一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种高动态响应低反弹的永磁-电磁协同耦合高速电磁阀

2022-06-02 14:36:58 来源:中国专利 TAG:


1.本发明涉及的是一种柴油机,具体地说是柴油机高压共轨装置。


背景技术:

2.高压共轨喷油系统因具有喷油规律、喷油量和喷油时刻柔性可调等优势,可以根据发动机具体工况实现最佳的喷油特性的调节,因而是现代化柴油机实现高效、低排的核心系统之一。高速电磁阀作为高压共轨系统核心部件-共轨喷油器的执行部件,承担电信号和喷油特性的桥梁,电控系统正是通过高速电磁阀实现对任意喷油规律的精确调节、控制。
3.为实现喷油规律精确控制以及更加灵活的多次喷射,电控燃油系统对高速电磁阀的动态响应特性提出非常高的技术要求。高速电磁阀采用“peak-hold”电流进行驱动,其过程为,在电磁阀打开初始阶段,控制系统采用高的驱动电压,目的是通过瞬间形成的大电流来加快衔铁的抬升速度,在衔铁达到最大升程后,采用相对较小的电流来维持吸合状态,从而在衔铁释放时线圈电流能够快速归零加快衔铁的落座。瞬间加载高电流可以实现高速电磁阀更快的打开,但是,对于高频脉冲喷射的电控燃油系统来说,过大的驱动电流会使得励磁线圈产生较大的焦耳热,而且,瞬间加载大的驱动电流使得铁芯产生较大的涡流损耗,这会阻碍电磁阀电磁力的快速增加,延缓电磁阀的快速打开。此外,更快的打开和关闭会导致上升/下降过程中衔铁和电磁阀限位部件/阀座之间产生强烈撞击而出现衔铁达到限位后的多次无规律的反弹,高速电磁阀无法实现一次性的完全打开和关闭。对于柴油电控燃油喷射系统来说,一方面要求高速电磁阀的开启和关闭响应时间越短越好,另一方面要求高速电磁阀稳定的打开和落座,这两个矛盾的技术指标是高速电磁阀目前研究的热点和难点,也是亟需解决的技术问题。


技术实现要素:

4.本发明的目的在于提供能够有效增大衔铁吸合时的电磁力,提高动态响应速度,并且有利于铁芯的快速退磁,加快衔铁的释放速度;同时能够降低衔铁吸合和落座时的反跳程度,在提高高速电磁阀的动态性能基础上提升其工作稳定性的一种高动态响应低反弹的永磁-电磁协同耦合高速电磁阀。
5.本发明的目的是这样实现的:
6.本发明一种高动态响应低反弹的永磁-电磁协同耦合高速电磁阀,其特征是:包括壳体、铁芯、衔铁、复位弹簧腔体、阀杆,壳体的顶部和底部分别设置固定螺母和紧固螺母,铁芯安装于壳体里,铁芯设置环形凹槽,环形凹槽里嵌入线圈骨架,线圈骨架缠绕线圈,铁芯中间开有轴向中心通孔,轴向中心通孔里安装弹簧限位套,铁芯下方依次设置衔铁、复位弹簧腔体,阀杆穿过复位弹簧腔体、衔铁,阀杆的上部位于弹簧限位套里,阀杆位于复位弹簧腔体里的部分套有衔铁复位弹簧,弹簧限位套里设置上圆盘永磁体、下圆盘永磁体、弹簧垫片,上圆盘永磁体和下圆盘永磁体之间安装超磁致伸缩体,上圆盘永磁体与固定螺母之间安装第一缓冲弹簧,下圆盘永磁体与弹簧垫片之间安装第二缓冲弹簧,弹簧垫片与阀杆
之间形成缓冲气隙。
7.本发明还可以包括:
8.1、上圆盘永磁体和下圆盘永磁体均为轴向辐射充磁且极性相同。
9.2、衔铁上端面嵌入外永磁环和内永磁环,复位弹簧腔体上端面嵌入缓冲永磁环。
10.3、外永磁环和内永磁环与衔铁上端面平齐,外永磁环位于内永磁环外部,缓冲永磁环与外永磁环处在同一轴向位置上下对齐,缓冲永磁环的一部分位于复位弹簧腔体上方且与衔铁分隔开。
11.4、外永磁环和内永磁环的充磁方向均为轴向辐射充磁但极性相反,缓冲永磁环与外永磁环的充磁方向均为轴向辐射充磁但极性相反。
12.5、外永磁环、内永磁环和缓冲永磁环为完整的磁环或是均匀间隔的磁环。
13.6、外永磁环和缓冲永磁环为均匀间隔的磁环时,外永磁环与缓冲永磁环间隔角度相同,同时外永磁环和内永磁环间隔角度不同。
14.7、衔铁所在腔室的壳体内壁设置衔铁升程调节环。
15.本发明的优势在于:
16.(1)在本发明中,衔铁嵌入内外永磁环的结构能够实现永磁-电磁协同耦合励磁,当线圈通过拟定方向的电流时产生与内外永磁环极化方向相同的磁场,线圈产生的磁场和内外永磁环产生的磁场叠加,穿过衔铁的总磁通量增加,使得衔铁受到的轴向电磁吸力变大,提高高速电磁阀的动态响应;
17.(2)超磁致伸缩体受到铁芯中心孔的磁场作用,在阀杆上升过程中其轴向逐渐伸长,进而逐渐压缩缓冲弹簧,使阀杆受到柔性弹簧力的作用,实现衔铁顶部碰撞的低反弹;
18.(3)当线圈从通电状态转为不通电状态时,超磁致伸缩体从伸长状态逐渐缩短至正常高度,起初缓冲弹簧的作用力较大,因此不会产生自锁,并且加快衔铁的回落速度,超磁致伸缩体磁畴产生的磁场形成的涡流与铁芯内残余涡流方向相反,能够加快铁芯退磁,加速衔铁落座;
19.(4)在衔铁落座过程中,缓冲永磁环作用在衔铁上的斥力柔性增大,降低衔铁落座时的反弹。
附图说明
20.图1为本发明的结构示意图;
21.图2为超磁致伸缩组件的局部放大图;
22.图3a为完成的磁环示意图,图3b为四等分均匀间隔的磁环,图3c为三等分均匀间隔的磁环;
23.图4为线圈通电时永磁-电磁协同耦合磁路示意图;
24.图5为超磁致伸缩体在线圈不通电时(左)和通电时(右)的结构示意图;
25.图6为线圈不通电时超磁致伸缩体的磁路示意图。
具体实施方式
26.下面结合附图举例对本发明做更详细地描述:
27.结合图1-6,本发明的组成包括壳体1、铁芯2、线圈3、线圈骨架4、外永磁环5、内永
