一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种基于深度学习的沙漠地震勘探随机噪声建模方法

2022-06-01 20:06:58 来源:中国专利 TAG:


1.本发明属于信号建模技术领域,具体涉及到利用深度随机噪声波动方程神经网络进行沙漠地震勘探随机噪声的建模方法。


背景技术:

2.在沙漠地震勘探过程中,随机噪声的存在会严重影响有效的地震信号的获取,需要对随机噪声进行性质分析和噪声建模。而随机噪声在地下介质的传播过程就是由一种偏微分方程——波动方程支配的复杂物理过程。li(2017)等人建立了均匀介质的地震勘探随机噪声理论模型,并分析了噪声源的动力学特征。在此基础上,feng(2019)等人提出了弱非均匀介质下的随机噪声模型,其中地下介质的弹性参数随着位置变化而变化。由于沙漠地震勘探随机噪声由风噪声和人文噪声等构成,其波场是一个复杂的叠加波场,简单的空间上的叠加无法反映出其内在的物理机制,同时,基于经验模拟的地下介质参数往往过于理想,建立的随机噪声模型不符合实际情况,因此存在很大的提升空间。近些年,深度学习作为机器学习领域的最热点的研究趋势,可以从动态数据中学习其动力学模型。因此,本专利拟使用深度学习算法对沙漠地震勘探随机噪声进行建模,从随机噪声数据中学习到沙漠地震勘探随机噪声传播的动力学模型。


技术实现要素:

3.本发明的目的用一种新的深度随机噪声波动方程神经网络(rnwenet)来学习沙漠地震勘探随机噪声传播的动力学方程,使用数据驱动的方式进行沙漠地震勘探随机噪声建模。
4.本发明的基于深度学习的沙漠地震勘探随机噪声建模方法,包括下列步骤:
5.1.1建立沙漠地震勘探随机噪声源模型:
6.1.1.1模拟风噪声源:
7.风噪声是沙漠地震勘探随机噪声的主要组成部分,利用具有采集环境风速的达文波特谱作为风速谱,根据脉动风压谱求出脉动风压作为点源函数,在风作用位置的圆形邻域内设置m个点源函数,令每个点源函数的相位在(0,2π)区间内均匀分布,模拟风吹过地表时产生的风噪声源场m(t,rm),rm为所有点源的位置信息;
8.1.1.2建立风源激励下的非线性波动方程:
9.沙漠地震勘探随机噪声场表示为风噪声源激励下波动方程的近地表响应;根据各向同性均匀介质下描述风源m(t,rm)激发的二维噪声场u(t,x,y)动态变化的二阶线性波动方程
[0010][0011]
其中:c1,c2为弹性系数,建立复杂介质下二阶非线性波动方程:
[0012][0013]
其中:表示u(t,x,y)的在x方向i阶微分和y方向的j阶微分;f为微分项{u
00
,u
10
,u
01
,u
11
,u
20
,u
02
}的非线性响应;
[0014]
1.1.3建立时间离散的沙漠地震勘探随机噪声模型:
[0015]
采用中心差分法以δt为步长对波动方程进行时间离散,得到时间离散的二阶非线性波动方程:
[0016]
u(t δt,x,y)=2u(t,x,y)-u(t-δt,x,y) δt2×
f(u
00
,u
10
,u
01
,u
11
,u
20
,u
02
) m(t,rm);
[0017]
1.2建立深度随机噪声波动方程神经网络:将时间离散二阶非线性波动方程表示为随机噪声波动方程网络单元,包含卷积层,符号神经网络和相加层;将n个随机噪声波动方程网络单元串联构成随机噪声波动方程神经网络,包括下列步骤:
[0018]
1.2.1卷积层:将微分算子由微分卷积核q
ij
近似,构建6个大小为5
×
5的微分卷积核{q
00
,q
10
,q
01
,q
11
,q
20
,q
02
};
[0019]
计算微分卷积核q
ij
的参数v-1hij
(v-1
)
