可以采用常规的螺母螺栓组件,也可以采用图5所示的连接销1241、连接垫片1242、衬套1243以及缓冲橡胶块1244配合形成的组件,只需实现将接合板组件123和待测力传感器50固定连接即可。
[0075]
作为一示例,如图4a和图4b所示,安装连接件121为沿竖直方向设置的一字型连接件,安装固定板122与两个安装连接件121相连,以使安装固定板122沿竖直方向设置,接合板组件123和待测力传感器50分别设置在安装固定板122的两侧,且通过装配在衔接安装孔上的衔接固定组件124相连;再通过接合板组件123与传力连接件13相连,将传力连接件13与悬挂砝码20的砝码托盘21相连,最后,采用电机控制系统40控制升降台30进行升降,以实现对x方向或者y方向的力对应的核查通道进行期间核查,即用于实现对fx或者fy对应的核查通道进行期间核查,例如,hybrid iii 50th假人型号的上颈部力传感器的fx或者fy对应的核查通道进行期间核查。
[0076]
作为另一示例,如图4c所示,安装连接件121为沿竖直方向设置的t字型连接件,安装固定板122与两个安装连接件121水平方向的部位相连,以使安装固定板122沿水平方向设置,接合板组件123和待测力传感器50分别设置在安装固定板122的两侧,且通过装配在衔接安装孔上的衔接固定组件124相连;再通过接合板组件123与传力连接件13相连,将传力连接件13与悬挂砝码20的砝码托盘21相连,最后,采用电机控制系统40控制升降台30进行升降,以实现对z方向的力对应的核查通道进行期间核查,即用于实现对fz核查通道进行期间核查,例如,hybrid iii 50th假人型号的上颈部力传感器的fz对应的核查通道进行期间核查。
[0077]
在一实施例中,如图5所示,接合板组件123包括第一接合板1231、第二接合板1232和接合固定件(图中未示出);第一接合板1231包括第一板本体和从第一板本体延伸出的第一连接部,第一板本体上设置第一固定孔,第一连接部上设有第一连接孔;第二接合板1232包括第二板本体和从第二板本体延伸出的第二连接部,第二板本体上设有第二固定孔,第二连接部上设有第二连接孔;接合固定件装配在第一固定孔和第二固定孔内,用于实现第一接合板1231和第二接合板1232固定连接;第一接合板1231通过第一连接孔与待测力传感器50相连,第二接合板1232通过第二连接孔与传力连接件13相连。
[0078]
本示例中,第一接合板1231的第一连接部上设有一个第一连接孔,第一板本体上均匀设置多个第一固定孔,第一连接孔的孔径方向相对于多个第一固定孔的孔径方向唯一确定;第二接合板1232的第二连接部上设有一个第二连接孔,第二板本体上均匀设置多个第二固定孔,第二连接孔的孔径方向相对于多个第二固定孔的孔径方向唯一确定,可通过将接合固定件装配在不同的第一固定孔和第二固定孔内,使得第一连接孔和第二连接孔的孔径方向相互垂直或平行,以实现正交衔接,由于第一连接孔和第二连接孔分别与待测力传感器50和传力连接件13相连,从而实现可在同一平面上对两个方向对应的核查通道进行核查。
[0079]
在一实施例中,如图4c和图6所示,传力连接件13为传力支架131,传力支架131包括横向光轴1311、竖向光轴1312、连接光轴1313和光轴十字夹1314;横向光轴1311的两端各通过一个光轴十字夹1314与一竖向光轴1312相连,横向光轴1311与传感器安装结构12相连;竖向光轴1312远离横向光轴1311的一端通过一光轴十字夹1314与一连接光轴1313相连,连接光轴1313与砝码托盘21相连。
[0080]
作为一示例,在接合板组件123与传力连接件13相连时,具体为接合板组件123与传力支架131的横向光轴1311相连,更具体为第二接合板1232通过第二连接孔与传力连接件13上的横向光轴1311相连。在装配时,可将传力连接件13上的横向光轴1311穿过第二连接孔,再在横向光轴1311的两端采用光轴十字夹1314固定竖向光轴1312和连接光轴1313,进而将连接光轴1313与砝码托盘21的受力连接件213相连,具体将连接光轴1313装配在受力连接件213的左侧边和右侧边上相对设置的连接凹槽内。
[0081]
本示例中,采用光轴十字夹1314实现横向光轴1311、竖向光轴1312和连接光轴1313之间的相互连接,利用光轴十字夹1314这种紧固件拆装方便的特点,使得整个传力支架131连接传感器安装结构12和砝码托盘21的连接过程更简单方便,有助于提高操作的使得性。
[0082]
在一实施例中,如图3和图9所示,传力连接件13为力杆连接组件132,力杆连接组
件132包括加载力杆1321、固定光轴1322和光轴推止环1323;加载力杆1321与传感器安装结构12相连,且加载力杆1321设有用于装配固定光轴1322的光轴通孔;两个光轴推止环1323装配在固定光轴1322上,分别位于加载力杆1321的光轴通孔两侧;固定光轴1322的末端与砝码托盘21相连。
[0083]
