一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

缓冲器和多路复用器的制作方法

2022-07-10 13:48:52 来源:中国专利 TAG:


1.本发明涉及电路技术领域,尤其涉及一种缓冲器和多路复用器。


背景技术:

2.为了向后兼容(backward compatibility),现代高速串行链路(serial link)设备需要以降低的数据速率运行。然而,这些设备在低数据速率操作(或运行)和高数据速率操作(或运行)时可能消耗相似量的dc(直流)功率,这不符合低数据速率操作或低操作频率(或低运行频率)下的一般电源管理策略。因此,需要提供一种解决方案以在低数据速率操作或低操作频率下适应性地将高速设备切换到降低功率模式。


技术实现要素:

3.有鉴于此,本发明提供一种缓冲器和多路复用器,以解决上述问题。
4.根据本发明的第一方面,公开一种缓冲器,选择性地以第一模式或第二模式运行,包括:
5.第一信号输入端;
6.第一信号输出端;以及
7.路径电路,耦接于该第一信号输入端与该第一信号输出端之间,具有电压源端;
8.其中响应于该缓冲器运行于该第一模式,在该路径电路中,在该第一信号输入端与该第一信号输出端之间形成第一信号传输路径,以及
9.其中,该第一信号传输路径与该电压源端断开。
10.根据本发明的第二方面,公开一种多路复用器,选择性地运行在第一选择状态或第二选择状态并选择性地运行在第一传输模式模式或第二模式,包括:
11.第一信号输入端;
12.第二信号输入端;
13.第一信号输出端;以及
14.路径电路,耦接于该第一信号输入端、该第二信号输入端与该第一信号输出端之间,具有电压源端;
15.其中,响应于该缓冲器同时工作于该第一选择状态和该第一传输模式模式,在该路径电路中,在该第一信号输入端与该第一信号输出端之间形成第一信号传输路径,并且该第一信号传输路径与该电压源端断开,并且
16.其中,响应于该缓冲器同时工作于该第二选择状态和该第一传输模式模式,在该路径电路中,在该第二信号输入端与该第一信号输出端之间形成第二信号传输路径,并且该第二信号传输路径与该电压源端断开。
17.根据本发明的第三方面,公开一种多路复用器,选择性地工作在第一选择状态或第二选择状态并选择性地工作在第一传输模式模式或第二模式,包括:
18.第一信号输入端;
19.第一信号输出端;
20.第二信号输出端;以及
21.路径电路,耦接于该第一信号输入端与第一信号输出端及该第二信号输出端之间,并且具有电压源端;
22.其中,响应于该缓冲器同时工作于该第一选择状态和该第一传输模式模式,在该路径电路中,在该第一信号输入端与该第一信号输出端之间形成第一信号传输路径,并且该第一信号传输路径与该电压源端断开,并且
23.其中,响应于该缓冲器同时工作于该第二选择状态和该第一传输模式模式,在该路径电路中,在该第一信号输入端与该第二信号输出端之间形成第二信号传输路径,并且该第二信号传输路径与该电压源端断开。
24.本发明的缓冲器选择性地以第一模式或第二模式运行,并且由于包括:第一信号输入端;第一信号输出端;以及路径电路,耦接于该第一信号输入端与该第一信号输出端之间,具有电压源端;其中响应于该缓冲器运行于该第一模式,在该路径电路中,在该第一信号输入端与该第一信号输出端之间形成第一信号传输路径,以及其中,该第一信号传输路径与该电压源端断开。本发明在第一模式时将该第一信号传输路径与该电压源端断开,因此在第一模式时第一信号传输路径不消耗直流电流,此时不需要直流功耗,从而提供了一种低功耗的缓冲器和多路复用器。
附图说明
25.图示出了缓冲器的示例性实施例;
26.图2a~2b示出了图1的缓冲器在被动模式(passive mode)和主动模式(active mode)下的操作的示例性实施例;
27.图示出了二到一(two-to-one)多路复用器(multiplexer)的一个示例性实施例;
28.图4a~4d示出了图3a~3c的二到一多路复用器在被动模式和主动模式下的操作的示例性实施例;
29.图5示出了二到一多路复用器的另一个示例性实施例;
30.图示出了一到二(one-to-two)多路复用器的一个示例性实施例;
31.图7a~7d示出了图6a~6c的一到二多路复用器在被动模式和主动模式下的操作的示例性实施例;
32.图8示出了一到二多路复用器的另一个示例性实施例。
具体实施方式
