一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

尿液电化学检测方法与流程

2022-05-27 00:24:02 来源:中国专利 TAG:


1.本发明属于生物检测技术领域,具体涉及一种尿液电化学检测方法。


背景技术:

2.尿液检查包括尿常规分析、尿液中有形成分检测(如尿红细胞、白细胞等)、蛋白成分定量测定、尿酶测定等。尿液检查对临床诊断、判断疗效和预后有着十分重要的价值。
3.现有技术中,一般选用普通的化学试纸对尿液进行检测,由人工判断尿液的相关情况,此种方式检测出的尿液数据不精确。


技术实现要素:

4.有鉴于此,本发明提供了一种尿液电化学检测方法,用以解决现有技术中存在的采用普通化学试纸对尿液进行检测以致检测出的尿液数据不精确的问题。
5.本发明采用的技术方案:
6.本发明提供了一种尿液电化学检测方法,包括:
7.检测电化学检测芯片是否工作正常;
8.当所述电化学检测芯片工作正常时,在所述电化学检测芯片的反应部滴上尿液样本;
9.对滴上尿液样本后的所述电化学检测芯片进行导电识别,所述导电识别是通过判断所述电化学检测芯片上是否有电流产生进行识别;
10.当导电识别出所述电化学检测芯片上有电流产生,则获取所述电化学检测芯片上的至少一个电流值;
11.将所有电流值与预设的参考电流值进行比对,输出检测结果。
12.作为上述尿液电化学检测方法的优选方案,所述方法还包括:
13.当所述电化学检测芯片工作非正常时,发出报警信息。
14.作为上述尿液电化学检测方法的优选方案,所述方法还包括:
15.当导电识别出所述电化学检测芯片上没有电流产生,在所述电化学检测芯片的反应部继续滴上尿液样本。
16.作为上述尿液电化学检测方法的优选方案,所述方法还包括:
17.对尿液进行取样得到尿液样本。
18.作为上述尿液电化学检测方法的优选方案,所述方法还包括:
19.在输出检测结果时,提示移除所述电化学检测芯片。
20.作为上述尿液电化学检测方法的优选方案,所述方法还包括:
21.在输出检测结果后,启动清洗操作。
22.作为上述尿液电化学检测方法的优选方案,所述电化学检测芯片包括:
23.绝缘基板;
24.若干芯片电极,若干所述芯片电极在所述绝缘基板上形成反应部和导电部,尿液
在反应部上使若干所述芯片电极导通产生若干电信号通过导电部进行传输,若干所述电信号用于检测尿液电化学指标。
25.作为上述尿液电化学检测方法的优选方案,所述方法在所述检测电化学检测芯片是否工作正常的步骤前还包括:
26.在所述反应部的芯片电极上添加检测材料;
27.作为上述尿液电化学检测方法的优选方案,所述在所述反应部的芯片电极上添加检测材料的步骤包括:
28.在所述反应部的芯片电极上添加同一种检测材料或多种检测材料。
29.作为上述尿液电化学检测方法的优选方案,所述将所有电流值与预设的参考电流值进行比对,输出检测结果包括:
30.设定一个参考电流序列a,序列a=a1,a2

an,其中n表示序列长度,为正整数;
31.设定所述电化学检测芯片上有电流产生时电流值构成的时间电流序列b,序列b=b1,b2

bm,m表示序列长度,且为正整数;
32.依据所述参考电流序列a以及所述m值,从电流序列模板库中筛选出标准电流序列c,序列c=c1,c2

cm;
33.根据an和cm,获取第一动态时间规整距离dtw1;
34.根据an和bm,获取第二动态时间规整距离dtw2;
35.比较所述第一动态时间规整距离dtw1和所述第二动态时间规整距离dtw2,确定所述电化学检测芯片的检测结果。
36.综上所述,本发明的有益效果如下:
37.本发明提供的尿液电化学检测方法对滴上尿液样本后的所述电化学检测芯片进行导电识别,所述导电识别是通过判断所述电化学检测芯片上是否有电流产生进行识别,当导电识别出所述电化学检测芯片上有电流产生,则获取所述电化学检测芯片上的至少一个电流值;将所有电流值与预设的参考电流值进行比对,输出检测结果,不用人工通过视觉进行判断尿液的相关情况,采用数字化的方式检测出的尿液数据更精确。
38.同时,本发明还会检测电化学检测芯片是否工作正常,只有当所述电化学检测芯片工作正常时,才会在所述电化学检测芯片的反应部滴上尿液样本进行尿液检测,避免当电化学检测芯片工作异常时依然进行滴样,无法达到检测目的;
附图说明
39.为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图,这些均在本发明的保护范围内。
40.图1为本发明智能马桶的立体图;
41.图2为本发明智能马桶的侧视图;
42.图3为本发明智能马桶的内部结构图;
43.图4为本发明智能马桶的爆炸图;
44.图5为本发明尿液取样头的立体图;
45.图6为本发明弹性件的结构示意图;
46.图7为本发明圆形取样头本体上部的结构示意图;
47.图8为本发明凹形取样头本体上部的结构示意图;
48.图9为本发明平面形取样头本体上部的结构示意图;
49.图10为本发明尿液取样器的结构示意图;
50.图11为本发明转接机构的立体图;
51.图12为本发明可更换试剂耗材盒的结构示意图一;
52.图13为本发明可更换试剂耗材盒的结构示意图二;
53.图14为本发明可更换试剂耗材盒的内部结构图;
54.图15为本发明耗材收纳盒的结构示意图一;
55.图16为本发明耗材收纳盒的结构示意图二;
56.图17为本发明耗材收纳盒的内部结构图;
57.图18为本发明微流控检测芯片的立体图;
58.图19为本发明微流控检测芯片的内部结构图;
59.图20为本发明微流控检测芯片的爆炸图;
60.图21为本发明显微图像信息采集模块的立体图;
61.图22为本发明显微镜本体内部的结构图;
62.图23为本发明显微图像采集模组的立体图;
63.图24为本发明光学信息采集模组的立体图;
64.图25为本发明光学信息采集组件与微流控检测芯片的位置关系图;
65.图26为本发明荧光/光谱微流控检测芯片的内部结构图;
66.图27为本发明荧光/光谱微流控检测芯片的爆炸图;
67.图28为本发明反应部与导电部位于不同测的电化学检测芯片结构示意图;
68.图29为本发明反应部的结构示意图;
69.图30为本发明导电部的结构示意图;
70.图31为本发明反应部与导电部位于同一侧的电化学检测芯片结构示意图;
71.图32为本发明体液电化学检测模组的结构示意图一;
72.图33为本发明体液电化学检测模组的结构示意图二;
73.图34为本发明体液电化学检测模组的爆炸图;
74.图35为本发明体液电化学检测模组的内部结构图一;
75.图36为本发明体液电化学检测模组的内部结构图二;
76.图37为本发明反应腔的结构示意图;
77.图38为本发明电化学体液检测装置的立体图;
78.图39为本发明电化学体液检测装置的爆炸图;
79.图40为本发明实施例15人体生化指标快速检测系统原理图;
80.图41为本发明实施例16基于显微图像的尿液检测方法的各步骤流程示意图;
81.图42为本发明实施例16步骤s120之后的基于显微图像的尿液检测方法的各步骤流程示意图;
82.图43为本发明实施例16步骤s150包括的各步骤流程示意图;
83.图44为本发明实施例17基于荧光试剂的尿液成分检测方法的各步骤流程示意图;
84.图45为本发明实施例17步骤s220之后的基于荧光试剂的尿液成分检测方法的各步骤流程示意图;
85.图46为本发明实施例18尿液成分的光谱检测方法的各步骤流程示意图
86.图47为本发明实施例19尿液电化学检测方法的各步骤流程示意图;
87.图48为本发明实施例19步骤s450包括的各步骤流程示意图;
88.图49为为本发明实施例19两个时间序列之间的欧拉距离示意图;
89.图中零件部件及编号:
90.100、马桶本体;
91.110、底座;120、便槽;
92.200、马桶座圈;
93.210、第三轴承;
94.300、马桶盖体;
95.310、马桶前盖;311、第一轴承;320、马桶后盖;321、第一转动轴;
96.400、尿液取样器;
97.410、尿液取样头;
98.411、取样头本体;411a、通孔;411b、取样头上部;411c、取样头下部;
99.412、连接机构;412a、弹性件;412b、凹槽;412c、凸起;412d、限位机构;
100.420、转接机构;421、转接机构本体;421a、转接凹槽;421b、安装腔;
101.500、取样微流泵;
102.600、耗材收纳盒;
103.610、耗材收纳盒本体;611、电子标签读卡器;612、透明窗口;613、顶针;614、耗材收纳盒出液口;
104.620、可更换试剂耗材盒;
105.621、耗材盒本体;621a、电子标签;621b、透明件;621c、安装孔;
106.622、耗材盒试剂入口;623、耗材盒试剂出口;
107.624、耗材盒密封件;624a、复位件;624b、弹针;624c、盖板;
108.625、第一间隙;626、第二间隙;
109.630、耗材收纳盒上盖;
110.700、尿液检测模组;
111.710、微流控检测芯片;
112.711、检测芯片本体;711a、第一器件腔室;711b、发光器件;711c、第二器件腔室;711d、调温器件;711e、器件密封件;711f、第一腔室盖;711g、第二腔室盖;711h、激发光滤光层;
113.712、检测芯片进样口;713、样本检测腔室;714、第一微流道;715、检测芯片出样口;716、第二微流道;
114.720、显微图像采集模组;
115.730、显微图像信息采集模块;
116.731、显微镜本体;
117.732、镜片组;