一般来说,在两个安装连接件121平行相对设置在第二支架112上,即需要核查特定方向的力矩的核查通道时,需采用力杆连接组件132作为传力连接件13,即需将加载力杆1321的一端与传感器安装结构12相连,另一端通过固定光轴1322和光轴推止环1323与砝码托盘21相连,具体与砝码托盘21的受力连接件213相连,即固定光轴1322的两端装配在受力连接件213的左侧边和右侧边上相对设置的连接凹槽内。
[0084]
在一实施例中,如图6-图8所示,传感器安装结构12包括安装连接件121、安装支撑件125和传力连接管126;两个安装连接件121平行相对设置在第一支架111或者第二支架112上;安装支撑件125与两个安装连接件121相连,用于连接待测力传感器50;传力连接管126与待测力传感器50和传力连接件13相连。
[0085]
其中,安装连接件121是用于安装在夹具支架11上的连接件。安装支撑件125是设置在两个安装连接件121上的支撑件,是用于支承固定待测力传感器50的支撑件。传力连接管126是用于连接待测力传感器50和传力连接件13的管状结构。
[0086]
本示例中,在需要对特定方向的力这一核查通道进行期间核查过程中,可将传感器安装结构12装配在第一支架111或者第二支架112上,具体将两个安装连接件121平行相对设置在第一支架111或者第二支架112上,使得装配在第一支架111或者第二支架112上的电机控制系统40控制升降台30进行升降,以实现对特定方向的力对应的核查通道进行期间核查。一般来说,在需要对特定方向的力的核查通道进行核查时,将两个安装连接件121平行相对设置在第一支架111上;在需要对特定方向的力矩进行核查时,将两个安装连接件121平行相对设置在第二支架112上。
[0087]
作为一示例,安装连接件121为沿竖直方向设置的l字型连接件,安装支撑件125沿水平方向固定在l字型连接件的水平方向的部分。例如,v如图6和图8所示,安装连接件121可以为安装连接杆,安装连接杆的两端各通过一个安装固定块与安装连接件121相连,待测力传感器50与安装连接杆相连。又例如,如图7所示,安装连接件121可以为安装连接板,安装连接板的两端各通过一个安装固定块与安装连接件121相连,安装连接板与待测力传感器50固定连接。
[0088]
作为一示例,传力连接管126是用于连接待测力传感器50和传力连接件13的管状结构,即该传力连接管126为中空的管状结构,可将传力连接管126的一端装配在待测力传感器50上并固定,另一端与传力连接件13相连,以通过传力连接件13实现与悬挂砝码20相连。例如,如图6-图8所示,在传力连接件13为传力支架131时,将传力连接管126的一端与待测力传感器50相连,另一端上开设用于供传力支架131的横向光轴1311通过的光轴通孔,以实现传力连接管126和传力支架131相连。又例如,如图9所示,在传力连接件13为力杆连接组件132时,将待测力传感器50伸入传力连接管126的一末端,并将加载力杆1321伸入传力连接管126的另一末端。
[0089]
本发明实施例还提供一种力传感器核查方法,用于实现对汽车碰撞试验用力传感器进行期间核查,具体通过将汽车碰撞试验用力传感器装配在力传感器夹具10上,使得汽
车碰撞试验用力传感器的主要受力点与悬挂砝码20对接;采用电机控制系统40控制设置在砝码托盘21下方的升降台30进行升降,进而实现使升降台30上方的悬挂砝码20反复对汽车碰撞试验用力传感器进行加载或卸载动作;通过与汽车碰撞试验用力传感器相连的数据采集系统获取力信号值,以便利用采集到的力信号值完成对汽车碰撞试验用力传感器的期间核查,具体为对汽车碰撞试验用力传感器的测量误差、灵敏度和线性度的期间核查,还可以包括轴向间串扰度的期间核查,以确保汽车碰撞试验用力传感器的质量。
[0090]
由于汽车碰撞试验用力传感器的主要受力点与悬挂砝码20对接,与汽车碰撞试验用力传感器所采集到的力信号值为悬挂砝码20的重力,而悬挂砝码20的重力与其质量相关,因此,需获取悬挂砝码20的标准质量,该标准质量一般为通过第三方计量机构进行质量标定后确定的质量。本示例中,悬挂砝码20包括砝码托盘21和标准砝码22,该标准砝码22的数量可以根据实际需求设置。本实施例中,将标准砝码22的数量设置为9个,则悬挂砝码20的标准质量如表二所示
[0091]
表二悬挂砝码20的标准质量
[0092]
标准物质名称标准质量(kg)标准物质名称标准质量(kg)砝码托盘mt=2.493标准砝码5m5=2.494标准砝码1m1=2.498标准砝码6m6=2.501标准砝码2m2=2.495标准砝码7m7=2.495标准砝码3m3=2.497标准砝码8m8=2.497标准砝码4m4=2.495标准砝码9m9=2.500
[0093]
本实施例中,为保证测试环境符合汽车碰撞试验用假人的使用条件,对汽车碰撞试验用力传感器进行期间核查的环境温度需保持在20.6℃-22.0℃、环境湿度需保持在10%-70%;且为保证换算精度,重力加速度(g)值应尽量根据测试地点经纬度确定,如:测试地点为广州时,g=9.78823n/kg,从而从客观环境上保障测试的准确性。