33.在下面对本发明的实施例的详细描述中,参考了附图,这些附图构成了本发明的一部分,并且在附图中通过图示的方式示出了可以实践本发明的特定的优选实施例。对这些实施例进行了足够详细的描述,以使本领域技术人员能够实践它们,并且应当理解,在不脱离本发明的精神和范围的情况下,可以利用其他实施例,并且可以进行机械,结构和程序上的改变。本发明。因此,以下详细描述不应被理解为限制性的,并且本发明的实施例的范围仅由所附权利要求限定。
34.将理解的是,尽管术语“第一”、“第二”、“第三”、“主要”、“次要”等在本文中可用于描述各种元件、组件、区域、层和/或部分,但是这些元件、组件、区域、这些层和/或部分不应受到这些术语的限制。这些术语仅用于区分一个元素,组件,区域,层或部分与另一区域,层或部分。因此,在不脱离本发明构思的教导的情况下,下面讨论的第一或主要元件、组件、区域、层或部分可以称为第二或次要元件、组件、区域、层或部分。
35.此外,为了便于描述,本文中可以使用诸如“在...下方”、“在...之下”、“在...下”、“在...上方”、“在...之上”之类的空间相对术语,以便于描述一个元件或特征与之的关系。如图所示的另一元件或特征。除了在图中描述的方位之外,空间相对术语还意图涵盖设备在使用或操作中的不同方位。该装置可以以其他方式定向(旋转90度或以其他定向),并且在此使用的空间相对描述语可以同样地被相应地解释。另外,还将理解的是,当层被称为在两层“之间”时,它可以是两层之间的唯一层,或者也可以存在一个或多个中间层。
36.术语“大约”、“大致”和“约”通常表示规定值的
±
20%、或所述规定值的
±
10%、或所述规定值的
±
5%、或所述规定值的
±
3%、或规定值的
±
2%、或规定值的
±
1%、或规定值的
±
0.5%的范围内。本发明的规定值是近似值。当没有具体描述时,所述规定值包括“大约”、“大致”和“约”的含义。本文所使用的术语仅出于描述特定实施例的目的,并不旨在限制本发明。如本文所使用的,单数术语“一”,“一个”和“该”也旨在包括复数形式,除非上下文另外明确指出。本文所使用的术语仅出于描述特定实施例的目的,并不旨在限制本发明构思。如本文所使用的,单数形式“一个”、“一种”和“该”也旨在包括复数形式,除非上下文另外明确指出。
37.将理解的是,当将元件或层称为在另一元件或层“上”,“连接至”,“耦接至”或“邻近”时,它可以直接在其他元素或层上,与其连接,耦接或相邻,或者可以存在中间元素或层。相反,当元件称为“直接在”另一元件或层“上”,“直接连接至”,“直接耦接至”或“紧邻”另一元件或层时,则不存在中间元件或层。
38.注意:(i)在整个附图中相同的特征将由相同的附图标记表示,并且不一定在它们出现的每个附图中都进行详细描述,并且(ii)一系列附图可能显示单个项目的不同方面,每个方面都与各种参考标签相关联,这些参考标签可能会出现在整个序列中,或者可能只出现在序列的选定图中。
39.图1a示出了缓冲器的示例性实施例。如图1所示,缓冲器1包括两个信号输入端inp1和inm1、两个信号输出端outn1和outm1、以及路径电路10。信号输入端inp1和inm1是用于接收差分输入信号的一对输入端,其中差分输入信号的正元件信号(positive element signal)由信号输入端inp1接收,而差分输入信号的负元件信号(negative element signal)由信号输入端inm1接收。缓冲器1可根据差分输入信号的频率选择性地操作(或运行)于被动模式或主动模式(或称为第一模式、第二模式,其中第一模式和第二模式并无特定的指代)。当差分输入信号的数据速率较高时,缓冲器1工作在主动模式下;当差分输入信号的数据速率较低时,缓冲器1工作于被动模式下,以减少消耗。缓冲器1根据接收到的差分输入信号在信号输出端outn1和outm1产生差分输出信号。路径电路10包括电感l11~l14、开关sw11~sw14、电阻r11~r12以及放大器a11。电感l11耦接于信号输入端inp1与节点n11之间。开关sw11耦接于节点n11与节点n12之间。电感l13耦接于节点n12与信号输出端outp1之间。开关sw13耦接于电压源端(或端子)vs1与节点n13之间。在缓冲器1工作期间,工作电