t

[0020]
其中:h
ij
是微分卷积核q
ij
的矩矩阵,大小5
×
5,第k行第l列元素:
[0021]
为q
ij
的(k-1) (l-1)矩,k,l∈[1,5],矩阵v的第k行第l列元素
[0022]
设定h
ij
矩阵的参数满足h
ij
[k,l]=0,2≤k l≤i j 3,且h
ij
[i 1,j 1]=1后,矩矩阵的其他参数需要学习更新,记作θh;使用满足上述条件的微分卷积核q
ij
近似微分算子,将q
ij
与输入数据u的卷积记作a
ij
u;卷积层的输入u(t,x,y)经函数fq映射为:
[0023]
{a
00
u,a
10
u,a
01
u,a
11
u,a
20
u,a
02
u}=fq(u(t,x,y);θh);
[0024]
1.2.2符号回归神经网络:构建4层符号回归神经网络学习非线性响应:f(a
00
u,a
10
u,a
01
u,a
11
u,a
20
u,a
02
u);输入层有6个神经元,将微分卷积核的输出作为符号神经网络的输入;第σ∈{1,2}层隐含层的前5 σ个神经元与上一层神经元一对一连接,权重为1,同时,第σ个隐含层比上一层增加1个神经元第σ个隐含层比上一层增加1个神经元和分别为上一层神经元的全连接输出,w
σ
∈r
(5 σ)
×2,b
σ
∈r2分别为权值和偏置;x
σ-1
为上一层的输出;输出层包含一个神经元,与上一层全连接,参数为w3∈r8×1,b3∈r,得到输出θ
net
表示符号回归神经网络各层权值和偏置;
[0025]
1.2.3相加层:将符号回归神经网络的输出增益δt2,与u(t,x,y),u(t-δt,x,y),m(t,rm)相加,预测t δt时刻波场
[0026][0027]
利用符号回归神经网络参数学习非线性响应f的解析形式,获得随机噪声波动方程模型;
[0028]
1.2.4将n个网络单元串联构成深度随机噪声波动方程神经网络,用来学习随机噪声n个时间步长的动态特性;
[0029]
1.3建立深度随机噪声波动方程神经网络的代价函数;
[0030]
1.3.1构建网络预测结果与实际结果的均方误差代价函数:
[0031]
p∈[1,n]为待训练的网络单元个数,为p个网络单元串联的预测输出,通过均方误差代价函数使其逼近真实噪声数据u(t pδt,
·
),使用拟牛顿算法最小化代价函数;
[0032]
1.3.2构建矩矩阵参数和符号回归网络参数代价函数:
[0033]

[0034]
其中:为以γ为阈值的huber损失函数;
[0035]
1.3.3将矩矩阵参数和符号回归网络参数代价函数作为均方误差代价函数的正则项,获得深度随机噪声波动方程神经网络的代价函数,增加参数稀疏性,减少过拟合;
[0036]
1.4构建训练集,训练深度随机噪声波动方程神经网络,学习网络参数,包括下列步骤:
[0037]
1.4.1采用即时数据生成方法构建训练集:使用有限差分法求解步骤1.1.2中的源函数激励下的二维线性波动方程生成模拟数据,时间步长δt为0.01秒;使用空间步长为10米,大小为128
×
128的正方形网格模拟二维平面;检波器分布在正方形网格点上,在风速3.5米/秒,点源数量为20的条件下生成风源函数{m(t,rm)},生成随机分布在真实随机噪声幅值区间的二维数据作为初值条件,在吸收边界条件下,求解源函数激励下波动方程中获得二维随机噪声序列{u(t,
·
)},t∈[0,0.1];
[0038]
1.4.2深度随机噪声波动方程神经网络参数优化:
[0039]
1.4.2.1利用步骤1.4.1生成50组随机噪声序列{u(t,
·
)},t∈[0,0.1];使用训练对{u(0,
·
),u(δt,
·
);u(2δt,
·