[0094]
在一实施例中,如图10所示,本实施例所提供的力传感器核查方法,应用在上述力传感器核查装置上,该力传感器核查方法可实现对力传感器的测量误差进行核查,具体包括如下步骤:
[0095]
s11:将待测力传感器沿目标核查通道对应的方向装配在力传感器夹具上,在砝码托盘上挂载k个标准砝码,控制升降台升降n次,采集n个第一力信号值。
[0096]
其中,待测力传感器50是指本次期间核查所需检测的力传感器,即本次期间核查所需检测的汽车碰撞试验用力传感器。本示例中,待测力传感器50可以为表一所示的九种力传感器中的任一种,如假人型号为hybrid iii 50th上的力传感器上颈部力传感器、力传感器大腿力传感器、力传感器上胫骨力传感器、力传感器下胫骨力传感器;如假人型号为hybrid iii 5th上的力传感器上颈部力传感器和力传感器髂骨力传感器;如假人型号为es2上的力传感器腹部力传感器和力传感器耻骨力传感器;如假人型号为worldsid 50th上的力传感器肩部力传感器和力传感器耻骨力传感器等。
[0097]
其中,目标核查通道是指本次期间核查所需检测的核查通道。一般来说,需依次对待测力传感器50的每一核查通道进行期间核查,本实施例中,将当前执行力传感器核查方法进行期间核查对应的核查通道确定为目标核查通道。本示例中,目标核查通道是指本次期间核查需要核查的特定方向的力或力矩。
[0098]
其中,第一力信号值是在砝码托盘21上挂载有k个标准砝码22时,与待测力传感器50相连的数据采集系统实时采集到的力信号值。
[0099]
作为一示例,在对待测力传感器50的目标核查通道进行期间核查过程中,需将待测力传感器50在目标核查通道对应的方向沿竖直方向设置,使其与悬挂砝码20的加载方向一致,以保证待测力传感器50测量与其相连的悬挂砝码20的准确性,提高待测力传感器50期间核查的准确性。接着,在与待测力传感器50的主要受力点相连的砝码托盘21上挂载k个标准砝码22,再采用电机控制系统40控制设置在砝码托盘21下方的升降台30进行加载测量数据,即控制升降台30往复升降,从而实现悬挂砝码20对待测力传感器50的卸载或加载,每次加载均可采集到一个第一力信号值;因此,可控制升降台30往复升降加载n次,即可采集到n个第一力信号值,以便基于n个第一力信号值进行测量误差核查,获取测量误差核查结果。
[0100]
可理解地,由于第一力信号值是指在砝码托盘21上挂载k个标准砝码22时,采用电机控制系统40控制设置在砝码托盘21下方的升降台30进行升降,以获取待测力传感器50处于加载状态时,待测力传感器50采集到的信号值。本示例中,n个第一力信号值均为在砝码托盘21上挂载k个标准砝码22时采集到的力信号值,即n个第一力信号值采集过程中其他外界因素均一致,则其测量所得的n个第一力信号值,与挂载在砝码托盘21上的k个标准砝码22所形成的悬挂砝码20的总重力相关,可根据n个第一力信号值与挂载在砝码托盘21上的k个标准砝码22所形成的悬挂砝码20的总重力,确定所测量到的n个第一力信号值的误差实测值是否符合相应检测标准对应的误差核查阈值,从而获取测量误差核查结果。误差实测值是根据n个第一力信号值与悬挂砝码20的总重力之间计算误差所确定的核查值。误差核查阈值是预先设置的用于评估测量误差核查是否合格的阈值。
[0101]
s12:根据n个第一力信号值,获取第一力平均值。
[0102]
其中,第一力平均值是指根据n个第一力信号值进行平均计算所确定的平均值。
[0103]
作为一示例,可采用平均值计算公式对n个第一力信号值进行平均值计算,获取n个第一力信号值对应的第一力平均值。本示例中,平均值计算公式为其中,tai为第i个第一力信号值,为第一力平均值,1≤i≤n。由于目标核查通道为x、y和z这三个方向的力f或力矩m,上述平均值计算公式中,t为目标核查通道中所需测量的力f或力矩m,a为目标核查通道所需测量的方向x、y或z,即tai包括fxi、fyi、fzi、mxi、myi和mzi,包括和例如,
[0104]
例如,在对假人型号为hybrid iii 50th上的力传感器上颈部力传感器的目标核查通道fx进行测量误差核查过程中,需将力传感器上颈部力传感器的x方向沿竖直方向设置,使得力传感器上颈部力传感器的x方向与悬挂砝码20的加载方向一致;可在与待测力传感器50的主要受力点相连的砝码托盘21上挂载k个标准砝码22,如k可以设置为3个;再采用电机控制系统40控制设置在砝码托盘21下方的升降台30进行加载测量数据,即控制升降台30往复升降,以通过悬挂砝码20实现对待测力传感器50的卸载或加载,每次加载均可采集到一个第一力信号值fxi,fxi为tai的一个具体示例;因此,可控制升降台30往复升降加载10次,即可采集到10个第一力信号值fxi如下表三所示,
[0105]
表三第一力信号值fxi
[0106][0107][0108]