压vdd提供给电压源端vs1。电阻器r11耦接于节点n13与节点n12之间。电感l12耦接于信号输入端inm1与节点n14之间。开关sw12耦接于节点n14与节点n15之间。电感l14耦接于节点n15与信号输出端outm1之间。开关sw14耦接于电压源端vs1与节点n16之间。电阻器r12耦接于节点n16与节点n15之间。放大器a11的正输入端( )耦接节点n11,其负输入端(-)耦接节点n14。放大器a11的正输出端( )耦接信号输出端outp1,其负输出端(-)耦接信号输出端outm1。
40.在本实施例中,开关sw11和sw12受开关信号s11控制,而开关sw13和sw14受开关信号s12控制。缓冲器1还可以包括信号发生器11,其用于基于模式信号mode1产生开关信号s11和s12。在一个实施例中,开关信号s11和s12异相(out of phase)。换言之,开关sw11和sw12的持续时间与开关sw13和sw14的持续时间不重叠。模式信号mode1指示缓冲器1在被动模式和主动模式中的哪一个模式下操作(或运行)。
41.参照图2a,当缓冲器1操作(或运行)于被动模式时,开关sw11与sw12根据开关信号s11导通,而开关sw13与sw14根据开关信号s12断开。此外,放大器a11被禁用(禁用放大器a11)。由于开关sw11导通,因此在路径电路10中,在信号输入端inp1与信号输出端outp1之间形成信号传输路径p21,用于差分输入信号的正元件信号。由于开关sw12导通,因此在路径电路10中,在信号输入端inm1与信号输出端outm1之间形成信号传输路径p22,用于差分输入信号的负元件信号。如图2a所示,开关sw13和sw14关闭,并且信号传输路径p21和p22中的每一个都与电压源端子vs1断开连接。信号传输路径p21和p22中的元件l11~l14和sw11~sw12为无源元件(被动元件)。也就是说,在这种情况下,信号传输路径p21和p22中仅有被动元件,因此,在被动模式下不需要直流(dc)功耗。
42.请参考图2b,当缓冲器1操作(或运行)于主动模式时,开关sw11与sw12根据开关信号s11而断开,而开关sw13与sw14则根据开关信号s12而导通。此外,放大器a11被启用(启用放大器a11)。由于开关sw11断开而放大器a11导通,因此在路径电路10中,在信号输入端inp1与信号输出端outp1之间形成信号传输路径p23,用于差分输入信号的正元件信号。由于开关sw12断开而放大器a11导通,因此在路径电路10中,在信号输入端inm1与信号输出端outm1之间形成信号传输路径p24,用于差分输入信号的负元件信号。如图2b所示,开关sw13和sw14导通。这样,直流电流从电压源端vs1通过开关sw13、电阻r11和电感l13提供到信号传输路径p23,而直流电流从电压源端vs1通过开关sw14、电阻r12和电感l14提供到信号传输路径p24,产生直流功耗。
43.根据上述实施例,缓冲器1可以选择性地工作在两种不同的模式:被动模式和主动模式。在缓冲器1应用于高速装置的情况下,当高速装置对低频信号以低数据速率工作时,缓冲器1切换到被动模式,为低频信号提供特定的信号传输路径。特定信号传输路径与电压源端vs1断开,特定信号传输路径中只有无源元件。因此,不会产生直流电流,从而消除了直流功耗。
44.在一个实施例中,图1a~1b所示的缓冲器的结构和操作(或运行)可以应用于二到一多路复用器中。图3a~3b示出了二到一多路复用器的示例性实施例。如图3a所示,二到一多路复用器3包括一对信号输入端in1p与in1m、一对信号输入端in2p与in2m、一对信号输出端outp3与outm3,以及路径电路30。信号输入端in1p与in1m用以接收差分输入信号,其中该差分输入信号的正元件信号由信号输入端in1p接收,而其负元件信号则由信号输入端in1m
接收。信号输入端in2p与in2m用以接收另一个差分输入信号,该差分输入信号的正元件信号由信号输入端in2p接收,而其负元件信号由信号输入端in2m接收。根据选择信号sel3,二到一多路复用器3操作(或工作或运行)于第一选择状态以选择一对信号输入端in1p与in1m处的差分输入信号或处于第二选择状态以在一对信号输入端in2p与in2m处选择差分输入信号,然后将选择的差分输入信号传输到一对信号输出端outp3和outm3作为差分输出信号。此外,二到一多路复用器3可由模式信号mode3控制以根据所选择的差分输入信号的频率选择性地操作(或运行)于被动模式或主动模式。当所选差分输入信号的数据速率很高时,二到一多路复用器3在活动状态下操作;当所选差分输入信号的数据速率低时,二到一多路复用器3以无源模式(或被动模式)操作以降低消耗。