)}训练第一个网络单元参数,获得最优的网络参数θ={θh,θ
net
};然后将第一个单元的训练结果作为前两个单元的初始参数,使用{u(0,
·
),u(δt,
·
);u(3δt,
·
)}训练前两个单元;重复此过程,直到n个网络单元训练完成;在训练过程中,每个网络单元的参数一致;
[0040]
1.4.2.2网络训练完成后,改变风源函数的风速和点源个数,生成n组不同的源函数序列,重复步骤1.4.2.1,重新训练各网络单元,提高网络泛化能力,获得随机噪声波动方程模型;
[0041]
1.4.2.3另外生成10组随机噪声序列作为测试集,测试网络性能;
[0042]
1.4.3利用真实随机噪声学习随机噪声非线性波动方程,包括下列步骤:
[0043]
1.4.3.1在无源函数条件下,输入真实沙漠地震勘探随机噪声样本对,按照步骤1.4.2进行参数优化初步学习到随机噪声波动方程模型θ0;
[0044]
1.4.3.2根据实测环境的风速和地表情况改变源函数的数量以及分布,生成β个模拟风噪声源函数{m(t,rm)},将其作为激励输入到训练好的模型中,生成β组模拟随机噪声,对比实际噪声和模拟噪声的频谱,以及统计量特性,选择生成噪声性质最接近的源函数
[0045]
1.4.3.3将源函数作为输入,以θ0为初始条件,重新输入到训练好的网络中,利用另一组真实随机噪声样本对对网络参数进行微调,获得随机噪声波动方程模型
[0046]
1.4.4根据确定随机噪声波动方程解析形式:
[0047]
中线性微分项{u
00
,u
10
,...,u
02
}的系数分别为θ
net
中权值非线性微分项[u
00
,u
10
,...,u
02
]
τ
×
[u
00
,u
10
,...,u
02
]和的系数分别为和最后将模拟源函数带入随机噪声波动方程模型中生成n个采样步长的沙漠地震勘探随机噪声模拟数据。
[0048]
本发明所解决的技术问题:沙漠地震勘探数据中往往存在大量随机噪声,影响地震信号的检测和识别,必须进行噪声压制工作。认识和了解沙漠地震勘探随机噪声的产生机制,建立符合实际地震勘探环境的随机噪声模型是进行噪声压制的先决条件。本发明提出了一种深度随机噪声波动方程神经网络,使用数据驱动的方式解决随机噪声建模问题。深度随机噪声波动方程神经网络由多个随机噪声波动方程神经网络单元叠加而成,每个网络单元由一个可学习的卷积层和一个符号回归神经网络构成。以采集到的动态数据为输入,首先经过卷积层使其能够近似不同微分算子,然后输入到符号回归神经网络中,学习不同微分项之间的非线性响应,最终学习到沙漠地震勘探随机噪声传播的动力学方程准确形式即为随机噪声模型。
[0049]
本发明的优点在于:针对沙漠地震勘探随机噪声建模难以精准模拟沙漠地下介质参数和复杂勘探环境信息的问题,提出了一种学习地震勘探随机噪声动态变化的深度随机噪声波动方程神经网络,用于随机噪声建模问题。沙漠地震勘探随机噪声是由多种噪声源激发的波场叠加而成,基于经验模拟的地下介质参数往往过于理想,这会导致建立的噪声模型不能完全符合实际情况。本发明利用数据驱动的方式,直接从沙漠地震勘探随机噪声数据中学习控制随机噪声传播的动力学模型,所设计的可学习的微分卷积核能够很好的近似不同阶次不同方向的微分算子,同时根据符号回归神经网络得到随机噪声动力学方程解析形式,建立随机噪声模型。所建立的模型能够生成与实际噪声性质相近的模拟沙漠地震勘探随机噪声。
附图说明
[0050]
图1为基于深度随机噪声波动方程神经网络的沙漠地震勘探随机噪声建模方法的流程图;
[0051]
图2为深度随机噪声波动方程神经网络结构模型;
[0052]
图3为检波器和噪声源位置图;
[0053]
图4为解析法求解波动方程生成噪声;
[0054]