118.733、变焦组件;733a、第一放大透镜;733b、第二放大透镜;733c、护镜;
119.734、滤光组件;734a、第一滤光镜;734b、第一滤光镜;
120.735、载物台;
121.736、显微光学信息采集组件;
122.740、光学信息采集模组;
123.741、光学信息采集组件;
124.750、电化学体液检测装置;
125.760、电化学检测芯片;
126.761、绝缘基板;761a、第一隔离件;761b、第二隔离件;
127.762、芯片电极;762a、反应部;762b、导电部;762c、反应部液体出口;
128.770、体液电化学检测模组;
129.771、检测模组本体;771a、反应区;771b、连接区;771c、反应腔;771d、腔体;771e、密封结构;771f、集液槽;771g、进样管道安装孔;
130.772、电化学进样口;
131.773、连接电极;
132.774、电化学出样口;
133.775、进样管道;775a、进样管道本体;775b、进样管道出液口;775c、折弯部;
134.776、出样管道;
135.780、尿液传输管道。
具体实施方式
136.为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。在本发明的描述中,需要理解的是,术语“中心”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本技术和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括
……”
限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。如果不冲突,本发明实施例以及实施例中的各个特征可以相互结合,均在本发明的保护范围之内。
137.实施例1
138.请参见图1和图2,本发明实施例公开了一种智能马桶,既可作为普通马桶使用,也可用于尿液检测领域,对用户尿液进行检测,具体可运用在家庭、企业或医院等场所,如运用在家庭中:患者需要长期疗养,且需要经常检测尿液信息,通过分析尿液数据以确定患者
自身的健康状况,虽然医院的尿检设备齐全,医生专业性也比较高,但是,在医院所要支出的费用也比较多,目前,有较多的家庭都比较拮据,医院的这笔费用会给整个家庭带来一个巨大的负担,若是采用本技术的智能马桶,患者待在家中即可进行尿液检测,不仅省去了医院的各种费用,而且,也更方便家人照顾患者,在家中,家人既可兼顾个人事务和家庭事务,也有更多的时间对患者进行照顾。此外,具有一定生活自理能力的患者也可独自在家中疗养,可根据需要实时知晓自身的身体健康状况。
139.又如在医院中,需要先排队检测,在检测流程中,只能由用户自行在卫生间如厕过程中进行取样,取样完成后,把取样样本交给医务人员进行检测分析,整个过程的取样流程不方便,并且排队需要浪费时间,若是采用本技术提供的智能马桶,客户不用在医院奔波,不需要排队,并且取样的流程也比较简单,使用更为便捷,省时省力。
140.智能马桶包括马桶本体100、马桶座圈200、马桶盖体300、尿液取样器400以及尿液检测模组。马桶本体100作为智能马桶的基体,具有承载各种器件的功能,也能实现普通马桶的排便功能。马桶座圈200设置在马桶本体100上,马桶座圈200与人体贴合度高,马桶座圈200能增加用户如厕时的舒适度,如在天气寒冷时,在马桶上套上马桶座圈200,可以避免冰冷的马桶直接与人体接触,此外,套有马桶座圈200的马桶更加卫生健康,马桶冲水时具有一定的水压,会导致细菌乱溅,马桶座圈200则具有一定的隔离和防护效果。马桶盖体300可以保证马桶的卫生,不使用马桶时合上马桶盖体300,封住马桶本体100,避免细菌、尘土或液体等杂质进入马桶内。尿液取样器400可以设置在马桶本体100内,也可以设置在马桶本体100上方,位于尿液流入到马桶本体100内的路径上,用于对尿液进行取样。尿液检测模组设于马桶盖体300或马桶本体100,用于对尿液取样器400取样的尿液进行取样。
141.为便于理解智能马桶的结构,现对智能马桶各组成部分进行进一步描述,如下:
142.马桶本体100包括底座110和便槽120。底座110下底面与地面接触,底座110上表面与马桶座圈200接触,底座110上表面的长度和宽度均大于下底面的长度和宽度,占地空间小的同时能实现较大的如厕空间。便槽120呈锥形结构,锥形结构倒立设置,锥形顶点位于锥形底面下方,马桶本体100还包括下水管道,下水管道管口一端与便槽120锥形顶点连通,另一端接入便池,锥形结构能够有效地汇聚便槽120内的大小便以及冲洗时的清洗液。
143.马桶盖体300包括马桶前盖310和马桶后盖320,马桶后盖320固定设置在马桶本体100上,位于马桶本体100后部,马桶前盖310与马桶本体100或马桶后盖320转动连接,位于马桶前部,覆于马桶座圈200,盖住便槽120。优选的,在本实施例中,马桶前盖310与马桶后盖320转动连接,具体的,马桶后盖320的两侧设置有第一转动轴321,马桶前盖310上设置有第一轴承311,第一转动轴321安装在第一轴承311上,马桶前盖310可相对马桶后盖320前后转动,以实现马桶前盖310盖住便槽120保护马桶,将马桶前盖310掀起,用户可进行如厕或进行尿液检测。当马桶前盖310与马桶本体100转动连接时,马桶本体100上固定设置有第二转动轴(未图示),马桶前盖310上设置有第二轴承(未图示),将第二轴承套设在第二转动轴上,马桶前盖310可相对马桶本体100前后转动。
144.在马桶前盖310盖住便槽120时,马桶座圈200设置在马桶前盖310与马桶本体100之间,马桶盖体300也可保护马桶座圈200,马桶座圈200与马桶本体100或马桶盖体300转动连接,马桶座圈200上设置有第三轴承210,如此,马桶座圈200与马桶盖体300连接时,第三轴承210与第一转动轴321连接,马桶座圈200与马桶本体100连接时,第三轴承210与第二转
动轴连接。
145.智能马桶还包括耗材收纳盒600,耗材收纳盒600用于为尿液检测模组提供检测条件。耗材收纳盒600包括若干可更换试剂耗材盒620,若干可更换试剂耗材盒620内容纳有用于与尿液混合的试剂。
146.尿液检测模组包括光学尿液检测模组,光学尿液检测模组设置在马桶本体100上或马桶盖体300上。光学尿液检测模组包括显微图像采集模组720、荧光图像采集模组和光谱信息采集模组,显微图像采集模组720采用后述的基于显微图像的尿液检测方法进行尿液检测,荧光图像采集模组采用后述的基于荧光试剂的尿液成分检测方法进行尿液检测,光谱信息采集模组采用后述的尿液成分的光谱检测方法进行尿液检测。尿液检测模组还包括化学尿液检测模组,化学尿液检测模组设置在马桶本体100上或马桶盖体300上。化学尿液检测模组包括干化学尿液检测模组和电化学体液检测装置750,本实施例的电化学体液检测装置750采用后述的尿液电化学检测方法进行尿液检测。
147.智能马桶还包括控制系统、尿液传输管道780和取样微流泵500,尿液传输管道780用于传输尿液,取样微流泵500可以去除尿液中的气泡,也能定量获取和输送尿液,控制系统用于控制尿液取样器400进行尿液取样,控制尿液检测模组700进行尿液检测。
148.实施例2
149.智能马桶包括尿液取样器400,尿液取样器400可以设置在马桶本体100内,也可以设置在马桶本体100上方,用于对流入马桶的尿液进行取样。
150.请参见图10和图11,本发明提供了一种尿液取样器,尿液取样器400包括转接机构420和尿液取样头410,尿液取样头410与转接机构420可拆卸连接,尿液取样头410直接与尿液接触,对尿液进行取样。
151.具体的,尿液取样头410包括弹性件412a,转接机构420包括转接机构本体421,转接机构本体421上设置有安装腔421b,弹性件412a插入安装腔421b,弹性件412a与安装腔421b弹性连接,在外力作用下,可以插入或取出尿液取样头410。尿液取样器400堵塞或需要进行清洗时,可以很方便的拆卸尿液取样头410,从而对尿液取样头410和尿液取样器400进行清洗、修理或更换,操作简单便捷。
152.实施例3
153.请参见图5和图6,本发明实施例公开了一种尿液取样头410,尿液取样头410包括取样头本体411和连接机构412,取样头本体411上设置有通孔411a,用于阻止异物进入,当外部尿液进入经通孔411a进入到取样头本体411内时,通孔411a可以对尿液进行过滤,将尿液中的异物阻挡在取样头本体411外,连接机构412设于取样头本体411的一端,连接机构412上设置有可拆卸结构,可拆卸结构使尿液取样头410与取样装置整体可拆卸连接,取样装置整体是可以用于进行尿液取样的装置,在外力作用下,连接尿液取样头410与取样装置整体,驱动取样装置整体、尿液取样头410进行尿液取样,拆卸尿液取样头410与取样装置整体,可以对尿液取样头410、取样装置整体进行清洗、修理或更换,结构简单,操作便捷。
154.为便于理解尿液取样头410的结构,现将尿液取样头410各组成部分分别进行描述,如下:
155.可拆卸结构的具体结构在此不作限制,只要能使尿液取样头410与取样装置整体可拆卸连接即可,在本实施例中,可拆卸结构包括弹性件、螺纹结构和卡扣等可拆卸结构中
的至少一种,优选的,可拆卸结构选用弹性件,弹性件连接性能良好且便于安装与拆卸。