45.请参考图3b,路径电路30包括电感开关电阻以及放大器电感l31耦接于信号输入端in1p与节点n31之间。开关sw31耦接于节点n31与节点n32之间。电感l33耦接于节点n32与信号输出端outp3之间。开关sw33耦接于电压源端vs3与节点n33之间。在二到一多路复用器3工作时,工作电压vdd提供给电压源端vs3。电阻器r31耦接于节点n33与节点n32之间。电感l32耦接于信号输入端in1m与节点n35之间。开关sw32耦接于节点n35与节点n36之间。电感l34耦接于节点n36与信号输出端outm3之间。开关sw34耦接于电压源端vs3与节点n37之间。电阻器r32耦接于节点n37与节点n36之间。放大器a31的正输入端( )是耦接节点n31,其负输入端(-)耦接节点n35。放大器a31的正输出端( )耦接信号输出端outp3,其负输出端(-)耦接信号输出端outm3。
46.电感器l35耦接于信号输入端in2p与节点n34之间。开关sw35耦接于节点n34与节点n32之间。电感l36耦接于信号输入端in2m与节点n38之间。开关sw36耦接于节点n38与节点n36之间。放大器a32的正输入端( )耦接节点n34,而其负输入端(-)耦接节点n38。放大器a32的正输出端( )耦接信号输出端outp3,其负输出端(-)耦接信号输出端outm3。
47.在本实施例中,开关sw31和sw32由开关信号s31控制,开关sw33和sw34由开关信号s32控制,开关sw35和sw36由开关信号s33控制。二到一多路复用器3还可以包括信号发生器31,其用于根据选择信号sel3和模式信号mode3产生开关信号s31~s33。选择信号sel3指示选择哪一个差分输入信号,模式信号mode3根据选择的差分输入信号的频率指示二到一多路复用器3操作于被动模式与主动模式中的哪一种模式。
48.参考图4a,当二到一多路复用器3同时操作于(或工作于或运行于)第一选择状态(用于选择一对信号输入端in1p与in1m处的差分输入信号)及被动模式时,开关sw31和sw32根据开关信号s31导通,开关sw33和sw34根据开关信号s32断开,开关sw35和sw36根据开关信号s33断开。此外,放大器a31和a32被禁用。由于开关sw31导通,因此在路径电路30中,在信号输入端in1p与信号输出端outp3之间形成信号传输路径p41,用于信号输入端in1p的差分输入信号的正元件信号。由于开关sw32导通,因此在路径电路30中,在信号输入端in1m与信号输出端outm3之间形成信号传输路径p42,用于信号输入端in1m处的负元件信号。如图4a所示,开关sw33和sw34关闭,并且信号传输路径p41和p42中的每一个都与电压源端子vs3断开连接。信号传输路径p41和p42中的元件l31~l34和sw31~sw32为无源元件。因此,在第一选择状态和被动模式下不需要消耗直流功率。
49.请参考图4b,当二到一多路复用器3同时工作于第一选择状态与启动模式时,开关sw31与sw32根据开关信号s31而断开,开关sw33与sw34根据开关信号s32导通,开关sw35与
sw36根据开关信号s33断开。此外,放大器a31被启用,而放大器a32被禁用。由于开关sw31断开而放大器a31导通,因此在路径电路30中,在信号输入端in1p与信号输出端outp3之间形成信号传输路径p43,用于信号输入端in1p的正元件信号端子。由于开关sw32断开而放大器a31导通,因此在路径电路30中,在信号输入端in1m与信号输出端outm3之间形成信号传输路径p44,用于信号输入端in1m的负元件信号。如图4b所示,开关sw33和sw34导通。这样,直流电流从电压源端vs3通过开关sw33、电阻r31和电感l33提供到信号传输路径p43,而直流电流从电压源端vs3通过开关sw34、电阻r32和电感l34提供到信号传输路径p44,从而产生直流功耗。