图5为深度随机噪声波动方程神经网络生成噪声;
[0055]
图6解析法求解波动方程生成噪声fk谱;
[0056]
图7为深度随机噪声波动方程神经网络生成噪声fk谱。
具体实施方式
[0057]
本发明的基于深度学习的沙漠地震勘探随机噪声建模方法,包括下列步骤:
[0058]
1.1建立沙漠地震勘探随机噪声源模型:
[0059]
1.1.1模拟风噪声源:
[0060]
风噪声是沙漠地震勘探随机噪声的主要组成部分,利用具有采集环境风速的达文波特谱作为风速谱,根据脉动风压谱求出脉动风压作为点源函数,在风作用位置的圆形邻域内设置m个点源函数,令每个点源函数的相位在(0,2π)区间内均匀分布,模拟风吹过地表时产生的风噪声源场m(t,rm),rm为所有点源的位置信息;
[0061]
1.1.2建立风源激励下的非线性波动方程:
[0062]
沙漠地震勘探随机噪声场表示为风噪声源激励下波动方程的近地表响应;根据各向同性均匀介质下描述风源m(t,rm)激发的二维噪声场u(t,x,y)动态变化的二阶线性波动方程
[0063][0064]
其中:c1,c2为弹性系数,建立复杂介质下二阶非线性波动方程:
[0065][0066]
其中:表示u(t,x,y)的在x方向i阶微分和y方向的j阶微分;f为微分项{u
00
,u
10
,u
01
,u
11
,u
20
,u
02
}的非线性响应;
[0067]
1.1.3建立时间离散的沙漠地震勘探随机噪声模型:
[0068]
采用中心差分法以δt为步长对波动方程进行时间离散,得到时间离散的二阶非线性波动方程:
[0069]
u(t δt,x,y)=2u(t,x,y)-u(t-δt,x,y) δt2×
f(u
00
,u
10
,u
01
,u
11
,u
20
,u
02
) m(t,rm);
[0070]
1.2建立深度随机噪声波动方程神经网络:将时间离散二阶非线性波动方程表示为随机噪声波动方程网络单元,包含卷积层,符号神经网络和相加层;将n个随机噪声波动方程网络单元串联构成随机噪声波动方程神经网络,包括下列步骤:
[0071]
1.2.1卷积层:将微分算子由微分卷积核q
ij
近似,构建6个大小为5
×
5的微分卷积核{q
00
,q
10
,q
01
,q
11
,q
20
,q
02
};
[0072]
计算微分卷积核q
ij
的参数v-1hij
(v-1
)
t

[0073]
其中:h
ij
是微分卷积核q
ij
的矩矩阵,大小5
×
5,第k行第l列元素:
[0074]
为q
ij
的(k-1) (l-1)矩,k,l∈[1,5],矩阵v的第k行第l列元素
[0075]
设定h
ij
矩阵的参数满足h
ij
[k,l]=0,2≤k l≤i j 3,且h
ij
[i 1,j 1]=1后,矩矩阵的其他参数需要学习更新,记作θh;使用满足上述条件的微分卷积核q
ij
近似微分算子,将q
ij
与输入数据u的卷积记作a
ij
u;卷积层的输入u(t,x,y)经函数fq映射为:
[0076]
{a
00
u,a
10
u,a
01
u,a
11
u,a
20
u,a
02
u}=fq(u(t,x,y);θh);
[0077]
1.2.2符号回归神经网络:构建4层符号回归神经网络学习非线性响应:f(a
00
u,a
10
u,a
01
u,a
11
u,a
20
u,a
02
u);输入层有6个神经元,将微分卷积核的输出作为符号神经网络的输入;第σ∈{1,2}层隐含层的前5 σ个神经元与上一层神经元一对一连接,权重为1,同时,第σ个隐含层比上一层增加1个神经元第σ个隐含层比上一层增加1个神经元和分别为上一层神经元的全连接输出,w
σ
∈r
(5 σ)
×2,b
σ
∈r2分别为权值和偏置;x
σ-1