156.进一步的,请参见图5至图7,连接机构412上设置有弹性件412a,尿液取样头410与尿液取样器400连接时,弹性件412a会与尿液取样器400配合,弹性件412a的弹力会作用在尿液取样器400上,尿液取样器400也会对弹性件412a施加一个相反作用力,同时,弹性件412a与尿液取样器400之间具有摩擦力,在摩擦力的作用下,尿液取样头410与尿液取样器400连接稳定,当需要拆卸尿液取样头410时,对尿液取样头410和尿液取样器400施加施加外力,施加的外力大于弹性件412a与尿液取样器400之间的摩擦力,尿液取样头410可被拔出。
157.弹性件412a为独立的元件,连接机构412上开设有凹槽412b或凸起412c,弹性件412a与凹槽412b或凸起412c匹配,弹性件412a套设在凹槽412b或凸起412c上并由凹槽412b或凸起412c进行固定,当需要安装弹性件412a时,使弹性件412a在外力的作用下张开,使得弹性件412a能穿过连接机构412进入到凹槽412b或凸起412c的外围,此时,撤去外力,使弹性件412a套设在凹槽412b或凸起412c上。弹性件412a的可以为一个,也可以为多个,当弹性件412a数量为一个时,将弹性件412a与连接机构412进行匹配,弹性件412a可能会在外力作用下滑出凹槽412b或凸起412c,无法实现完成安装,优选的,弹性件412a的数量可设置多个,多个弹性件412a不容易滑出凹槽412b或凸起412c槽,可以提高连接的稳定性,当然,凹槽412b或凸起412c的数量应当与弹性件412a的数量一致。进一步的,弹性件412a包括:o形圈、v形圈、矩形圈、楔形圈、x形圈、l形圈、u形圈、开沟的o形圈或星型圈中的一种或几种,当选用为多个不同形状的弹性件412a时,需要保证每个弹性件412a都能与凹槽412b或凸起412c充分连接,优选的,选用多个形状相同的弹性件412a,如:o形圈,与尿液取样器400的接触会更充分,也更好加工。可以理解的是,凹槽412b或凸起412c的形状与弹性件412a的形状相适应,当弹性件412a为凸起412c结构时,选用凹槽412b与凸起412c匹配,当弹性件412a具有凹槽412b结构时,选用与凹槽412b想匹配的凸起412c结构。
158.在一种实施例中,弹性件412a集成在连接机构412上,弹性件412a与连接机构412一体设置,在此种情况下,连接机构412不包括凹槽412b或凸起412c,弹性件412a可以为环形结构,覆盖连接机构412的周面,弹性件412a与尿液取样器400的接触面积更大,连接更稳定。
159.弹性件412a除了有固定尿液取样头410的作用外,还具有密封作用,弹性件412a内圈与凹槽412b或凸起412c紧密贴合,弹性件412a外圈与尿液取样器400紧密贴合,弹性件412a本身具有防水效果,如此,弹性件412a能够防止过滤后的尿液从连接机构412流出,从而将尿液汇聚在取样头本体411内,为尿液检测模组提供充足的尿液样品。
160.在本实施例中,取样头本体411采用金属、陶瓷或塑料等材料制得,在此不做限定,优选的,取样头本体411应选用耐腐蚀性强的材料,如:陶瓷。
161.请参见图5,取样头本体411包括取样头上部411b和取样头下部411c,通孔411a设于取样头上部411b,取样头上部411b直接与尿液进行接触,尿液通过通孔411a流入取样头本体411内,通孔411a的形状在此不作限定,优选的,可以为圆形、方形、椭圆形以及三角形等几何图形,设置通孔411a的目的在于阻止异物进入取样头本体411中,异物可以为粗颗粒性物质,凡最小宽度大于通孔411a最大宽度的物质,通孔411a都可以过滤。进一步的,通孔411a按一定排布方式间隔设置在取样头上部411b,可以呈阵列排布,也可以错位排布,排列
尽量均匀,充分利用取样头上部411b面积,使得取样头上部411b能设置更多的通孔411a,进液量多的同时过滤效果也好。
162.请参见图7,取样头本体411还包括尿液传输管道780,尿液传输管道780用于传输经取样头上部411b的尿液。尿液进入尿液传输管道780后,尿液传输管道780将尿液传输至尿液检测模组中进行尿液检测。
163.进一步的,请参见图5至图9,取样头上部411b为平面形、凹形或凸形。尿液与取样头上部411b直接接触,当取样头上部411b为平面形结构时,取样头便于加工,能节约成本;当取样头上部411b为凹形结构时,留在取样头上部411b上的尿液会沿凹形结构尽可能的流入取样头本体411内,尿液损失少,集尿速度快,检测效率较高;当取样头上部411b为凸形结构时,取样头本体411内部体积更大,尿液取样头410的蓄液量更大,能够提供充足的尿液样本。上述三种结构根据实际情况进行选择,因本尿液取样头410是独立设置的,上述三种阶段的取样头均可进行加工,能够在不同情况下选择更适合的取样头。
164.进一步的,取样头下部411c完全容纳或部分容纳经过通孔411a过滤后的尿液。
165.在取样头下部411c部分容纳过滤后的尿液的情形中,取样头下部411c部分密封或不密封,尿液经通孔411a过滤后穿过过滤结构直接往下流,不会汇聚在过滤结构内,此种情况下,尿液传输管道780的设置位置不固定,其管道的开口设置在尿液流入的路径上,部分尿液直接流入尿液传输管道780,此时,尿液取样器400所取得的尿液样本全是新鲜尿液,尿液检测模组依据该新鲜尿液进行检测,检测结果的参考价值更高。
166.在集液腔完全容纳过滤后的尿液的情形中,取样头下部411c全密封,尿液汇聚在取样头本体411内。尿液传输管道780的末端贴合或靠近取样头下部411c的底部,尿液传输管道780能更稳定的吸取尿液,且吸取的尿液气泡较少,吸取的尿液量更大,能够提高检测效率。
167.进一步的,连接机构412包括限位机构412d,限位机构412d用于限制尿液取样头410的装配角度。具体的,该限位机构412d为限位凸台或限位凹槽,尿液取样器400的转接机构420与连接机构412相连接,转接机构420上设置有与限位凸台或限位凹槽相匹配的转接凹槽421a或转接凸台,凸台与凹槽配合,限制了尿液取样头410的装配角度,并且,可以防止安装好的尿液取样头410发生转动,连接更稳定。
168.取样头本体411与连接机构412一体化设置或者可拆卸连接。一体化设置生产步骤更少,可拆卸连接的取样头本体411和连接机构412加工难度更低,在本实施例中,取样头本体411与连接机构412一体化设置。
169.实施例4
170.智能马桶还包括取样微流泵500,取样微流泵500设置在尿液取样器400与尿液检测模组之间的尿液传输管道上,可用于除去尿液中的气体,通过取样微流泵500的设置,能够对尿液检测实现实时和可控设置,方便精确的尿液检测和控制。
171.实施例5
172.请参见图12至图14,本发明实施例公开了一种可更换试剂耗材盒620,可更换试剂耗材盒620包括耗材盒本体621、耗材盒试剂入口622、耗材盒试剂出口623和耗材盒密封件624,耗材盒试剂入口622和耗材盒试剂出口623均设置在耗材盒本体621上,耗材盒密封件624设于耗材盒试剂出口623,当耗材盒本体621安装时,耗材盒密封件624在外力作用下打
开,耗材盒试剂出口623与外界连通,可更换试剂耗材盒620内的试剂可以从耗材盒试剂出口623流出,在下一工序与尿液混合;当耗材盒本体621拆卸时,耗材盒密封件624复位,耗材盒试剂出口623封闭,试剂无法流出耗材盒试剂出口623,被储存在可更换试剂耗材盒620内。耗材盒密封件624的设置,使得可更换试剂耗材盒620可以随意拆卸且拆卸便捷,拆卸后的可更换试剂耗材盒620密封性良好,便于添加或更换试剂。
173.为便于理解可更换试剂耗材盒620的结构,现将耗材盒本体621、耗材盒试剂入口622、耗材盒试剂出口623以及耗材盒密封件624分别进行描述,如下:
174.耗材盒本体621的形状可以为四面体、锥体、圆柱体或其他多面体结构,其结构不做限定,在本实施例中,耗材盒本体621优选为长方体结构,当可更换试剂耗材盒620数量为多个时,长方体结构的耗材盒本体621间安装会更紧凑,因智能马桶内部结构繁多,空间有限,耗材盒本体621紧凑安装可以合理用于智能马桶的内部空间,并且,长方体形的耗材盒本体621的体积更大,在占用相同空间的情况下,长方体形的耗材盒本体621容量更大,能容纳的试剂更多。
175.耗材盒试剂入口622设置在耗材盒本体621上,可以设于耗材盒本体621顶面,也可设于耗材盒本体621侧面,当耗材盒试剂入口622设于耗材盒本体621侧面时,应尽可能设置在高处,在本实施例中,优选的,耗材盒试剂入口622设于耗材盒本体621顶面,耗材盒试剂入口622设置的位置越高,越不容易影响试剂的存储,如:耗材盒试剂入口622设置在耗材盒本体621侧面,试剂的液面应低于耗材盒试剂入口622的最低点,当耗材盒试剂入口622设于耗材盒本体621顶面时,试剂可以充满整个容器,不存在液面高度受限的情形。
176.请参见图13,耗材盒本体621外设置有用于读取试剂信息的电子标签621a,当可更换试剂耗材盒620内装有试剂时,电子标签621a能对试剂进行检测并读取试剂的相关信息,试剂相关信息包括试剂型号、试剂容量、试剂质量以及试剂存放时间等信息。进一步的,电子标签621a为rfid或nfc标签,rfid技术-线射频识别即射频识别技术(radio frequency identification,rfid),是自动识别技术的一种,通过无线射频方式进行非接触双向数据通信,利用无线射频方式对记录媒体(电子标签或射频卡)进行读写,从而达到识别目标和数据交换的目的。nfc技术-近场通信技术(near field communication),是一种新兴的技术,使用了nfc技术的设备(例如移动电话)可以在彼此靠近的情况下进行数据交换,是由非接触式射频识别(rfid)及互连互通技术整合演变而来的,通过在单一芯片上集成感应式读卡器、感应式卡片和点对点通信的功能,利用移动终端实现移动支付、电子票务、门禁、移动身份识别、防伪等应用。优选的,本实施例选用rfid电子标签,成本低且稳定性较高。