本示例中,在fxi为tai时,为则平均值计算公式为即需采用对n个第一力信号值fxi进行平均值计算,获取n个第一力信号值fxi对应的第一力平均值个第一力信号值fxi对应的第一力平均值为的一个具体示例,如采用表三所示的10个第一力信号值fxi计算所确定的第一力平均值
[0109]
s13:根据砝码托盘上挂载的k个标准砝码,获取第一标准力值。
[0110]
作为一示例,在目标核查通道为核查特定方向的力时,第一标准力值是根据挂载在砝码托盘21上的k个标准砝码22所形成的悬挂砝码20的总质量进行换算所确定的重力值。由于重力=质量*重力加速度,可以根据砝码托盘21上挂载k个标准砝码22形成的悬挂砝码20的总质量与重力加速度的乘积,确定为第一标准力值。本示例中,在目标核查通道为核查特定方向的力时,其第一标准力值计算公式为其中,f1为第一标准力值,mt为砝码托盘21的标准质量,mk为第k个标准砝码22的标准质量,1≤k≤k,g为重力加速度。
[0111]
例如,在上述目标核查通道fx的测量误差核查示例中,在第一力信号值fxi采集过程中,在与待测力传感器50相连的砝码托盘21上挂载k=3个标准砝码22时,则其所形成的悬挂砝码20的总质量为砝码托盘21的质量与k=3个标准砝码22的质量之和,因此,根据悬挂砝码20上挂载的k个标准砝码22,获取第一标准力值f1=(mt m1 m2 m3)*g=9.983
×
9.78823=97.71590009n,其中,mt、m1、m2和m3分别为砝码托盘21、标准砝码22、标准砝码22和标准砝码22的标准质量。
[0112]
作为另一示例,在目标核查通道为核查特定方向的力矩时,第一标准力值是根据挂载在砝码托盘21上的k个标准砝码22所形成的悬挂砝码20的总质量进行换算所确定的重力值,根据重力值与加载力杆1321的长度的乘积确定的标准值。即在目标核查通道为核查特定方向的力矩时,其第一标准力值计算公式为其中,f1为第一标准力值,mt为砝码托盘21的标准质量,mk为第k个标准砝码22的标准质量,1≤k≤k,g为
重力加速度,lm为加载力杆1321的长度。
[0113]
s14:根据第一力平均值和第一标准力值,获取误差实测值。
[0114]
作为一示例,误差实测值是指根据第一力平均值和第一标准力值计算确定的误差值,可采用en表示。可以采用误差实测值计算公式对第一力平均值和第一标准力值f1之间进行计算,确定误差实测值en,本示例中,误差实测值计算公式为δ=f*f1,δ为目标核查通道的最大允许误差,f为依据国家或行业检测标准,确定的汽车碰撞试验用力传感器的非线性误差的最大值。
[0115]
例如,上述目标核查通道fx的测量误差核查示例中,依据国家或行业检测标准,确定的汽车碰撞试验用力传感器的非线性误差的最大值f为1.0%,则根据δ=f*f1计算目标核查通道的最大允许误差δ=f*f1=0.977159001n;接着,采用计算误差实测值en,则
[0116]
s15:根据误差实测值,获取测量误差核查结果。
[0117]
作为一示例,可将误差实测值en与误差核查阈值进行比较;若误差实测值en小于或等于误差核查阈值,则表明待测力传感器50在目标核查通道上进行测量误差核查合格,获取核查合格的测量误差核查结果;若误差实测值en大于误差核查阈值,则表明待测力传感器50在目标核查通道上进行测量误差核查不合格,获取核查不合格的测量误差核查结果。其中,误差核查阈值是预先设置的用于评估测量误差核查是否合格的阈值。
[0118]
例如,上述目标核查通道fx的测量误差核查示例中,设误差核查阈值为1,由于误差实测值en小于1,则表明待测力传感器50在目标核查通道上核查合格,获取核查合格的测量误差核查结果。
[0119]
本实施例所提供的力传感器核查方法中,可根据待测力传感器50采集在砝码托盘21上挂载k个标准砝码22时重复采集的n个第一力信号值,以及砝码托盘21和k个标准砝码22对应的第一标准力值,确定其对应的误差实测值,进而获取测量误差核查结果,使得测量误差核查过程操作简单,计算方便,无需通过专业的检测试验室即可实现测量误差核查,有助于节省测量误差核查的成本。
[0120]
在一实施例中,如图11所示,本实施例所提供的力传感器核查方法,应用在上述力传感器核查装置上,该力传感器核查方法可实现对力传感器的灵敏度和线性度核查进行核查,具体包括如下步骤:
[0121]
s21:将待测力传感器沿目标核查通道对应的方向装配在力传感器夹具上,在砝码托盘上依次挂载h个标准砝码,控制升降台升降,依次采集w个第二力信号值,0≦h≦w-1。
[0122]
其中,第二力信号值是在砝码托盘21上挂载有h个标准砝码22时,与待测力传感器50相连的数据采集系统实时采集到的力信号值。
[0123]
作为一示例,在对待测力传感器50的目标核查通道进行期间核查过程中,需将待测力传感器50的目标核查通道对应的方向沿竖直方向设置,使其与悬挂砝码20的加载方向一致,以保证待测力传感器50测量与其相连的悬挂砝码20的准确性,提高待测力传感器50