50.参考图4c,当二到一多路复用器3同时操作于第二选择状态(用于选择一对信号输入端in2p与in2m处的差分输入信号)及被动模式时,开关sw35和sw36根据开关信号s33导通,开关sw33和sw34根据开关信号s32断开,开关sw31和sw32根据开关信号s31断开。此外,放大器a31和a32被禁用。由于开关sw35导通,因此在路径电路30中,在信号输入端in2p与信号输出端outp3之间形成信号传输路径p45,用于信号输入端in2p的差分输入信号的正元件信号。由于开关sw36导通,因此在路径电路30中,在信号输入端in2m与信号输出端outm3之间形成信号传输路径p46,用于信号输入端in2m处的负元件信号。如图4c所示,开关sw33、sw34关闭,信号传输路径p45、p46分别与电压源端vs3断开。信号传输路径p45和p46中的元件l33~l36和sw35~sw36为无源元件。因此,在第二选择状态和被动模式下不需要消耗直流功率。
51.请参考图4d,当二到一多路复用器3同时操作于第二选择状态与启动模式(主动模式)时,开关sw35与sw36根据开关信号s33而断开,开关sw33与sw34根据开关信号s32导通,开关sw31与sw32根据开关信号s31断开。此外,放大器a32被启用,而放大器a31被禁用。由于开关sw35断开而放大器a32导通,因此在路径电路30中,在信号输入端in2p与信号输出端outp3之间形成信号传输路径p47,用于信号输入端in2p的正元件信号。由于开关sw36断开而放大器a32导通,因此在路径电路30中,在信号输入端in2m与信号输出端outm3之间形成信号传输路径p48,用于信号输入端in2m的负元件信号。如图4d所示,开关sw33和sw34导通。这样,直流电流从电压源端vs3通过开关sw33、电阻r31和电感l33提供到信号传输路径p47,而直流电流从电压源端vs3通过开关sw34、电阻r32和电感l34提供到信号传输路径p48,从而产生直流功耗。
52.根据上述实施例,二到一多路复用器3可以选择性地工作在两种不同的模式:被动模式和主动模式。在二到一多路复用器3应用于高速设备的情况下,当高速设备对低频差分输入信号以低数据速率工作时,二到一多路复用器3切换到工作在被动模式,为低频差分输入信号提供特定的信号传输路径。特定信号传输路径与电压源端vs3断开,只有无源元件位于特定信号传输路径中。因此,不会产生直流电流,从而消除了直流功耗。
53.图5示出了二到一多路复用器3的路径电路30的详细结构。开关sw31、sw32、sw35和sw36中的每一个由t开关实现。如图5所示,开关sw31包括n型晶体管t311~t313,开关sw32包括n型晶体管t321~t323。晶体管t311~t312与t321~t322的栅极接收切换信号s31,晶体管t313与t323的栅极接收与切换信号s31相反的信号。开关sw35包括n型晶体管t351~t353,开关sw36包括n型晶体管t361~t363。晶体管t351~t352与t361~t362的栅极接收切换信号s33,晶体管t353与t363的栅极接收与切换信号s33相反的信号。开关sw33包括p型晶
体管t331,而开关sw34包括p型晶体管t341。晶体管t331和t341的栅极接收开关信号s32。
54.在图5的实施例中,放大器a31~a32组合在一起并由电路50实现,如图5所示,电路50包括n型晶体管t51~t56、电容器c51~c56、电阻器r51~r58,偏置端子vb51~vb52。当vb51端提供偏压,晶体管t55~t56导通时,放大器a31导通;否则,放大器a31被禁用。当vb52端提供偏压,晶体管t55~t56导通时,放大器a32导通;否则,放大器a32被禁用。
55.在一个实施例中,图1a~1b所示的缓冲器的结构和操作可以应用于一到二多路复用器中。图6a~6b示出了一到二多路复用器的示例性实施例。如图3a所示,一到二多路复用器6包括一对信号输入端inp6和inm6、一对信号输出端out1p和out1m、一对信号输出端out2p和out2m,以及路径电路60。信号输入端inp6与inm6用以接收一差分输入信号,该差分输入信号的正元件信号由信号输入端inp6接收,而其负元件信号则由信号输入端inm6接收。根据选择信号sel6,一到二多路复用器6工作于第一选择状态,以将一对信号输入端inp6与inm6的差分输入信号传送至一对信号输出端out1p与out1m,或以第二选择状态,将一对信号输入端inp6与inm6的差分输入信号作为差分输出信号传送至一对信号输出端out2p与out2m。此外,一到二多路复用器6可由模式信号mode6控制以根据差分输入信号的频率选择性地操作于被动模式或主动模式。当差分输入信号的数据速率较高时,一到二多路复用器6工作于主动模式;当差分输入信号的数据速率较低时,一到二多路复用器6工作于被动模式以减少消耗。
