一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种超声控制装置及检测系统

2022-07-02 14:42:43 来源:中国专利 TAG:


1.本发明涉及超声变形材料控制领域,尤其涉及一种可控方向或能量密度的超声控制装置及系统,应用于超声引起的人体或动物体内材料的变形控制或测试。


背景技术:

2.针对人体或活体动物的治疗或科研工作中,往往需要针对病灶的血管或神经进行压迫,造成局部缺血。传统的方法是通过手术对血管或神经进行急性压迫。但是急性缺血会造成局部组织快速坏死,从而释放出大量破碎的细胞器和染色质碎片外溢,引起周围组织炎症反应。
3.目前可用的慢性缺血方法为通过手术植入吸水膨胀材料制成的挤压环。当挤压环在植入体内后通过缓慢吸收体液产生膨胀,从而对血管形成慢性压迫。但是这种方式的问题在于压迫过程的速度不可控。因为不同部位和不同个体的体液分泌速度不同,会导致吸水膨胀材料的膨胀速度不同。在一些体液分泌比较快的部位,吸水膨胀材料会快速膨胀,导致压迫速度过快从而导致周围组织炎症反应。
4.目前有一些超声响应高分子材料,例如聚苯乙烯、聚交脂和丙烯腈等为基底的复合材料,其成型制备采用高压成型技术,在微观结构中会留有大量残余应力。通过超声激发振荡,能够将微观结构中残余应力释放出来,从而导致材料变形。由于此类材料的残余应力释放具有方向性,且需要高能量密度的超声。而传统的超声振荡存在无方向性,且能量无法集中,因此此类材料的实际应用几乎没有,仅停留在实验室阶段。


技术实现要素:

5.针对目前技术的不足,本发明的目的在于提供一种可控方向或能量密度的超声控制装置及系统,从而解决对超声响应高分子材料的变形控制,尤其是植入在人体或实验动物体内的超声响应材料。
6.为实现上述目的,本发明提出以下技术方案:
7.一种超声控制装置,其特征在于:该超声控制装置包括:
8.固定平台,所述固定平台用于放置待施加超声波的物体;
9.移动支架,所述移动支架滑动连接于所述固定平台;
10.超声发射器,所述超声发射器固定在所述移动支架上,用于对所述固定平台上的物体施加超声波;
11.控制器,所述控制器用于控制超声发射器所发射超声波的频率、能量和振动方向。
12.可选地:所述移动支架包括第一移动支架和第二移动支架,第一移动支架和第二移动支架分别对称滑动连接于所述固定平台两侧。
13.可选地:所述超声发射器包括第一超声发射器和第二超声发射器,其中,第一超声发射器固定于所述第一移动支架上,第二超声发射器固定于所述第二移动支架上。
14.可选地:所述第一超声发射器与所述第二超声发射器互相垂直正交设置。
15.可选地:所述超声发射器包括基底、压电陶瓷片、超声聚能器、外壳和端盖,其中,
16.所述压电陶瓷片夹设在所述基底和所述超声聚能器之间;
17.所述外壳与所述端盖固定连接以封闭所述基底及所述压电陶瓷片。
18.可选地:还包括电缆孔,所述电缆孔设置于所述端盖与所述基底的中心区域。
19.可选地:所述超声聚能器前端为弧形内凹面,用于聚焦超声波的能量。
20.可选地:所述移动支架与固定平台通过滑槽连接。
21.本发明还提供了以下技术方案:
22.一种可控方向或能量密度的超声控制系统,所述超声控制系统包括如上所述的超声控制装置,还包括可变形结构,所述可变形结构能够置于人体或动物体内,且所述可变形结构采用超声响应材料制成,能够在超声激发作用下释放残余应力从而导致其变形。
23.根据上述技术方案,本发明提供了一种可控方向或能量密度的超声控制装置及系统,其中,所述超声控制装置可包含两个互相正交垂直的超声发射器,其频率或功率可以分别独立由所述控制器控制,通过调整所述超声发射器的频率或功率,可以在人体或动物体内产生方向或能量密度可控的超声波,实现对在人体或动物体内预先植入的超声变形材料的变形控制,从而满足可控的慢性缺血治疗或建模方法。其中,所述的移动支架安装在固定平台上,用于安装固定所述的超声发射器,并且能够沿固定平台平行移动,用于调整所述超声换能器的位置。两个所述的超声换能器相互正交布置,通过同一个所述控制器控制。所述的控制器产生两路高频交变电压,并施加到所述的压电陶瓷片两侧,利用压电陶瓷的压电效应产生超声振动;所述的超声聚能器一端连接所述的压电陶瓷片,另一端为弧形内凹面,将超声振动从压电陶瓷传递到弧形端,转变成超声波,并通过弧形内凹面将超声波聚焦于离端面10厘米处的位置。在工作时,所述控制器产生两路频率相同相位或电压幅值可调节的高频电压,可以使得两个正交布置的超声发射器产生频率相同相位不同且能量可控的超声波,且相位差可调节,并通过所述的超声聚能器聚焦到10厘米距离的位置;通过调节电压幅值,可以控制所产生的超声波振动的幅度,从而控制超声波的能量;通过调节两路高频电压的相位差,可以在超声波聚焦的位置产生方向可控的超声振动,从而引发材料的局部微孔破裂,实现超声响应材料的变形。
24.本发明的有益效果:
25.本发明能够精确控制超声波在人体或动物体内的能量或振动方向,并且通过超声聚能器将超声波聚焦于一个固定区域,从而对各类超声响应材料进行控制。通过控制器调节输出电压的幅值,可以控制超声波的能量,从而保持在对于生物安全的能量范围内实现对超声响应材料的控制。通过控制器调节两个超声发射器的相位差,可以控制聚焦处振动的方向,有利于对超声响应材料产生最佳效果的驱动。
附图说明
26.图1是本发明其中一实施例的整体结构示意图
27.图2是本发明其中一实施例的超声发射器的结构剖面示意图
28.图3是本发明其中一实施例的超声聚能器的设计原理图
29.图4是本发明其中一实施例的本发明的超声振动方向控制的工作原理图
30.图中:1固定平台、2移动支架、3超声发射器、4人体或实验动物、11基底、12压电陶
瓷片、13超声聚能器、14外壳、15端盖、16前端固定螺丝、17后端固定螺丝。
具体实施方式
31.以下,将参照附图来描述本发明的实施例。但是应该理解,这些描述只是示例性的,而并非要限制本发明的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要地混淆本发明的概念。
32.在附图中示出了根据本发明实施例的各种结构示意图。这些图并非是按比例绘制的,其中为了清楚表达的目的,放大了某些细节,并且可能省略了某些细节。图中所示出的各种区域、层的形状以及它们之间的相对大小、位置关系仅是示例性的,实际中可能由于制造公差或技术限制而有所偏差,并且本领域技术人员根据实际所需可以另外设计具有不同形状、大小、相对位置的区域/层。
33.在本发明的上下文中,当将一层/元件称作位于另一层/元件“上”时,该层/元件可以直接位于该另一层/元件上,或者它们之间可以存在居中层/元件。另外,如果在一种朝向中一层/元件位于另一层/元件“上”,那么当调转朝向时,该层/元件可以位于该另一层/元件“下”。
34.本发明可以各种形式呈现,以下将描述其中一些示例。
35.下面结合附图对本发明具体实施方式进行说明。
36.本发明提供了一种超声控制装置。如图1所示,该超声控制装置包括固定平台1、移动支架2、超声发射器3。其中,固定平台1和移动支架例如通过滑槽连接,超声发射器3可以通过螺丝固定在移动支架2上。固定平台1用于放置待施加超声波的物体。进一步地,在针对人体或活体动物进行治疗或科研工作时,人体或实验动物4可以被放置于固定平台1上。此外,该超声控制装置还包括控制器,所述控制器用于控制超声发射器3所发射超声波的频率、能量和振动方向。