177.请参见图12,耗材盒本体621外设置有用于查看试剂容量的透明件621b,透明件621b可以选用玻璃或透明胶带,兼顾密封作用和观测作用。进一步的,透明件621b上设置有刻度,刻度的范围覆盖试剂的高度范围,以便准确检测试剂容量。
178.请参见图14,耗材盒本体621内还设置有安装孔621c,耗材盒密封件624包括复位件624a、弹针624b和盖板624c,复位件624a设置在安装孔621c内,复位件624a在安装孔621c内往复运动,弹针624b设置在复位件624a下端,复位件624a会带动弹针624b进行往复运动,弹针624b往复运动的过程中能够实现对耗材盒试剂出口623的封闭和打开。盖板624c设置在复位件624a上端,盖板624c用于支撑复位件624a并限制复位件624a的复位位置,复位件624a固定设置在盖板624c上,盖板624c固定设置在可更换试剂耗材盒620内,复位件624a做
往复运动的方向远离盖板624c。
179.当耗材盒本体621安装时,弹针624b在外力作用下压缩复位件624a,弹针624b不与耗材盒试剂出口623接触,盖板624c与复位件624a连通,试剂从耗材盒本体621内经盖板624c、复位件624a和弹针624b流出耗材盒试剂出口623。进一步的,盖板624c上设置有若干供试剂流动的小孔,若干小孔排列在盖板624c上,呈框架形状,既能支撑复位件624a,也能使试剂流通。复位件624a与安装孔621c孔壁之间形成第一间隙625,试剂可通过第一间隙625流出耗材盒试剂出口623。在本实施例中,复位件624a优选为弹簧,弹簧宽度小于安装孔621c直径,弹簧中部中空,试剂可以经盖体流进弹簧内,从弹簧内流出至第一间隙625,再经第一间隙625流出。弹针624b与安装孔621c孔壁之间形成第二间隙626,第一间隙625与第二间隙626连通,第二间隙626与耗材盒试剂出口623连通,试剂经第一间隙625流入至第二间隙626中再流出耗材盒试剂出口623。在本实施例中,弹针624b的宽度小于安装孔621c的直径,弹针624b与复位件624a固定连接,弹针624b与复位件624a之间密封,试剂能顺畅地流出耗材盒试剂出口623。
180.弹针624b所在位置与耗材盒试剂出口623所在位置相对应,当耗材盒本体621拆卸时,撤去外力,复位件624a复位,复位件624a带动弹针624b下移,直至弹针624b与耗材盒试剂出口623接触,弹针624b下端面覆盖耗材盒试剂出口623,将耗材盒试剂出口623封闭。
181.实施例6
182.请参见图15至图17,本发明实施例公开了一种耗材收纳盒600,耗材收纳盒600包括耗材收纳盒本体610和电子标签读卡器611,耗材收纳盒本体610内容纳有若干可更换试剂耗材盒620,若干可更换试剂耗材盒620内容纳有若干试剂,若干试剂可同时与样品尿液融合成若干种不同的混合液,以便进行不同类型的检测,提高检测精度和范围,电子标签读卡器611设置在耗材收纳盒本体610上,用于读取可更换试剂耗材盒620上的电子标签621a数据,电子标签621a数据包括各试剂的数据,以便操作者及时知晓试剂的相关信息。
183.为便于理解耗材收纳盒600的结构,现将耗材收纳盒本体610、电子标签读卡器611及可更换试剂耗材盒620分别进行描述,如下:
184.耗材收纳盒本体610内容纳的试剂种类由操作者进行限定,多种试剂均设置在可更换试剂耗材盒620内,方便操作,可以进行统一的管理,也能充分利用智能马桶狭小的内部空间。在本实施例中,优选的,试剂包括四个种类,四种试剂分别与尿液进行混合后,各自的混合液分别进入尿液检测模组中进行显微镜检、荧光检测、光谱检测和电化学检测。多种检测方式可以提高尿液检测的范围和精度。
185.优选的,请参见图15,耗材收纳盒600还包括耗材收纳盒上盖630,耗材收纳盒上盖630用于密封耗材收纳盒本体610。当需要更换耗材盒时,揭开耗材收纳盒上盖630,将耗材盒放置在耗材收纳盒本体610内,放置完毕后,装上耗材收纳盒上盖630,实现对耗材收纳盒本体610的密封。进一步的,耗材盒被紧固在耗材收纳盒本体610与耗材收纳盒上盖630之间,实现对耗材盒的固定。
186.请参见图15,耗材收纳盒本体610上设置有透明窗口612,透明窗口612用于观测试剂容量,可更换试剂耗材盒620上设置有透明件621b,透明窗口612所在位置与可更换试剂耗材盒620上的透明件621b所在位置相对应,透明件621b与可更换试剂耗材盒620内的试剂相对应,可通过透明件621b观测可更换试剂耗材盒620内的试剂容量,为便于更直观的观测
若干可更换试剂耗材盒620内的试剂容量,需要设置透明窗口612观测透明件621b所反映出来的信息。进一步的,透明窗口612部分透明或全透明,其透明程度将决定操作者观测的精度,在本实施例中,选用全透明的透明窗口612,观测效果更好。更进一步的,透明窗口612可选用玻璃等透明元件。当然,为保证透明件621b反映出的试剂容量更为直观,透明窗口612可以仅是一个窗口,窗口内不安装其他元件,操作者可以通过该窗口直接观测透明件621b反映出的试剂容量,观测效果更好,但在本实施例中,优选为带玻璃的透明窗口612,可有效隔离外部灰尘,避免灰尘进入导可更换试剂耗材盒620内,影响检测效果。
187.请参见图17,耗材收纳盒本体610底部设置有若干顶针613,若干顶针613用于开启可更换试剂耗材盒620的耗材盒试剂出口623。若干顶针613所在位置与若干可更换试剂耗材盒620的弹针624b所在位置相对应。顶针613可以为可更换试剂耗材盒620提供外力,当可更换试剂耗材盒620安装时,顶针613与弹针624b接触,复位件624a被压缩,耗材盒试剂出口623连通外界,可更换试剂耗材盒620内的试剂可以从耗材盒试剂出口623流出。当可更换试剂耗材盒620拆卸时,弹针624b远离顶针613,直至顶针613不与弹针624b接触,弹针624b上没有外力作用,复位件624a复位,弹针624b封闭耗材盒试剂出口623。
188.进一步的,请参见图16,耗材收纳盒本体610还包括耗材收纳盒出液口614,耗材收纳盒出液口614所在位置与耗材盒试剂出口623所在位置相对应,试剂从耗材盒试剂出口623经耗材收纳盒出液口614流出耗材收纳盒600,试剂进入下一检测工序与尿液进行混合形成混合并形成混合液,通过检测混合液的相关数据判断出人体身体状况。
189.进一步的,请参见图16,耗材盒本体621外设置有用于读取试剂信息的电子标签621a,耗材收纳盒本体610上设置有电子标签读卡器611,电子标签读卡器611所在位置与可更换试剂耗材盒620上的电子标签621a所在位置相对应。当可更换试剂耗材盒620内装有试剂时,电子标签621a能对试剂进行检测并读取试剂的相关信息,试剂相关信息包括试剂型号、试剂容量、试剂质量以及试剂存放时间等信息,电子标签读卡器611可以对电子标签621a获取的试剂信息进行读写,从而实现对试剂信息的监控和修正。进一步的,电子标签621a为rfid电子标签或nfc电子标签621a,电子标签读卡器611为rfid或nfc电子标签读卡器611,rfid技术-线射频识别即射频识别技术(radio frequency identification,rfid),是自动识别技术的一种,通过无线射频方式进行非接触双向数据通信,利用无线射频方式对记录媒体(电子标签或射频卡)进行读写,从而达到识别目标和数据交换的目的。nfc技术-近场通信技术(near field communication),是一种新兴的技术,使用了nfc技术的设备(例如移动电话)可以在彼此靠近的情况下进行数据交换,是由非接触式射频识别(rfid)及互连互通技术整合演变而来的,通过在单一芯片上集成感应式读卡器、感应式卡片和点对点通信的功能,利用移动终端实现移动支付、电子票务、门禁、移动身份识别、防伪等应用。优选的,在本实施例中,选用rfid电子标签和rfid电子标签读卡器,稳定性更高。
190.实施例7
191.请参见图18至图20,本发明实施例公开了一种微流控检测芯片710,设置在光学尿液检测模组内,为光学尿液检测提供检测环境,具体的,光学尿液检测模组包括显微图像采集模组720、荧光图像采集模组740和光谱图像采集模组,三者内均设置有微流控检测芯片710。
192.请参见图18和图19,本发明提供的微流控检测芯片710包括检测芯片本体711、检
测芯片进样口712、样本检测腔室713和第一微流道714,样本检测腔室713设于检测芯片本体711内,用于容纳和辅助检测样本,第一微流道714设置在检测芯片本体711内,样本从检测芯片进样口712经第一微流道714流入样本检测腔室713,在本实施例中,检测芯片进样口712、样本检测腔室713和第一微流道714依次连通,样本可以直接经第一微流道714流入样本检测腔室713内进行检测,微流控检测芯片710集成度较高,不需要人工转移检测样本,检测流程较为简单。
193.微流控检测芯片710与显微图像采集模组720、荧光图像采集模组740以及光谱图像采集模组之间均为可拆卸连接,当三者内的检测芯片本体711受到污染时,可以将微流控检测芯片710拆卸,更换受污染检测器件,以保证检测结果的准确性。
194.微流控检测芯片710便于清洗,将清洗液注入第一微流道714,清洗后的样本从第二微流道716流出,可以较为方便的清洗检测芯片本体711、第一微流道714和第二微流道716。
195.为便于理解微流控检测芯片710的结构,现将检测芯片本体711、检测芯片进样口712、样本检测腔室713和第一微流道714分别进行描述,如下:
196.请参见图18至图20,样本检测腔室713部分透明或全透明。样本检测腔室用于辅助检测样本,样本检测腔室713包括上腔壁、下腔壁和侧壁,当侧壁透明,上腔壁或下腔壁也透明时,样本通入检测腔室内部,外部光源可透过该侧壁、透明上腔壁或下腔壁进入样本检测腔室713内,光线通过透明上腔壁或下腔壁反射出样本检测腔室713,据此,可为样本检测提供光源环境。当上腔壁、下腔壁均透明时,光源提供的光线可以从上腔壁或下腔壁的一侧穿透上腔壁以及下腔壁,为样本检测提供光线环境。本实施例中的微流控检测芯片710用于辅助样本进行检测,集成度较高,结构简单,降低了检测成本。
197.在本实施例中,第一微流道714设置在检测芯片本体711内,样本检测腔室713位于第一微流道714的其中一段,检测芯片进样口712设置在第一微流道714的一端并与外界连通,样本从检测芯片进样口712流入第一微流道714内直接进入样本检测腔室713中,在样本检测腔室713内,检测模组可直接对尿液进行检测,不需要人工转移检测样本,检测流程较为简单。
198.检测芯片还包括:检测芯片出样口715和第二微流道716,检测芯片出样口715设置在第二微流道716的一端并与外界连通,样本从样本检测腔室713经第二微流道716流出检测芯片出样口715。第二微流道716设置在检测芯片本体711内,第一微流道714与第二微流道716连通,样本先从第一微流道714进入样本检测腔室713中,再从样本检测腔室713流入第二微流道716,最后通过检测芯片出样口715流出检测芯片,完成样本检测。在本实施例中,检测芯片既包括第一微流道714也包括第二微流道716,若样本为检测样本,样本经第一微流道714进行检测后形成废液从第二微流道716流出,检测芯片可重复使用,若样本为清洗液,可以对检测芯片内部进行清洗,以供下次使用。
199.在另一种实施例中,检测芯片只包括第一微流道714不包括第二微流道716,样本只进不出,检测芯片为一次性产品。
200.请参见图19和图20,检测芯片本体711还包括器件腔室,器件腔室用于容纳检测器件,检测器件用于为样本检测提供检测环境。
201.进一步的,器件腔室包括第一器件腔室711a,第一器件腔室711a用于容纳发光器
件711b,发光器件711b发出检测样本的光源,光源投射到样本上,经光源投射的样本透射出微流控检测芯片710,以便光学尿液检测模组对样本进行检测和分析。更进一步的,发光器件711b包括紫外光源、红外光源或可见光源中的至少一种。
202.进一步的,器件腔室还包括第二器件腔室711c,第二器件腔室711c用于容纳调温器件711d。第二器件腔室711c的设置位置在此不作限定,只要能为样本检测腔室提供适宜的温度环境即可,优选的,在本实施例中,第二器件腔室711c设置在第一器件腔室711a与样本检测腔室713之间,用于调节样本检测腔室713的温度,在对样本进行检测时,需保证样本处在恒温条件下,调温器件711d为样本检测提供了恒温环境,恒温条件下检测的效果更好。更进一步的,调温器件711d部分透光或全透光,调温器件711d设置在发光器件711b与样本之间,只有当调温器件711d全透光或部分透光时,发光器件711b发出的光源才能投射到样本上。进一步的,调温器件711d包括温度传感器和温度控制单元。
203.进一步的,器件腔室还包括器件密封件711e,在本实施例中,器件密封件711e密封样本检测腔室713的底部,在其他实施例中,器件密封件711e可以设置在其他位置,只要器件密封件711e位于样本检测腔室713与第二器件腔室711c之间,以保证发光器件711b发射的光线能透过器件密封件711e来实现辅助检测样本的作用即可。器件密封件711e也密封了器件腔室,样本检测腔室713经过第一微流道714,若是样本流入器件腔室,将会影响各检测器件的正常运行,据此,器件密封件711e隔离了样本检测腔室713与器件腔室,能有效防止样本泄漏。更进一步的,器件密封件711e部分透光或全透光,只有当器件密封件711e全透光或部分透光时,发光器件711b发出的光源才能投射到样本上。
204.请参见图18至图20,检测芯片本体711还包括第一腔室盖711f,第一腔室盖711f用于密封样本检测腔室713,防止样本泄漏,并且,能够较好的储存样本。进一步的,第一腔室盖711f部分透光或全透光,只有当第一腔室盖711f全透光或部分透光时,发光器件711b发出的光源才能投射到样本上。光源照射下,透光的腔室盖可以透射出样本的相关信息,以便对样本进行分析。
205.检测芯片本体711还包括第二腔室盖711g,第二腔室盖711g设于第二微流道716的一侧,用于密封第二微流道716。第一腔室盖711f与第二腔室盖711g密闭整个检测芯片本体711。第,第二腔室盖711g作为支撑主体支撑并容纳各检测器件,第一腔室盖711f作为盖板盖住第二腔室盖711g,第一腔室盖711f与第二腔室盖711g可拆卸连接,具体的,第一腔室盖711f与第二腔室盖711g卡接、粘接或滑动连接,将第一腔室盖711f拆卸,可以查看微流控检测芯片710的内部结构,便于清理、维修或更换内部各部件。
206.进一步的,样本检测腔室713形成于第一腔室盖711f与器件腔室之间,样本检测腔室713用于存放待检测的样本,样本检测腔室713所在位置与器件腔室所在位置相对应,样本检测腔室713的上底面和下底面形状与面积也与器件腔室截面形状与面积相适应,便于对样本进行检测。具体的,在本实施例中,样本检测腔室713形状与器件腔室形状一致,面积大小也一致,样本检测腔室713的光源能完全照射样本存放室内的样本,能充分利用光源,检测效率更高。
207.实施例8
208.请参见图21和图22,本发明实施例公开了一种显微图像信息采集模块730,显微图像信息采集模块730包括显微镜本体731、载物台735和显微光学信息采集组件736,显微镜
本体731包括镜片组732,待检测样本设置在载物台735上,载物台735设于镜片组732图像入射的一侧,显微光学信息采集组件736位于显微镜本体731上,待检测样本经镜片组732放大后形成待检测样本的当前显微图像,待检测的样本当前显微图像反映待检测样本的当前状态,位于显微镜本体731上的显微光学信息采集组件736可以拍摄待检测样本的当前状态,能够提取经显微镜放大的待检测样本的生物信息并将该生物信息以图片的形式保存,可以将该图片移交至检测处进行检测,检测精确度更高,与此同时,为避免检测出错,也可以调用该图片进行二次核验。载物台735、显微镜本体731以及显微光学信息采集组件736之间的位置相对固定,待检测样本进入载物台735就可直接进行检测,检测更方便。
209.为便于理解显微图像信息采集模块730的结构,现将显微镜本体731、载物台735以及显微光学信息采集组件736分别进行描述,如下:
210.请参见图22,显微镜包括滤光组件734和变焦组件733,滤光组件734设置在显微光学信息采集组件736与变焦组件733之间,滤光组件734包括自显微光学信息采集组件736一端依次设置的第一滤光镜734b和第二滤光镜,第一滤光镜734b和第二滤光镜可选取所需辐射波段,使样本呈现出便于观测的图像,变焦组件733能在一定范围内变换焦距,从而得到不同宽窄的视场角,不同大小的影象和不同景物范围,变焦组件733在不改变拍摄距离的情况下,可以通过变动焦距来改变拍摄范围,因此非常有利于画面构图,在本实施例中,滤光组件734、变焦组件733以及滤光组件734与变焦组件733之间的位置相对固定,滤光组件734与变焦组件733结合,能够清晰地投射出样本的图像。
211.进一步的,变焦组件733包括自滤光组件734一端依次设置的第一放大透镜733a、第二放大透镜733b和护镜733c,第一放大透镜733a和第二放大透镜733b为样本提供放大环境,第二放大透镜733b位置一定,样本存放在微流控检测芯片710中,样本位于第二放大透镜733b的一倍焦距与二倍焦距之间,样本的成像在第一放大透镜733a的二倍焦距之外,呈现为倒立放大的实像,第二放大透镜733b所在位置一定,将第一放大透镜733a的倒立实像放大,呈现为正立虚假图像。护镜733c用于保护显微镜内部各元件,防止外部灰尘或杂质进入显微镜内部,污染镜片。
212.更进一步的,第一放大透镜733a、第二放大透镜733b和护镜733c中心对齐叠放,第一放大透镜733a靠近滤光组件734,护镜733c设置在靠近微流控检测芯片710处的显微镜的末端,第二放大透镜733b设置在第一放大透镜733a与护镜733c之间。中心对齐叠放能保证第一放大透镜733a、第二放大透镜733b和护镜733c的相对位置固定,放大倍数为预设倍数,载物台735所在位置也与显微镜第一放大透镜733a、第二放大透镜733b和护镜733c所在位置相对应。样本、护镜733c、第二放大透镜733b以及第一放大透镜733a位置相对固定,可以直接对载物台735上的样本进行检测,不用频繁调整各部分之间的位置关系。
213.更进一步的,第一放大透镜733a为菲涅尔透镜,第二放大透镜733b为月牙透镜或菲涅尔透镜。采用月牙透镜对样本进行检测,可产生最小的准直入射光焦点,投射效果较好。菲涅尔透镜为螺纹透镜,菲涅尔透镜多是由聚烯烃材料注压而成的薄片,也有玻璃制作的,镜片表面一面为光面,另一面刻录了由小到大的同心圆,它的纹理是根据光的干涉及扰射以及相对灵敏度和接收角度要求来设计的。
214.更进一步的,护镜733c为平面镜,微流控检测芯片710包括发光器件711b,发光器件711b的光源直射在样本上,样本位置与显微镜位置相对应,发光层发射的光源会直射到