期间核查的准确性。接着,在与待测力传感器50的主要受力点相连的砝码托盘21上挂载0个标准砝码22,即在待测力传感器50只挂载砝码托盘21的情况下,采集到第1个第二力信号值;再在与待测力传感器50的主要受力点相连的砝码托盘21上挂载1个标准砝码22,以采集到第2个第二力信号值
……
依此类推,在与待测力传感器50的主要受力点相连的砝码托盘21上挂载w-1个标准砝码22,以采集到第w个第二力信号值,以便基于w个第二力信号值进行灵敏度线性度核查,获取灵敏度核查结果和线性度核查结果。
[0124]
可理解地,由于第二力信号值是指砝码托盘21上挂载h个标准砝码22时,采用电机控制系统40控制设置在砝码托盘21下方的升降台30进行升降,以获取待测力传感器50处于加载状态时,待测力传感器50采集到的信号值。本示例中,w个第二力信号值分别为挂载0到w-1个标准砝码22时待测力传感器50采集到的力信号值,即w个第二力信号值所加载的标准砝码22的数量依次增加,相应地,由砝码托盘21和h个标准砝码22所形成的悬挂砝码20的总重力也依次增加,根据w个第二力信号值的变化值与悬挂砝码20的w个不同总重力之间的变化值,确定待测力传感器50的灵敏度实测值,再判断灵敏度实测值是否满足其对应的灵敏度核查阈值,从而获取灵敏度核查结果。
[0125]
s22:根据每一第二力信号值和目标核查通道的计量灵敏度,确定每一第二力信号值对应的实测电压输出值。
[0126]
其中,目标核查通道的计量灵敏度是指在对待测力传感器50在对目标核查通道进行本次期间核查之间,最近一次期间核查所确定的灵敏度。实测电压输出值是指根据第二力信号值和计量灵敏度进行计算,所确定的电压输出值。
[0127]
作为一示例,可采用实测电压输出值计算公式对每个第二力信号值和计量灵敏度进行计算,确定第二力信号值对应的实测电压输出值。本示例中,实测电压输出值计算公式为vbj=tbj*sb,vbj为第j个第二力信号值对应的实测电压输出值,tbj为第j个第二力信号值,sb为待测力传感器50在目标核查通道的最近一次计量灵敏度,1≤j≤w。由于目标核查通道为x、y和z这三个方向的力f或力矩m,上述实测电压输出值计算公式中,t为目标核查通道中所需测量的力f或力矩m,b为目标核查通道所需测量的方向x、y或z,即tbj分别为fxj、fyj、fzj、mxj、myj和mzj,sb分别为s
fx
、s
fy
、s
fz
、s
mx
、s
my
和s
mz
,相应地,vbj分别为v
fx
j、v
fy
j、v
fz
j、v
mx
j、v
my
j和v
mz
j,例如,v
fx
j=fxj*s
fx

[0128]
例如,在对假人型号为hybrid iii 50th上的力传感器上颈部力传感器的目标核查通道fx进行灵敏度核查过程中,需将力传感器上颈部力传感器的x方向沿竖直方向设置,使得力传感器上颈部力传感器的x方向与悬挂砝码20的加载方向一致。接着,先在与待测力传感器50的主要受力点相连的砝码托盘21上挂载0个标准砝码22,即在待测力传感器50只挂载砝码托盘21的情况下,采集到第1个第二力信号值fxj;再在与待测力传感器50的主要受力点相连的砝码托盘21上挂载1个标准砝码22,以采集到第2个第二力信号值fxj
……
依此类推,在与待测力传感器50的主要受力点相连的砝码托盘21上挂载9个标准砝码22,以采集到第10个第二力信号值fxj,所采集到的10个第二力信号值fxj如表四所示。
[0129]
例如,对假人型号为hybrid iii 50th上的力传感器上颈部力传感器的目标核查通道fx时,查询获取该待测力传感器50的计量灵敏度为s
fx
=0.000966416mv/n,则依据待测力传感器50的目标核查通道fx采集到的第二力信号值fxj和计量灵敏度s
fx
,确定第二力信号值fxj对应的实测电压输出值v
fx
j=fxj*s
fx
,其结果如表四所示。
[0130]
s23:根据每一第二力信号值采集过程中,砝码托盘上挂载的h个标准砝码,获取每一第二力信号值对应的第二标准力值。
[0131]
其中,第二标准力值是根据挂载在砝码托盘21上的h个标准砝码22所形成的悬挂砝码20的总质量进行换算所确定的重力值。
[0132]
作为一示例,由于重力=质量*重力加速度,可以根据砝码托盘21上挂载h个标准砝码22形成的悬挂砝码20的总质量与重力加速度的乘积,确定为第二标准力值。本示例中,在目标核查通道为核查特定方向的力时,其第二标准力值计算公式为其中,f2j为第j个第二力信号值tbj对应的第二标准力值,mt为砝码托盘21的标准质量,mh为第h个标准砝码22的标准质量,1≤j≤w,0≤h≤h=w-1。
[0133]
例如,上述目标核查通道fx的灵敏度核查中,在目标核查通道为核查特定方向的力时,其第二标准力值计算公式为即在第1个第二力信号值fxj采集过程中,在与待测力传感器50相连的砝码托盘21上0个标准砝码22时,其所形成的悬挂砝码20的总质量为砝码托盘21的质量为砝码托盘21的质量,可获取第1个的第二标准力值f2j=mt*g;在第2个第二力信号值fxi采集过程中,在与待测力传感器50相连的砝码托盘21上1个标准砝码22时,其所形成的悬挂砝码20的总质量为砝码托盘21的质量为砝码托盘21的质量,可获取其对应的第二标准力值f2j=(mt m1)*g,