37.进一步地,超声发射器3例如可以为两个,即,第一超声发射器和第二超声发射器。相应地,移动支架2例如可以为两个,即,第一移动支架和第二移动支架。其中,第一移动支架和第二移动支架例如分别对称滑动连接于固定平台1的两侧。第一超声发射器固定于所述第一移动支架上,第二超声发射器固定于所述第二移动支架上。然而,本领域技术人员应当清楚,超声发射器的3的数量不限于两个,可以为至少一个,例如一个、两个或三个等。当使用一个超声发射器时,可以仅采用一个移动支架,并使超声发射器面向人体或实验动物4,从而使得超声发射器发射的超声波聚焦在人体或实验动物4处。
38.进一步地,当超声发射器的数量大于一个时,不同的超声发射器例如可以按一定角度设置,使得不同的超声发射器所发射的超声波可以在人体或实验动物4处相交。例如,所述第一超声发射器与所述第二超声发射器可以互相垂直正交设置,使得所述第一超声发射器与所述第二超声发射器所发射的超声波可以在人体或实验动物4处垂直正交。
39.如图2所示,超声发射器可以包括基底11、压电陶瓷片12、超声聚能器13、外壳14、端盖15、前端固定螺丝16和后端固定螺丝17。压电陶瓷片12例如可以夹设在所超声聚能器13和基底11之间,并且例如通过强力胶与超声聚能器13以及基底11连接。外壳14例如可以与端盖15固定连接以封闭基底11和压电陶瓷片12。基底11例如可以通过前端固定螺丝16与外壳14固定连接,端盖15例如可以通过后端固定螺丝17与外壳14固定连接,并且例如可以
压紧于基底11之上。基底11以及端盖15例如可以中心对齐,并且分别可以在中心区域设置有上下对齐的电缆孔,以用于布置电缆。
40.如图3所示,超声聚能器13前端设计有弧形内凹面。当压电陶瓷片12产生超声振动时,超声振动传递到具有弧形内凹面的前端,该前端利用弧形内凹面将所产生的超声波聚焦于距前端的一定距离处,例如10厘米处,从而将超声波的能量聚集在距前端的一定距离处。本领域技术人员容易想到,可以通过设置前端的弧形内凹面的弧度来将所产生的超声波聚焦于距前端的不同的距离处。本领域技术人员还容易想到,当使用多于一个超声聚能器13时,各个超声聚能器的前端的弧形内凹面的弧度可以相同,也可以不同,从而使得各个超声聚能器所产生的超声波可以按需要聚焦在距各自超声聚能器的端部的不同距离处。由此,本领域技术人员可以容易想到通过不同的弧形内凹面设计实现超声波的不同的聚焦距离和聚焦强度。
41.当超声发射器的数量多于一个时,多个超声发射器所发射的超声波例如可以在一定区域处叠加,优选地,在聚焦区域处叠加。该超声波叠加区域例如位于人体或实验动物4处。如图4所示,两个超声发射器,例如第一超声发射器和第二超声发射器,处于正交布置,互相垂直。通过控制器控制两路高频交变电压的相位,可以控制第一超声发射器和第二超声发射器的相位,在超声波聚焦处可以产生超声振动叠加,从而控制叠加后超声波的振动方向。通过控制器控制两路超声波的高频交变电压的幅值,可以控制声振动的幅度,进而控制超声波聚焦处的能量,由此可以控制超声波叠加区域处的超声波能量。
42.尽管图4仅仅示出了两个超声发射器(例如,第一超声发射器和第二超声发射器)所产生的超声波叠加现象,但是本领域技术人员容易想到,超声发射器的数量可以不同于两个,例如,三个超声发射器例如可以以三角形位置布置在人体或实验动物上方,并且都将聚焦区域设置在人体或实验动物某处,由此三个超声发射器所发射的三路超声波在人体或实验动物的该处叠加。进一步地,三个超声发射器例如可以以等边三角形位置布置在人体或实验动物上方。
43.本发明还提供了一种超声控制系统,所述超声控制系统包括如上所述的超声控制装置,还包括可变形结构,所述可变形结构能够置于人体或动物体内,且所述可变形结构采用超声响应材料制成,能够在超声激发作用下释放残余应力从而导致其变形。
44.在治疗或科研工作时,可以将植入可变形结构的人体或者实验动物放置于固定平台1上,并使得植入的可变形结构的超声响应材料处于超声发射器的超声聚能器的聚焦范围内,根据该超声响应材料所需的频率和能量,设定控制器的输出电压频率和幅值后开始输出高频交变电压。例如,当使用两个超声发射器时,分别向两个超声发射器输出两路高频交变电压,在一个实施周期内,两路高频交变电压的相位差从零开始逐渐增大到180度,然后再降低为零,实现超声振动的全方向扫描,有利于提高对超声响应材料的驱动能力。并且,在使用过程中可以设定开启周期的时间和电压幅值,从而实现对超声响应材料的缓慢长时间低能量驱动或者短促时间高能量驱动,实现针对不同超声响应材料进行最优化的驱动效果。
45.由此,本发明利用超声发射器和超声响应材料实现了对人体或实验动物体内的血管或神经的受控压迫。其中,通过设置超声发射器的数量、结构设计和布置实现了超声波在人体或实验动物体内的特定区域处的聚焦和叠加,并且通过设定控制器输出电压频率和幅
值来输出高频交变电压来实现超声振动的全方向扫描,提高了对超声响应材料的驱动能力,从而优化了对超声响应材料的驱动效果,提高了对人体或实验动物体内的血管或神经的受控压迫的控制能力。
46.本发明未详细阐述的部分属于本领域公知技术。以上所述的实施例仅是对本发明的优选实施方式进行描述,优选实施例并没有详尽叙述所有的细节,也不限制该发明仅为所述的具体实施方式。在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献