56.请参考图6b,路径电路60包括电感开关电阻以及放大器电感l61耦接于信号输入端inp6与节点n61之间。开关sw61耦接于节点n61与节点n62之间。电感l63耦接于节点n32与信号输出端out1p之间。开关sw63耦接于电压源端vs6与节点n63之间。在一到二多路复用器6工作期间,工作电压vdd提供给电压源端vs6。电阻器r61耦接于节点n63与节点n62之间。电感l62耦接于信号输入端inm7与节点n66之间。开关sw62耦接于节点n66与节点n67之间。电感l64耦接于节点n67与信号输出端out1m之间。开关sw64耦接于电压源端vs6与节点n68之间。电阻器r62耦接于节点n68与节点n67之间。放大器a61的正输入端( )耦接节点n61,其负输入端(-)耦接节点n66。放大器a61的正输出端( )耦接信号输出端out1p,而其负输出端(-)耦接信号输出端out1m。
57.开关sw65耦接于节点n61与节点n64之间。电感l65耦接于节点n64与信号输出端out2p之间。开关sw67耦接于电压源端vs6与节点n65之间。电阻器r63耦接于节点n65与节点n64之间。开关sw66耦接于节点n66与节点n69之间。电感l66耦接于节点n69与信号输出端out2p之间。开关sw68耦接于电压源端vs6与节点n80之间。电阻器r66耦接于节点n60与节点n69之间。放大器a62的正输入端( )耦接节点n61,而其负输入端(-)耦接节点n66。放大器a62的正输出端( )耦接信号输出端out2p,而其负输出端(-)耦接信号输出端out2m。
58.在本实施例中,开关sw61和sw62受开关信号s61控制,开关sw63和sw64受开关信号s62控制,开关sw65和sw66受开关信号s63控制,而开关sw67 sw68和sw68由开关信号s64控制。一到二多路复用器6还可以包括信号发生器61,其用于根据选择信号sel6和模式信号mode6产生开关信号s61~s64。选择信号sel6指示差分输入信号传送到哪对信号输出端,模式信号mode6根据差动输入信号的频率指示一到二多路复用器6操作于被动模式与主动模式中的哪一种模式。
59.参考图7a,当一到二多路复用器6同时操作于第一选择状态(用以传送差分输入信
号至一对信号输出端out1p与out1m)及被动模式时,开关sw61和sw62根据开关信号s61导通,开关sw63和sw64根据开关信号s62断开,开关sw65和sw66根据开关信号s63断开,开关sw67和sw68根据开关信号断开。此外,放大器a61和a62被禁用。由于开关sw61导通,因此在路径电路60中,在信号输入端inp6与信号输出端out1p之间形成信号传输路径p71,用于信号输入端inp6的差分输入信号的正元件信号。由于开关sw62导通,因此在路径电路60中,在信号输入端inm6与信号输出端out1m之间形成信号传输路径p62,用于信号输入端inm6处的负元件信号。如图7a所示,开关sw63和sw64被断开,并且信号传输路径p71和p72中的每一个都与电压源端子vs6断开连接。信号传输路径p71和p72中的元件l61~l64和sw61~sw62为无源元件。因此,在第一选择状态和被动模式下不需要消耗直流功率。
60.参考图7b,当一到二多路复用器6同时操作于第一选择状态和启动模式时,开关sw61和sw62根据开关信号s61而断开,开关sw63和sw64根据开关信号s62导通,开关sw65和sw66根据开关信号s64断开,开关sw67和sw68根据开关信号s64断开。此外,放大器a61被启用,而放大器a62被禁用。由于开关sw61断开而放大器a61导通,因此在路径电路60中,在信号输入端inp6与信号输出端out1p之间形成信号传输路径p73,用于信号输入端inp6的正元件信号终端。由于开关sw62断开而放大器a61导通,因此在路径电路60中,在信号输入端inm6与信号输出端out1m之间形成信号传输路径p74,用于信号输入端inm6的负元件信号终端。如图7b所示,开关sw63和sw64导通。因此,直流电流从电压源端vs6通过开关sw63、电阻r61和电感l63提供到信号传输路径p73,并且从电压源端vs6通过开关sw63、电阻r62和电感l64提供直流电流到信号传输路径p74,从而产生直流功耗。