……
依次类推,第10个第二标准力值f2j=(mt m1

m9)*g,即10个第二力信号值fxj对应的第二标准力值f2j如表四所示。
[0134]
作为另一示例,在目标核查通道为核查特定方向的力矩时,第二标准力值是根据挂载在砝码托盘21上的h个标准砝码22所形成的悬挂砝码20的总质量进行换算所确定的重力值,根据重力值与加载力杆1321的长度的乘积确定的标准值。即在目标核查通道为核查特定方向的力矩时,其第二标准力值计算公式为其中,f2j为第j个第二力信号值tbj对应的第二标准力值,mt为砝码托盘21的标准质量,mh为第h个标准砝码22的标准质量,lm为加载力杆1321的长度,1≤j≤w,0≤h≤h=w-1。
[0135]
s24:根据实测电压输出值和第二标准力值,获取每一第二力信号值对应的核查灵敏度。
[0136]
其中,核查灵敏度是指根据实测电压输出值和第二标准力值实时计算确定的灵敏度。
[0137]
作为一示例,可采用灵敏度计算公式对实测电压输出值和第二标准力值进行计算,获取每一第二力信号值对应的核查灵敏度。本示例中,灵敏度计算公式为sbj=vbj/f2j,sbj为第i个第二力信号值tbj对应的核查灵敏度,vbj为第j个第二力信号值对应的实测电压输出值,f2j为第j个第二力信号值tbj对应的第二标准力值。由于vbj分别为v
fx
j、v
fy
j、v
fz
j、v
mx
j、v
my
j和v
mz
j,则sbj分别为s
fx
j、s
fy
j、s
fz
j、s
mx
j、s
my
j和s
mz
j。
[0138]
例如,上述目标核查通道fx的灵敏度核查中,灵敏度计算公式sbj=vbj/f2j中,在vbj为v
fx
j时,其sbj为s
fx
j,即s
fx
j=v
fx
j/f2j,则依据s
fx
j=v
fx
j/f2j确定每一第二力信号值对应的核查灵敏度s
fx
j如表四所示。
[0139]
s25:根据计量灵敏度和w个第二力信号值对应的核查灵敏度,获取灵敏度实测值。
[0140]
其中,灵敏度实测值是指w个核查灵敏度分别与计量灵敏度计算其差值之后确定
的最大值。
[0141]
作为一示例,可采用灵敏度实测值计算公式对计量灵敏度和w个第二力信号值对应的核查灵敏度进行计算,获取灵敏度实测值。本示例中,灵敏度实测值计算公式为sb为待测力传感器50在目标核查通道的最近一次计量灵敏度,sbj为第i个第二力信号值tbj对应的核查灵敏度,ds_max为灵敏度实测值。
[0142]
例如,上述目标核查通道fx的灵敏度核查中,灵敏度实测值计算公式中,sb为s
fx
,该s
fx
为待测力传感器50在目标核查通道fx的最近一次的计量灵敏度,sbj为s
fx
j,该s
fx
j为第i个第二力信号值fxj对应的核查灵敏度,其所确定的灵敏度实测值如表四所示。
[0143]
s26:根据灵敏度实测值,获取灵敏度核查结果。
[0144]
作为一示例,可将灵敏度实测值ds_max与灵敏度核查阈值进行比较;若灵敏度实测值ds_max小于或等于灵敏度核查阈值,则表明待测力传感器50在目标核查通道上进行灵敏度核查合格,获取核查合格的灵敏度核查结果;若灵敏度实测值ds_max大于灵敏度核查阈值,则表明待测力传感器50在目标核查通道上进行灵敏度核查不合格,获取核查不合格的灵敏度核查结果。其中,灵敏度核查阈值是预先设置的用于评估灵敏度核查是否合格的阈值。
[0145]
例如,上述目标核查通道fx的灵敏度核查中,设灵敏度核查阈值为3%则若ds_max≤3%,则表明待测力传感器50在目标核查通道上进行灵敏度核查合格,获取核查合格的灵敏度核查结果;若灵敏度实测值ds_max》3%,则表明待测力传感器50在目标核查通道上进行灵敏度核查不合格,获取核查不合格的灵敏度核查结果。
[0146]
s27:从w个第二力信号值对应的核查灵敏度中确定对比灵敏度,根据每一第二力信号值对应的第二标准力值和对比灵敏度,获取第二力信号值对应的拟合电压输出值。
[0147]
其中,拟合电压输出值是指根据第二标准力值和核查灵敏度进行计算,所确定的电压输出值。
[0148]
作为一示例,可从w个第二力信号值对应要核查灵敏度中,随机选择确定一个作为对比灵敏度;再采用拟合电感输出值计算公式对每一第二力信号值对应的第二标准力值和对比灵敏度进行计算,获取第二力信号值对应的拟合电压输出值。本示例中,拟合电感输出值计算公式为v'bj=f2j*sbm,v'bj为第j个第二力信号值对应的实测电压输出值,f2j为第j个第二力信号值tbj对应的第二标准力值,sbm为对比灵敏度,可理解地,sbm为w个核查灵敏度sbj中的一个。
[0149]
例如,上述目标核查通道fx的灵敏度核查中,可将第10个核查灵敏度s