显微镜中,不便于观察,平面镜反射光线的能力较弱,平面镜设置在靠近微流控检测芯片710处的显微镜末端,能够提供较好的光照环境,显微镜成像效果更好。
215.请参见图21,进一步的,显微光学信息采集组件736包括ccd/cmos集成组件,ccd集成组件能够将光线变为电荷并将电荷存储及转移,也可将存储之电荷取出使电压发生变化,因此是理想的成像元件,ccd集成组件具有体积小、重量轻、不受磁场影响、具有抗震动和撞击等优势,cmos是互补性金属氧化物半导体,coms上有n带负电,和p带正电级的半导体,两个互补效应所成生电流解读成图片显示在芯片上所得图像,cmos集成组件成本低,更省电。
216.实施例9
217.请参见图21和图23,本发明实施例公开了一种显微图像采集模组720,包括微流控检测芯片710和前述的显微图像信息采集模块730,载物台735设于微流控检测芯片710,微流控检测芯片710为样本检测提供检测环境,如:光线环境和恒温环境,据此,显微图像采集模组720采集的图像会更清晰,更能反映待检测样本的相关信息。
218.进一步的,载物台735为微流控检测芯片710上设置的用于容纳样本的样本检测腔室713。
219.实施例10
220.请参见图24和图25本发明实施例公开了一种光学信息采集模组740,
221.光学信息采集模组740包括微流控检测芯片710和光学信息采集组件741,所述微流控检测芯片710用于容纳样本并为样本的光学检测提供检测环境辅助采集样本的光学信息,用于采集所述样本的光学信息,图像采集过程中,不设置显微镜,微流控检测芯片710就能为样本的光学检测提供检测环境,辅助采集样本的光学信息,微流控检测芯片710将样本的光学图像投影到光学信息采集组件741中,由光学信息采集组件741获取和保存样本的光学图像信息,能够节省成本。此外,样本可以流入微流控检测芯片710,由光学信息采集组件740直接采集样本的光学信息,不需要人工转移检测样本,检测流程较为简单,节约成本。
222.为便于理解光学信息采集模组740的结构,现将微流控检测芯片710和荧光光学信息采集组件741分别进行描述,如下:
223.请参见图26和图27,本发明实施例提供的微流控检测芯片710包括检测芯片本体711、检测芯片进样口712、样本检测腔室713和第一微流道714,样本检测腔室713设于检测芯片本体711内,用于容纳和辅助检测样本,第一微流道714设置在检测芯片本体711内,样本从检测芯片进样口712经第一微流道714流入样本检测腔室713,在本实施例中,检测芯片进样口712、样本检测腔室713和第一微流道714依次连通,样本可以直接经第一微流道714流入样本检测腔室713内进行检测,微流控检测芯片710集成度较高,不需要人工转移检测样本,检测流程较为简单。微流控检测芯片710便于清洗,将清洗液注入第一微流道714,清洗后的样本从第二微流道716流出,可以较为方便的清洗检测芯片本体711、第一微流道714和第二微流道716。
224.样本检测腔室713部分透明或全透明。样本检测腔室用于辅助检测样本,样本检测腔室713包括上腔壁、下腔壁和侧壁,当侧壁透明,上腔壁或下腔壁也透明时,样本通入检测腔室内部,外部光源可透过该侧壁、透明上腔壁或下腔壁进入样本检测腔室713内,光线通过透明上腔壁或下腔壁反射出样本检测腔室713,据此,可为样本检测提供光源环境。当上
腔壁、下腔壁均透明时,光源提供的光线可以从上腔壁或下腔壁的一侧穿透上腔壁以及下腔壁,为样本检测提供光线环境。本实施例中的微流控检测芯片710用于辅助样本进行检测,集成度较高,结构简单,降低了检测成本。
225.在本实施例中,第一微流道714设置在检测芯片本体711内,样本检测腔室713位于第一微流道714的其中一段,检测芯片进样口712设置在第一微流道714的一端并与外界连通,样本从检测芯片进样口712流入第一微流道714内直接进入样本检测腔室713中,在样本检测腔室713内,检测模组可直接对样本进行检测,不需要人工转移检测样本,检测流程较为简单。
226.检测芯片还包括:检测芯片出样口715和第二微流道716,检测芯片出样口715设置在第二微流道716的一端并与外界连通,样本从样本检测腔室713经第二微流道716流出检测芯片出样口715。第二微流道716设置在检测芯片本体711内,第一微流道714与第二微流道716连通,样本先从第一微流道714进入样本检测腔室713中,再从样本检测腔室713流入第二微流道716,最后通过检测芯片出样口715流出检测芯片,完成样本检测。在本实施例中,检测芯片既包括第一微流道714也包括第二微流道716,若样本为尿液样本,样本经第一微流道714进行检测后形成废液从第二微流道716流出,检测芯片可重复使用,若样本为清洗液,可以对检测芯片内部进行清洗,以供下次使用。
227.在另一种实施例中,检测芯片只包括第一微流道714不包括第二微流道716,样本只进不出,检测芯片为一次性产品。
228.检测芯片本体711还包括器件腔室,器件腔室用于容纳检测器件,检测器件用于为样本检测提供检测环境。
229.进一步的,器件腔室包括第一器件腔室711a,第一器件腔室711a用于容纳发光器件711b,发光器件711b发出检测样本的光源,光源投射到样本上,经光源投射的样本透射出微流控检测芯片710,以便光学样本检测装置对样本进行检测和分析。更进一步的,发光器件711b包括紫外光源、红外光源或可见光源中的至少一种。
230.微流控检测芯片710应用于荧光图像信息采集时,发光器件711b发出激发样本荧光物质的光源,光源投射到样本上,经光源投射的样本透射出微流控检测芯片710,以便光学样本检测装置对样本的荧光图像进行检测和分析。更进一步的,发光器件711b包括紫外光源或蓝紫光源中的至少一种。
231.微流控检测芯片710应用于光谱信息采集时,发光器件711b发出激发样本光谱信息的光源,光源投射到样本上,经光源投射的样本透射出微流控检测芯片710,以便光学样本检测装置对样本的光谱信息进行检测和分析。更进一步的,发光器件711b包括红外光源或x射线中的至少一种。
232.进一步的,器件腔室还包括第二器件腔室711c,第二器件腔室711c用于容纳调温器件711d。第二器件腔室711c的设置位置在此不作限定,只要能为样本检测腔室提供适宜的温度环境即可,优选的,在本实施例中,第二器件腔室711c设置在第一器件腔室711a与样本检测腔室713之间,用于调节样本检测腔室713的温度,在对样本进行检测时,需保证样本处在恒温条件下,调温器件711d为样本检测提供了恒温环境,恒温条件下检测的效果更好。更进一步的,调温器件711d部分透光或全透光,调温器件711d设置在发光器件711b与样本之间,只有当调温器件711d全透光或部分透光时,发光器件711b发出的光源才能投射到样
本上。进一步的,调温器件711d包括温度传感器和温度控制单元。
233.进一步的,器件腔室还包括器件密封件711e,在本实施例中,器件密封件711e密封样本检测腔室713的底部,在其他实施例中,器件密封件711e可以设置在其他位置,只要器件密封件711e位于样本检测腔室713与第二器件腔室711c之间,以保证发光器件711b发射的光线能透过器件密封件711e来实现辅助检测样本的作用即可。器件密封件711e也密封了器件腔室,样本检测腔室713经过第一微流道714,若是样本流入器件腔室,将会影响各检测器件的正常运行,据此,器件密封件711e隔离了样本检测腔室713与器件腔室,能有效防止样本泄漏。更进一步的,器件密封件711e部分透光或全透光,只有当器件密封件711e全透光或部分透光时,发光器件711b发出的光源才能投射到样本上。
234.请参见图18至图27,检测芯片本体711还包括第一腔室盖711f,第一腔室盖711f用于密封样本检测腔室713,防止样本泄漏,并且,能够较好的储存样本。进一步的,第一腔室盖711f部分透光或全透光,只有当第一腔室盖711f全透光或部分透光时,发光器件711b发出的光源才能投射到样本上。光源照射下,透光的腔室盖可以透射出样本的相关信息,以便对样本进行分析。
235.进一步的,第一腔室盖711f包括激发光滤光层711h,激发滤光层位于发光器件711b和样本之间,激发光滤光层711h用于过滤光谱或除荧光外的其他光。当激发光滤光层711h用于过滤除荧光外的其他光时,激发滤光层包括四组:紫外光、紫光、蓝光以及绿光。
236.检测芯片本体711还包括第二腔室盖711g,第二腔室盖711g设于第二微流道716的一侧,用于密封第二微流道716。第一腔室盖711f与第二腔室盖711g密闭整个检测芯片本体711。第,第二腔室盖711g作为支撑主体支撑并容纳各检测器件,第一腔室盖711f作为盖板624c盖住第二腔室盖711g,第一腔室盖711f与第二腔室盖711g可拆卸连接,具体的,第一腔室盖711f与第二腔室盖711g卡接、粘接或滑动连接,将第一腔室盖711f拆卸,可以查看微流控检测芯片710的内部结构,便于清理、维修或更换内部各部件。
237.进一步的,样本检测腔室713形成于第一腔室盖711f与器件腔室之间,样本检测腔室713用于存放待检测的样本,样本检测腔室713所在位置与器件腔室所在位置相对应,样本检测腔室713的上底面和下底面形状与面积也与器件腔室截面形状与面积相适应,便于对样本进行检测。具体的,在本实施例中,样本检测腔室713形状与器件腔室形状一致,面积大小也一致,样本检测腔室713的光源能完全照射样本存放室内的样本,能充分利用光源,检测效率更高。