为上一层的输出;输出层包含一个神经元,与上一层全连接,参数为w3∈r8×1,b3∈r,得到输出θ
net
表示符号回归神经网络各层权值和偏置;
[0078]
1.2.3相加层:将符号回归神经网络的输出增益δt2,与u(t,x,y),u(t-δt,x,y),m(t,rm)相加,预测t δt时刻波场
[0079][0080]
利用符号回归神经网络参数学习非线性响应f的解析形式,获得随机噪声波动方程模型;
[0081]
1.2.4将n个网络单元串联构成深度随机噪声波动方程神经网络,用来学习随机噪声n个时间步长的动态特性;
[0082]
1.3建立深度随机噪声波动方程神经网络的代价函数;
[0083]
1.3.1构建网络预测结果与实际结果的均方误差代价函数:
[0084]
p∈[1,n]为待训练的网络单元个数,为p个网络单元串联的预测输出,通过均方误差代价函数使其逼近真实噪声数据u(t pδt,
·
),使用拟牛顿算法最小化代价函数;
[0085]
1.3.2构建矩矩阵参数和符号回归网络参数代价函数:
[0086]

[0087]
其中:为以γ为阈值的huber损失函数;
[0088]
1.3.3将矩矩阵参数和符号回归网络参数代价函数作为均方误差代价函数的正则项,获得深度随机噪声波动方程神经网络的代价函数,增加参数稀疏性,减少过拟合;
[0089]
1.4构建训练集,训练深度随机噪声波动方程神经网络,学习网络参数,包括下列步骤:
[0090]
1.4.1采用即时数据生成方法构建训练集:使用有限差分法求解步骤1.1.2中的源函数激励下的二维线性波动方程生成模拟数据,时间步长δt为0.01秒;使用空间步长为10米,大小为128
×
128的正方形网格模拟二维平面;检波器分布在正方形网格点上,在风速3.5米/秒,点源数量为20的条件下生成风源函数{m(t,rm)},生成随机分布在真实随机噪声幅值区间的二维数据作为初值条件,在吸收边界条件下,求解源函数激励下波动方程中获
得二维随机噪声序列{u(t,
·
)},t∈[0,0.1];
[0091]
1.4.2深度随机噪声波动方程神经网络参数优化:
[0092]
1.4.2.1利用步骤1.4.1生成50组随机噪声序列{u(t,
·
)},t∈[0,0.1];使用训练对{u(0,
·
),u(δt,
·
);u(2δt,
·
)}训练第一个网络单元参数,获得最优的网络参数θ={θh,θ
net
};然后将第一个单元的训练结果作为前两个单元的初始参数,使用{u(0,
·
),u(δt,
·
);u(3δt,
·
)}训练前两个单元;重复此过程,直到n个网络单元训练完成;在训练过程中,每个网络单元的参数一致;
[0093]
1.4.2.2网络训练完成后,改变风源函数的风速和点源个数,生成n组不同的源函数序列,重复步骤1.4.2.1,重新训练各网络单元,提高网络泛化能力,获得随机噪声波动方程模型;
[0094]
1.4.2.3另外生成10组随机噪声序列作为测试集,测试网络性能;
[0095]
1.4.3利用真实随机噪声学习随机噪声非线性波动方程,包括下列步骤:
[0096]
1.4.3.1在无源函数条件下,输入真实沙漠地震勘探随机噪声样本对,按照步骤1.4.2进行参数优化初步学习到随机噪声波动方程模型θ0;
[0097]
1.4.3.2根据实测环境的风速和地表情况改变源函数的数量以及分布,生成β个模拟风噪声源函数{m(t,rm)},将其作为激励输入到训练好的模型中,生成β组模拟随机噪声,对比实际噪声和模拟噪声的频谱,以及统计量特性,选择生成噪声性质最接近的源函数
[0098]
1.4.3.3将源函数作为输入,以θ0为初始条件,重新输入到训练好的网络中,利用另一组真实随机噪声样本对对网络参数进行微调,获得随机噪声波动方程模型