fx
10确定为对比灵敏度,则拟合电感输出值计算公式v'bj=f2j*sbm中,在sbm为s
fx
m=s
fx
10时,v'bj为vf'
x
j,即vf'
x
j=f2j*s
fx
10,则依据vf'
x
j=f2j*s
fx
10确定的每一第二力信号值对应的拟合电压输出值如表四所示。
[0150]
s28:根据w个第二力信号值对应的实测电压输出值和拟合电压输出值以及对比灵敏度对应的实测电压输出值,获取线性度实测值。
[0151]
其中,线性度实测值是指根据w个第二力信号值的实测电压输出值和拟合电压输出值计算出的线性度。
[0152]
作为一示例,可采用线性度实测值计算公式对w个第二力信号值对应的实测电压输出值和拟合电压输出值以及对比灵敏度对应的实测电压输出值进行计算,获取线性度实测值。本示例中,线性度实测值计算公式为v'bj为第j个第二力信号值对应的实测电压输出值,vbj为第j个第二力信号值对应的实测电压输出值,v'bm为对比灵敏度sbm对应的实测电压输出值,l为线性度实测值。
[0153]
例如,上述目标核查通道fx的灵敏度核查中,线性度实测值计算公式中,在目标核查通道为fx时,v'bj为vf'
x
j,vbj为v
fx
j,设对比灵敏度s
fx
m=s
fx
10,则对比灵敏度sbm对应的实测电压输出值为vf'
x
m=vf'
x
10,则其对应的线性度实测值计算公式为
[0154]
s29:根据线性度实测值,获取线性度核查结果。
[0155]
作为一示例,可将线性度实测值l与线性度核查阈值进行比较,若线性度实测值l小于或等于线性度核查阈值,则表明待测力传感器50在目标核查通道上进行线性度核查合格,获取核查合格的线性度核查结果;若线性度实测值l大于线性度核查阈值,则表明待测力传感器50在目标核查通道上进行线性度核查不合格,获取核查不合格的线性度核查结果。线性度核查阈值是预先设置的用于评估线性度核查是否合格的阈值。
[0156]
例如,上述目标核查通道fx的灵敏度核查中,设线性度核查阈值为1%,则若线性度实测值l≦1%,则表明待测力传感器50在目标核查通道上进行线性度核查合格,获取核查合格的线性度核查结果;若线性度实测值l》1%,则表明待测力传感器50在目标核查通道上进行线性度核查不合格,获取核查不合格的线性度核查结果。
[0157]
表四灵敏度线性度核查数据表
[0158][0159]
本实施例所提供的力传感器核查方法中,可根据待测力传感器50采集在砝码托盘21上依次挂载h个标准砝码22形成的w个第二力信号值,以及砝码托盘21和h个标准砝码22对应的第二标准力值,快速确定其灵敏度核查结果和线性度核查结果,使得灵敏度和线性度核查过程操作简单,计算方便,无需通过专业的检测试验室即可实现灵敏度和线性度核查,有助于节省灵敏度和线性度核查的成本。
[0160]
由于不同假人型号的汽车碰撞试验用假人上的力传感器类型不同,每一种力传感器对应的核查通道可以为一个,也可以为多个。如表一所示,hybrid iii 50th这一假人型号的力传感器上颈部力传感器对应的核查通道为fx、fy、fz和my;而大腿力传感器对应的核查通道为fz。在力传感器的核查通道为至少两个时,需考虑不同核查通道之间是否存在轴向间串扰,即核查不同核查通道是否存在相互干扰。
[0161]
在一实施例中,如图12所示,本实施例所提供的力传感器核查方法,应用在上述力传感器核查装置上,该力传感器核查方法用于实现轴向间串扰检测,具体包括如下步骤:
[0162]
s31:将待测力传感器沿目标核查通道对应的方向装配在力传感器夹具上,在砝码托盘上挂载q个标准砝码,控制升降台升降,采集第三力信号值。
[0163]
作为一示例,在对待测力传感器50的目标核查通道进行期间核查过程中,需将待测力传感器50在目标核查通道对应的方向沿竖直方向设置,使其与悬挂砝码20的加载方向一致,以保证待测力传感器50测量与其相连的悬挂砝码20的准确性,提高待测力传感器50期间核查的准确性。接着,在与待测力传感器50的主要受力点相连的砝码托盘21上挂载q个标准砝码22,再采用电机控制系统40控制设置在砝码托盘21下方的升降台30进行加载测量数据,即控制升降台30往复升降,从而实现悬挂砝码20对待测力传感器50的卸载或加载,以采集到用于进行轴向串扰核查的第三力信号值tcq。
[0164]
例如,在上述目标核查通道fx的灵敏度核查之后,即其挂载的标准砝码22的数量
为9时,将其采集到的第10个(j=10)的第二力信号值直接确定为用于进行轴向串扰核查的第三力信号值,则tcq=fxq=fx10。
[0165]
s32:将待测力传感器沿关联核查通道对应的方向装配在力传感器夹具上,在砝码托盘上挂载q个标准砝码,控制升降台升降,采集第四力信号值。
[0166]
其中,关联核查通道是指与目标核查通道相关联的可能存在轴向串扰的核查通道。
[0167]