238.光学信息采集组件741包括图像信息采集单元和/或光谱信息采集单元,图像信息采集单元用于采集样本图像信息,光谱信息采集单元用于采集样本光谱信息。光谱信息采集单元类型不限,只要能接收样本的光谱信息即可,在本实施例中,优选的,光谱信息采集单元包括光线和微型光谱仪,其中光纤接收光路为共焦接收,即接收面和物体面为共轭面,实现定点光谱接收。接收光纤一端接入微流控检测芯片光路,另一端连接至微型光谱仪,从而获取物体微观区域内的光谱信息。
239.图像信息采集单元包括荧光信息采集模块、显微图像信息采集模块730和红外信息采集模块中的至少一种。显微图像信息采集模块730如前所述,用于采集样本的显微图像信息。荧光信息采集模块和红外信息采集模块可以采集样本的荧光图像信息和红外图像信息。荧光信息采集模块和红外信息采集模块的类型不限,只要能采集样本图像信息即可,优
选的,在本实施例中,荧光信息采集模块和红外信息采集模块可以为ccd/cmos集成组件,ccd集成组件能够将光线变为电荷并将电荷存储及转移,也可将存储之电荷取出使电压发生变化,因此是理想的成像元件,ccd集成组件具有体积小、重量轻、不受磁场影响、具有抗震动和撞击等优势,cmos是互补性金属氧化物半导体,coms上有n带负电,和p带正电级的半导体,两个互补效应所成生电流解读成图片显示在芯片上所得图像,cmos集成组件成本低,更省电。
240.光学信息采集组件741包括包括发光器件,发光器件包括不同波段光源、紫外、红外以及可见光,为样本检测提供光源环境,本实施方式中的发光器件包括前述微流控检测芯片中的发光器件,微流控检测芯片内的发光器件以及样本检测腔室均位于微流控检测芯片中,为样本检测提供内部光源环境。本实施方式中的发光器件还为样本检测提供了外部光源环境,样本检测腔室用于辅助检测样本,样本检测腔室713包括上腔壁、下腔壁和侧壁,当侧壁透明,上腔壁或下腔壁也透明时,样本通入检测腔室内部,外部光源可透过该侧壁、透明上腔壁或下腔壁进入样本检测腔室713内,不经微流控检测芯片710,光线通过透明上腔壁或下腔壁反射出样本检测腔室713,据此,可为样本检测提供外部光源环境,本实施方式适用于不具有微流控检测芯片710或微流控检测芯片710无法正常工作时。
241.光学信息采集模组包括前述的显微图像采集模组720,还包括荧光图像采集模组和光谱信息采集模组,可应用于尿液检测中,将尿液样本通入微流控检测芯片的样本检测腔室中,光学信息采集模块可采集尿液样本的显微图像、荧光图像、光谱信息。光学信息采集模组不限于应用在尿液检测领域,还可应用于其他人体生化指标检测领域,优选的,样本类型还包括人体体液如:血清(浆)、尿液、唾液等,人体组织如:上皮组织,以及粪便与液体的混合液等。
242.本实施例提供了一种光学样本检测装置,包括前述的微流控检测芯片、光学信息采集模组,当光学样本检测装置用于检测尿液样本时,光学样本检测装置为光学尿液检测模组。
243.实施例11
244.请参见图21、图23、图24和图3,本发明实施例公开了一种尿液检测模组,设置在智能马桶上,用于对尿液进行检测,尿液检测模组包括化学尿液检测模组和前述的光学尿液检测模组,化学尿液检测模组对尿液中的化学成分进行检测,来确定尿液中多种无机物质和有机物质,并通过对尿液的半定量和定量检测对泌尿系统疾病、肝胆疾病、糖尿病等疾病进行辅助诊断与疗效观察,对安全用药进行监护,以及评估健康状态;光学尿液检测模组对尿液样本图像进行采集,将采集的图像送至指定分析处进行分析或上传至智能马桶的控制器,控制器控制分析组件对光学尿液检测模组采集的图像进行分析,输出尿液样本的分析结果,根据分析结果判定用户的身体状况。
245.光学尿液检测模组包括显微图像采集模组720、荧光图像采集模组和光谱信息采集模组。显微图像采集模组720采用显微镜检查尿液中的细胞、管型及盐类结晶对的形态和数量,正常尿液中一般无红细胞、白细胞及上皮细胞,也无管型,这些成分增多反映出泌尿系统有病理变化,据此,可以分析出用户的身体状况。荧光图像采集模组采用荧光方法获取尿液样本的荧光信息,并将获取的荧光信息直接投射到光学信息采集组件741上,据此,光学信息采集组件741采集到尿液样本的荧光信息。光谱信息采集模块在检测尿液样本光谱
的同时,可以实现尿液样本图像的实时采集,光谱能产生一种与观察位置有关的信号,如透射光子的计数率、总的或特定的峰的光电子产率、荧光产率等,这些信号能给出元素的、化学的、磁的等各种信息,依据这些光谱信息可以分析出用户的身体状况。
246.实施例12
247.请参见图28至图31,本发明实施例公开了一种电化学检测芯片760,插接在体液电化学检测模组770上,用于对尿液进行电化学检测,电化学检测芯片760包括绝缘基板761和若干芯片电极762,若干芯片电极762可以为1个也可以是多个,当芯片电极762为1个时,尿液滴在芯片电极762上时,当芯片电极762为多个时,多个芯片电极762按预定间隔设置在绝缘基板761上。若干芯片电极762在绝缘基板761上形成反应部762a和导电部762b,尿液在反应部762a上使若干芯片电极762导通产生若干电信号传输至导电部762b进行检测,通过若干电信号检测尿液电化学指标,不用人工通过视觉进行判断尿液的相关情况,检测出的尿液数据更精确。反应部用于与尿液进行化学反应,导电部用于形成电回路,导电部不一定是电极本身,可以是连接导体,只要能够进行电信号传输即可。
248.为便于理解电化学检测芯片760的结构,现将绝缘基板761和若干芯片电极762分别进行描述,如下:
249.请参见图28至图31,芯片电极762至少为两个,尿液具有导电性,当尿液滴在至少两个芯片电极762上时,尿液连通至少两个芯片电极762,优选的,以两个芯片电极762为例,尿液连接两个芯片电极762,两个芯片电极762分别为正负极,两个芯片电极762的导电部762b与体液电化学检测模组770连接,两个芯片电极762之间形成电回路,可以检测电回路上的电信号。当尿液连通多个芯片电极762时,每相邻两个芯片电极762之间形成一个电回路,通过检测多个电回路上的电信号,可以对比多组数据,检测出的结果会更精确。
250.进一步的,芯片电极762为贴片芯片电极762,贴片芯片电极762成本低,安装方便,只需要将芯片电极762粘贴在绝缘基板761上即可,并且,粘贴后的芯片电极762不容易脱落。更进一步的,当贴片芯片电极762为多个时,各贴片芯片电极762结构一致且应当按预定间隔粘贴,优选为等距粘贴,以确保各个电回路的各项基础参数一致,能够减小检测误差。
251.进一步的,绝缘基板761为绝缘材料,芯片电极762要形成电回路,需要排除其他非绝缘因素的干扰,因此,需要保证绝缘基板761为绝缘体,同时,作为绝缘体的绝缘基板761不会影响电回路的相关数据信息,检测出的结果会更精确。
252.进一步的,电化学指标包括尿比重、尿液ph值、尿蛋白、尿酸、尿钾、尿钠、尿钙、尿磷、尿糖、尿氯化物中的一种或多种,均可通过电信号检测分析得出。芯片电极上设置有不同的检测材料,不同的检测材料可检测上述不同的指标,其检测原理为现有技术,在此不作赘述。反应部上的芯片电极本身包括检测材料或反应部包括反应层,反应层上设置有检测材料,通过上述检测材料可以检测上述不同的电化学指标。尿比重和尿ph值可以直接由芯片电极本身进行检测,不需要设置反应层也不需要设置检测材料。
253.请参见图28至图31,反应部762a与导电部762b位于绝缘基板761的同一侧或相对设置在所述绝缘基板的两侧。当反应部与所述导电部相对设置在所述绝缘基板的两侧时,芯片电极762从绝缘基板761的一侧绕过绝缘基板761边缘至另一侧或芯片电极762从绝缘基板761的一侧穿过绝缘基板761的内部延伸至绝缘基板761的另一侧,如此,可避免尿液流入导电部762b,造成电回路短路,无法实现检测的目的。进一步的,芯片电极762可以绕过绝
缘基板761的长边也可以绕过绝缘基板761的短边,在本实施例中,优选为芯片电极762绕过绝缘基板761的短边,芯片电极762可以沿绝缘基板761长度方向铺设,铺设的距离更长,反应部762a与导电部762b相距更远,可以有效避免反应部762a内的尿液流入导电部762b中,由此,可以使得本实施例的检测结果更精确。
254.请参见图31,在一种实施例中,绝缘基板761上设置有用于保护反应部762a和导电部762b的隔离结构。
255.具体的,隔离结构包括第一隔离件761a,第一隔离件761a用于隔离基板的反应部762a和导电部762b与外界的连通。第一隔离件761a与体液电化学检测模组770相匹配,可以有效避免内部液体溢出外界,并且,密闭空间更有利于对检测模组进行清洗。
256.隔离结构还包括第二隔离件761b,第二隔离件761b用于隔离反应部762a与导电部762b。在此种情形下,反应部762a的高度应低于导电部762b的高度,滴入反应部762a的尿液不会深入导电部762b内,可以有效避免尿液污染导电部762b。进一步的,第二隔离件761b为凹形结构,流入反应部762a的尿液汇集在第二隔离件761b内,连通第二隔离件761b内的芯片电极762,尿液不会渗入导电部762b。更进一步的,各芯片电极762包括芯片电极折弯部,芯片电极折弯部与反应部762a的侧壁相适配,以使芯片电极762能够连续不间断的布设在反应部762a和导电部762b上。更进一步的,反应部762a上设置有反应部液体出口762c,反应部液体出口762c从第二隔离件761b内延伸出绝缘基板761边缘,反应部762a内的液体可以通过反应部液体出口762c从反应部762a内流出至检测模组的反应腔771c底部,并且,液体不会溢出至导电部762b,能够有效的保护导电部762b。
257.实施例13