61.参考图7c,当一到二多路复用器6同时操作于第二选择状态(用以传送差分输入信号至一对信号输入端out2p与out2m)及被动模式时,开关sw65和sw66根据开关信号s63导通,开关sw67和sw67根据开关信号s64断开,开关sw61和sw62根据开关信号s61断开,开关sw63和sw64根据开关信号s62关闭。此外,放大器a61和a62被禁用。由于开关sw65导通,因此在路径电路60中以及信号输入端inp6与信号输出端out2p之间形成信号传输路径p75,用于信号输入端的差分输入信号的正元件信号inp6。由于开关sw66导通,因此在路径电路60中以及信号输入端inm6与信号输出端out2m之间形成信号传输路径p76,用于信号输入端inm6处的负元件信号。如图7c所示,开关sw67和sw68被断开,并且信号传输路径p75和p76中的每一个都与电压源端子vs7断开连接。信号传输路径p75和p76中的元件l61~l62和l65~l66和sw35~sw36是无源元件(被动元件)。因此,在第一选择状态和被动模式下不需要消耗直流功率。
62.请参考图7d,当一到二多路复用器6同时操作于第二选择状态与启动模式时,开关sw65与sw66根据开关信号s73而断开,开关sw67与sw67根据开关信号s64导通,开关sw61和sw62根据开关信号s61断开,开关sw63和sw64根据开关信号s62断开。此外,放大器a62被启用,而放大器a61被禁用。由于开关sw65断开而放大器a62导通,因此在路径电路60中,在信号输入端inp6与信号输出端out2p之间形成信号传输路径p87,用于信号输入端inp6的正元件信号。由于开关sw66断开而放大器a62导通,因此在路径电路60中,在信号输入端inm6与信号输出端out2m之间形成信号传输路径p78,用于信号输入端inm6的负元件信号。如图7d所示,开关sw67和sw68导通。因此,直流电流从电压源端vs6通过开关sw67、电阻r63和电感l65提供到信号传输路径p77,而直流电流从电压源端vs6通过开关sw68、电阻r64和电感l66
提供到信号传输路径p78,从而产生直流功耗。
63.根据上述实施例,一到二多路复用器6可以选择性地工作在两种不同的模式:被动模式和主动模式。在一到二多路复用器6应用于高速设备的情况下,当高速设备对低频差分输入信号以低数据速率工作时,一到二多路复用器6切换到工作在被动模式为低频差分输入信号提供特定的信号传输路径。特定信号传输路径与电压源端vs6断开,特定信号传输路径中只有无源元件。因此,不会产生直流电流,从而消除了直流功耗。
64.图8示出了一到二多路复用器6的路径电路60的详细结构。开关sw61、sw62、sw65和sw66中的每一个由t开关实现。如图8所示,开关sw61包括n型晶体管t611~t613,开关sw62包括n型晶体管t621~t623。晶体管t611~t612与t621~t622的栅极接收切换信号s61,晶体管t613与t623的栅极接收与切换信号s61相反的信号。开关sw65包括n型晶体管t651~t653,开关sw66包括n型晶体管t661~t663。晶体管t651~t652与t661~t662的栅极接收切换信号s63,晶体管t653与t663的栅极接收与切换信号s63相反的信号。开关sw63包括p型晶体管t631,开关sw64包括p型晶体管t641。晶体管t631和t641的栅极接收开关信号s62。开关sw67包括p型晶体管t671,开关sw68包括p型晶体管t681。晶体管t671和t681的栅极接收开关信号s64。
65.在图8的实施例中,放大器a61~a62组合在一起并由电路80实现。如图8所示,电路80包括n型晶体管t81~t586、电容c81~c83、电阻r81~r85,和偏置端子vb8。当vb8端提供偏压,晶体管t81和t83导通时,放大器a61导通;否则,放大器a61被禁用。当vb8端提供偏压,晶体管t82、t84导通时,放大器a62导通;否则,放大器a62被禁用。
66.本领域的技术人员将容易地观察到,在保持本发明教导的同时,可以做出许多该装置和方法的修改和改变。因此,上述公开内容应被解释为仅由所附权利要求书的界限和范围所限制。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献