作为一示例,可将待测力传感器50在关联核查通道对应的方向沿竖直方向设置,使其与悬挂砝码20的加载方向一致,以保证待测力传感器50测量与其相连的悬挂砝码20的准确性,提高待测力传感器50期间核查的准确性。接着,在与待测力传感器50的主要受力点相连的砝码托盘21上挂载q个标准砝码22,再采用电机控制系统40控制设置在砝码托盘21下方的升降台30进行加载测量数据,即控制升降台30往复升降,从而实现悬挂砝码20对待测力传感器50的卸载或加载,以采集到用于进行轴向串扰核查的第四力信号值tdq。例如,在目标核查通道为fx时,挂载的标准砝码22的数量为10时,其关联核查通道为fy、fz和my时,则在分别采集到的用于进行轴向串扰核查的第四力信号值tdq可以为tdq=fyq=fy10、tdq=fzq=fz10、tdq=myq=my10。
[0168]
可理解地,在轴向串扰核查过程中,需保证在砝码托盘21上挂载数量相同的标准砝码22,即同时挂载q个标准砝码22,以保证第三力信号值tcq和第四力信号值tdq采集过程中其他外界因素均一致,从而提高轴向串扰核查的准确性。
[0169]
s33:获取目标核查通道的目标满量程和关联核查通道的关联满量程。
[0170]
其中,目标核查通道的目标满量程是指在待测力传感器50在目标核查通道所在方向进行测量的力的最大值,可采用fsc来表示。本示例中,由于目标核查通道为fx、fy、fz、mx、my和mz的不同,其对应的目标满量程fsc可分别采用fs
fx
、fs
fy
、fs
fz
、fs
mx
、fs
my
和fs
mz

[0171]
其中,关联核查通道的关联满量程是指待测力传感器50在关联核查通道所在方向进行测量的力的最大值,可采用fsd来表示。本示例中,由于关联核查通道为fx、fy、fz、mx、my和mz的不同,其对应的关联满量程fsd可分别采用fs
fx
、fs
fy
、fs
fz
、fs
mx
、fs
my
和fs
mz

[0172]
作为一示例,可通过查询历史记录信息表,从历史记录信息表中获取目标核查通道的目标满量程fsc和关联核查通道的关联满量程fsd,以便利用目标满量程fsc和关联满量程fsd进行轴向串扰核查。
[0173]
s34:根据第三力信号值、第四力信号值、目标满量程和关联满量程,获取轴向串扰核查值。
[0174]
作为一示例,可采用轴向串扰核查值计算公式,对第三力信号值、第四力信号值、目标满量程和关联满量程进行计算,获取轴向串扰核查值。其中,轴向串扰核查值计算公式为ctd为目标核查通道对关联核查通道的轴向串扰核查值,tcq为第三力信号值,tdq为第四力信号值,fsc为目标满量程,fsd为关联满量程。
[0175]
例如,在hybrid iii 50th这一假人型号的力传感器上颈部力传感器对应的目标核查通道为fx,关联核查通道为fy、fz和my时,上述目标核查通道fx的灵敏度核查之后,即
其挂载的标准砝码22的数量为9时,将其采集到的第10个(j=10)的第二力信号值直接确定为用于进行轴向串扰核查的第三力信号值,则tcq=fxq=fx10,以减少第三力信号值的采集过程,有助于提高采集效率。接着,将力传感器上颈部力传感器在关联核查通道fy、fz和my的方向装配在力传感器夹具10上,且其挂载的标准砝码22的数量为9时,分别获取第四力信号值tdq=fyq=fy10、tdq=fzq=fz10、tdq=myq=my10;并获取目标满量程fsc和关联满量程fsd如表五所示,则其轴向串扰核查值计算公式具体为和
[0176]
表五轴向串扰核查数据表
[0177]
核查通道fxfyfzmy力信号值246.108n1.839n3.618n-0.307nm满量程fs8900n8900n13350n282nm轴向串扰ct/0.747%0.980%3.937%
[0178]
s35:根据轴向串扰核查值,获取轴向串扰核查结果。
[0179]
作为一示例,可将轴向串扰核查值ctd与轴向串扰核查阈值进行比较,若轴向串扰核查值ctd小于或等于轴向串扰核查阈值,则表明待测力传感器50的目标核查通道和关联核查通道之间轴向串扰核查合格,获取核查合格的轴向串扰核查结果;若轴向串扰核查值ctd大于轴向串扰核查阈值,则表明待测力传感器50的目标核查通道和关联核查通道之间轴向串扰核查不合格,获取核查不合格的轴向串扰核查结果。轴向串扰核查阈值是预先设置的用于评估轴向串扰核查是否合格的阈值。
[0180]
例如,上述目标核查通道fx的灵敏度核查中,设轴向串扰核查阈值为5%,则若轴向串扰核查值ctd≦5%,则表明待测力传感器50的目标核查通道和关联核查通道之间轴向串扰核查合格,获取核查合格的轴向串扰核查结果;若轴向串扰核查值ctd》5%,则表明待测力传感器50的目标核查通道和关联核查通道之间轴向串扰核查不合格,获取核查不合格的轴向串扰核查结果。
[0181]
以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围,均应包含在本发明的保护范围之内。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献