磁环6、缓冲永磁环7、衔铁8、衔铁复位弹簧9、固定螺母10、超磁致伸缩组件11、弹簧限位套12、阀杆13、衔铁上卡环14、衔铁升程调节环15、衔铁下卡环16、复位弹簧腔体17、复位弹簧垫片18、紧固螺母19。壳体1的顶部和底部分别设置固定螺母10和紧固螺母19,铁芯2上开有环形凹槽形成铁芯主磁极和副磁极。线圈3缠绕在线圈骨架4中,线圈骨架4的径向宽度等于铁芯环形凹槽的宽度、轴向高度等于或小于铁芯环形凹槽的深度,线圈骨架4嵌入在所述铁芯环形凹槽内。铁芯2的中间开有轴向中心通孔,紧固螺母19和复位弹簧腔体17中心同样开有中心孔,阀杆13穿过紧固螺母19和复位弹簧腔体17,阀杆13顶部位于铁芯中心孔内。衔铁升程调节环15布置在铁芯2与复位弹簧腔体17之间,衔铁复位弹簧9位于复位弹簧腔体17内,复位弹簧垫片18与阀杆13螺纹连接,阀杆顶端上表面与弹簧垫片的轴向距离小于衔铁与铁芯轴向距离。衔铁8安装在阀杆13上部,在衔铁8顶部嵌入有外永磁环5和内永磁环6,外永磁环5和内永磁环6的充磁方向均为轴向辐射充磁但极性相反。外永磁环5和内永磁环6的上表面与衔铁8的上表面平齐,外永磁环5和内永磁环6的下表面不超过衔铁8的下表面,外永磁环5的内环直径大于线圈3的外环直径,内永磁环6的外环直径小于线圈3的内环直径。复位弹簧腔体17顶部嵌有缓冲永磁环7,缓冲永磁环7与外永磁环5的充磁方向均为轴向辐射充磁但极性相反,缓冲永磁环7的内环直径等于外永磁环5的内环直径,缓冲永磁环7的外环直径等于外永磁环5的外环直径,缓冲永磁环7与外永磁环5处在同一轴向位置上下对齐,缓冲永磁环7不完全嵌入复位弹簧腔体17,缓冲永磁环7上表面高于复位弹簧腔体17上表面但不与衔铁8下表面接触,缓冲永磁环7的嵌入部分与复位弹簧腔体17过盈配合。外永磁环5、内永磁环6和缓冲永磁环7可以是完整的磁环;或是均匀间隔的磁环且三个永磁环间隔角度相同;或是均匀间隔的永磁环,且外永磁环5与缓冲永磁环7间隔角度相同,但外永磁环5和内永磁环6间隔角度不同。在铁芯2轴向中心通孔内设有超磁致伸缩组件11,超磁致伸缩组件11包括超磁致伸缩体21、缓冲弹簧23、上圆盘永磁体20、下圆盘永磁体22、弹簧垫片24,上圆盘永磁体20和下圆盘永磁体22分别设置在超磁致伸缩体21上下两端,上圆盘永磁体20和下圆盘永磁体22均为轴向辐射充磁且极性相同,上圆盘永磁体20顶部和下圆盘永磁体22底部设有缓冲弹簧23,并且下圆盘永磁体22底部的缓冲弹簧23布置有弹簧垫片24,弹簧垫片卡24在弹簧限位套12处,缓冲弹簧23均处于压缩状态。
28.结合图4,本发明的永磁-电磁协同耦合磁路原理为,当线圈3通过能够产生与内永磁环6和外永磁环5极化方向相同磁场的电流时,线圈3产生经主磁极27、磁轭26、副磁极29、副磁极气隙30、衔铁8、主磁极气隙28而闭合的磁通φ1,外永磁环5产生经衔铁8、主磁极气隙28、主磁极27、磁轭26、副磁极29、副磁极气隙30而闭合的磁通φ2,内永磁环6产生经主磁极气隙28、主磁极27、磁轭26、副磁极29、副磁极气隙30、衔铁8而闭合的磁通φ3,三者协同耦合叠加,使得衔铁8与铁芯2之间的工作气隙处的磁感应强度增强,穿过衔铁8的总磁通量增加,使得衔铁8受到的轴向电磁吸力变大,提高高速电磁阀的动态响应。
29.结合图5和图6,本发明的超磁致伸缩组件的工作原理为,(1)线圈3通电后,超磁致伸缩组件11中上圆盘永磁体20和下圆盘永磁体22对主磁极27中的磁场起到径向微牵引作用,使得超磁致伸缩体21受到铁芯2中心孔处轴向磁场的作用,因此在阀杆13上升过程中超磁致伸缩体21轴向逐渐伸长,进而逐渐压缩缓冲弹簧23,使阀杆13受到柔性弹簧力的作用,实现衔铁8顶部碰撞的低反弹;(2)当线圈3从通电状态转为不通电状态时,超磁致伸缩体21从伸长状态逐渐缩短至正常高度,起初缓冲弹簧23的作用力较大,因此不会产生自锁,并且
加快衔铁8的回落速度;超磁致伸缩体21内磁畴产生的磁场形成的涡流与铁芯2内残余涡流方向相反,能够加快铁芯2退磁,在衔铁8落座过程中,缓冲永磁环7作用在衔铁8上的斥力柔性增大,降低衔铁8落座时的反弹。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献