[0099]
1.4.4根据确定随机噪声波动方程解析形式:
[0100]
中线性微分项{u
00
,u
10
,...,u
02
}的系数分别为θ
net
中权值非线性微分项[u
00
,u
10
,...,u
02
]
τ
×
[u
00
,u
10
,...,u
02
]和的系数分别为和最后将模拟源函数带入随机噪声波动方程模型中生成n个采样步长的沙漠地震勘探随机噪声模拟数据。
[0101]
实施例
[0102]
1.工作条件
[0103]
本发明的实验平台采用intel(r)core(tm)i5-8300h cpu@2.30ghz 2.30ghz,内存为8gb,运行windows10的pc机,语言为python语言。运行环境为python==3.7、torch==1.1.0、scipy==1.3.1以及matplotlib。
[0104]
2.实验内容与结果分析
[0105]
下面通过对模拟数据的实验来说明本发明的效果,并结合附图进一步说明本发明的实施流程:
[0106]
本专利的流程图如图1所示,在已知沙漠地震勘探随机噪声波动方程最高阶为二
阶的基础上,构建如图2所示的深度随机噪声波动方程神经网络模型,随机噪声网络单元个数n=9,每个网络单元结构相同,使用微分卷积核近似波动方程中的微分项,并通过符号回归网络学习各微分项之间的非线性响应。本专利实验中符号回归网络的隐含层层数为2,卷积核和矩矩阵的大小为5
×
5。为了验证所提出的网络模型,使用二阶线性波动方程生成模拟随机噪声数据,波动方程弹性系数c1,c2为100。如图3所示,差分网格中心点为原点,噪声点源均匀分布在以位置(-50,0)为圆心,半径50米的圆形区域内,风速为3.5米/秒,生成源函数m(t,
·
),将其带入波动方程中,使用有限差分法求解波动方程,检波器置于二维平面的正方形网格上,间隔10米,数量为128
×
128,时间采样周期为0.01秒,共生成450组用于训练的模拟噪声数据,每一批包含50组二维噪声数据。网络全部可训练参数θ={θh,θ
net
},使用逐单元训练方法。首先使用一批数据在第一个网络单元训练网络参数,然后将第一个单元的训练结果作为前两个单元的初始化参数,并使用另一批数据训练前两个单元,重复此过程,直到所有网络单元训练完成。在训练过程中所有单元中的参数可以共享。使用拟牛顿算法更新参数,当损失函数最小时网络参数为最优参数。
[0107]
为了证明使用可学习卷积核的必要性,本发明将所提出的包含可学习卷积核的深度随机噪声波动方程神经网络(rnwenet)与卷积核无法学习的固定卷积核深度随机噪声波动方程神经网络(f-rnwenet)进行比较,两种方法的训练集和训练方法完全相同。训练完成后,根据符号回归神经网络参数确定随机噪声波动方程解析形式,当微分项系数小于0.01时表示该微分项不存在,最终实验结果见表1。
[0108]
表1 波动方程解析形式的预测结果
[0109][0110]
从表1可以看出,与固定卷积核的波动方程神经网络方法相比,本发明所提出的方法得到的随机噪声波动方程更接近真实结果。接下来使用深度随机噪声波动方程神经网络生成沙漠地震勘探随机噪声。将风速为3.5米/秒的噪声源输入到训练好的网络,生成模拟沙漠地震勘探随机噪声,并与在相同源函数作用下使用格林函数解析法求解波动方程生成的随机噪声进行对比。通过比较模拟噪声记录(图4和图5)可以看出二者在地震记录中具有相似特征。通过比较二者的频率波数谱(图6和图7)可以发现,由风噪声源产生的沙漠地震勘探随机噪声频率较低,主要分布在0-15hz区间。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献