258.请参见图32至图39,本发明公开了一种体液电化学检测模组770,用于对人体尿液进行检测,不限于应用在尿液检测领域,还可应用于其他人体生化指标检测领域,优选的,样本类型还包括人体体液如:血清(浆)、尿液、唾液等,人体组织如:上皮组织,以及粪便与液体的混合液等。体液电化学检测模组770包括检测模组本体771、电化学进样口772和若干连接电极773,检测模组本体771包括反应区771a和连接区771b,若干连接电极773按预定间隔设置在连接区771b上,若干连接电极773用于形成电化学反应回路,若干连接电极773可以为1个也可以是多个,当连接电极773为1个时,尿液滴在芯片电极762上,芯片电极762与连接电级773连接并形成电回路,当连接电极773为多个时,多个连接电极773按预定间隔设置在连接区771b上,液体从电化学进样口772进入反应区771a,液体包括尿液,尿液进入反应区771a后会进行电化学反应,若干连接电极773可以检测尿液的多种数据,能提高尿液检测的精确度。
259.为便于理解体液电化学检测模组770的结构,现将检测模组各组成部分分别进行描述,如下:
260.请参见图32至图35,检测模组还包括电化学出样口774,电化学出样口774用于液体的流出。当液体为尿液时,检测后的废液从电化学出样口774流至废液池,当液体为清洁液时,清洁后的清洁液也从电化学出样口774流至废液池。进一步的,检测模组还包括出样管道776,电化学出样口774设置在进样管道775一端,进样管道775的另一端设于反应区771a,来自进样管道775的液体通过出样管道776经电化学出样口774排出检测模组本体771。
261.体液电化学检测模组770还包括进样管道775,液体通过进样管道775经电化学进样口772进入反应区771a。流入进样管道775的液体包括尿液与试剂的混合液,进样管道775上设置有微流泵,可以实现定量获取液体样本。
262.进一步的,进样管道775包括进样管道出液口775b,进样管道出液口775b正对于反应区771a,从进样管道775流至反应区771a的液体会均匀的扩散,测出的数据也更精确。进样管道775还包括进样管道本体775a,进样管道本体775a沿检测模组长度方向设置,进样管道775还包括折弯部775c,进样管道出液口775b设置在折弯部775c的末端,折弯部775c的首端与进样管道本体775a连接,折弯部775c折弯角度为90
°
,以使平行设置的进样管道775的第二出液口正对于反应区771a。
263.更进一步的,进样管道775集成于检测模组本体771,进样管道775可以集成在模块本体侧壁、顶壁或内部,能对进样管道775进行支撑,也能防止进样管道775滑动以致进样管道出液口775b错位。
264.请参见图34至图39,进一步的,反应区771a包括反应腔771c,出样管道776连通反应腔771c,反应腔771c用于容纳液体,具体为收纳待检测样本和废液,出样管道776用于将废液排出检测模组本体771,检测芯片的反应部762a位于反应腔771c内,反应部762a只能容纳少量从进样管道775流入的液体,多余的液体会从反应部762a流入反应腔771c底部,成为废液。
265.反应腔771c包括腔体771d和密封结构771e,密封结构771e用于密封腔体771d,以使反应腔771c成为密闭腔体771d,液体流入反应腔771c后直接流出出样管道776,不会聚积,也不会溢出反应腔771c,液体不会残留在检测模组本体771内。进一步的,密封结构771e上设置有进样管道安装孔711g,进样管道775通过进样管道安装孔711g与反应腔771c连通,进样管道775通过进样管道安装孔711g与密封结构771e密闭连接。
266.更进一步的,请参见图35至图36,反应腔771c底部设置有集液槽771f,集液槽771f与出样管道776连通,集液槽771f用于将反应区771a的液体汇聚至出样管道776内。集液槽771f的最低高度不低于出样管道776的最低高度,集液槽771f的侧壁为弧面或斜面,集液槽771f底部的宽度小于顶部的高度,反应区771a内的液体能沿集液槽771f的侧壁汇聚至集液槽771f的底部,再从底部流入出样管道776。
267.液体为尿液样本或清洁液。当液体为尿液样本时,尿液样本从进样管道775流入检测芯片的反应部762a上并形成电回路,检测模组通过电回路对尿液样本参数进行检测,多余的尿液从反应部762a流入至反应腔771c内,反应腔771c内的废液会汇聚到集液槽771f内并流入出样管道776,最终流出检测模组。当液体为清洁液时,液体对检测模组进行清洁,清洁液从进样管道775流入反应区771a对检测芯片的反应部762a进行清洁,多余的清洁液和清洁后的废液流入至反应腔771c中,对腔体771d侧壁以及集液槽771f进行清洁,清洁后的废液从出样管道776流出检测模组。
268.实施例14
269.请参见图38和图39,本发明公开了一种电化学体液检测装置750,电化学体液检测装置750包括电化学检测芯片760和前述的体液电化学检测模组770,检测模组包括连接区771b和反应区771a,检测芯片包括反应部762a、导电部762b和隔离结构,连接区771b与导电部b相对应,反应区771a与反应部762a相对应,导电部762b可拆卸地插入连接区771b,在反
应区771a,尿液流入反应部762a,检测模组上形成电回路,通过检测电回路上的电流值从而计算出尿液的电导率,本发明的检测环境较为广泛,当需要检测多项尿液样本的数据时,可以快速方便插拔检测模组以更换检测模组的种类,不同种类的检测模组具有不同的电极,不同的电极形成不同的电回路,不同电回路上的电流值不同,最终测出的电导率也不同,据此,可以与预先输入的待测物质的参考值进行对比分析,从而得出不同的尿液样本数据,并且,通过检测电导率的方式分析尿液样本数据,得出的检测结果更为精确。同时,检测模组可以重复使用,能降低检测成本。同时,隔离结构可以有效的保护反应部762a和导电部762b。
270.进一步的,检测模组包括密封结构771e,密封结构771e用于与隔离结构配合将反应部762a与反应区771a密封。密封结构771e将反应部762a与反应区771a密封后,可以对反应部762a与反应区771a进行清洗。
271.进一步的,连接区771b的连接电极773与导电部762b的芯片电极762对应设置,反应区771a与反应部762a对应设置。
272.实施例15
273.请参见图40,本发明实施例公开了一种人体生化指标快速检测系统,人体生化指标快速检测系统包括取样装置、进样装置和检测装置,取样装置采集检测人体生化指标的所需的样本,进样装置用于将采集的样本传输到指定位置进行检测,检测装置用于检测样本,获取人体生化指标信息,检测装置至少包括:光学检测模组和化学检测模组,进样装置将样本分别输送至光学检测模组和化学检测模组,光学检测模组可以检测样本的光学信息,化学检测模组可以检测样本的化学信息,结合样本的光学信息和化学信息,可以更全面检测出人体生化指标信息,检测出的指标信息也更精确。
274.优选的,人体生化指标快速检测系统可以检测的样本类型主要包括人体体液如:血清(浆)、尿液、唾液等,以及人体组织如:上皮组织。
275.优选的,在本实施例中,体液优选为尿液,取样装置包括前述的尿液取样器和尿液取样头,用于对尿液样本进行取样。
276.优选的,进样装置包括尿液传输管道,尿液传输管道将尿液取样器采集的尿液样本传输至检测装置处进行尿液检测。
277.优选的,光学检测模组包括前述的光学尿液检测模组,光学尿液检测模组可以检测尿液样本的光学信息,化学检测模组包括前述的化学尿液检测模组,化学检测模组可以检测尿液样本的化学信息。
278.优选的,光学检测模组包括:显微检测模块,用于采集样本的显微图像。显微检测模块包括前述的显微图像采集模组,用于依据采集的尿液样本的显微图像采用后述的基于显微图像的尿液检测方法进行尿液检测。
279.优选的,光学检测模组包括:荧光检测模块,用于采集样本被荧光激发后的图像。荧光检测模块包括前述的荧光图像采集模组,用于依据采集的尿液样本被荧光激发后的图像采用后述的基于荧光试剂的尿液成分检测方法进行尿液检测。
280.优选的,光学检测模组包括:光谱检测模块,用于检测样本的光谱信息。光谱检测模块包括前述的光谱信息采集模组,用于依据检测出的尿液样本的光谱信息采用后述的尿液成分的光谱检测方法进行尿液检测。
281.优选的,化学检测模组包括:电化学检测模块,用于检测样本的电信号变化信息。电化学检测模块包括前述的电化学体液检测装置,用于依据检测的尿液样本的电信号变化信息采用后述的尿液电化学检测方法进行尿液检测。
282.优选的,进样装置包括:微流泵,用于临时存储样本并定量传送样本。
283.优选的,系统还包括:清洗装置,用于清洗人体生化指标快速检测系统。在一种实施例中,系统自身可作为清洁系统,如往尿液电化学检测模组中通入清洗液,清洗完毕后清洗液成为废液流出尿液电化学检测模组。
284.优选的,系统还包括:驱动装置,用于驱动人体生化指标快速检测系统工作。驱动装置可以为步进电机,驱动人体生化指标快速检测系统各部件运作。
285.优选的,系统还包括:控制装置,控制装置用于控制人体生化指标快速检测系统。控制装置可以为中央处理器单元,控制取样装置进行取样,控制进样装置将采集的样本传输到检测装置位置处进行检测,控制检测装置进行检测。
286.实施例16
287.请参见图41至图43,本发明实施例公开了一种基于显微图像的尿液检测方法,包括:
288.s100、将尿液注入样本检测腔室;
289.样本检测腔室位于微流控检测芯片内,在检测过程中,其位置固定不动,其与显微镜本体以及显微光学信息采集组件之间的位置相对固定,可直接将尿液注入样本检测腔室,尿液进入样本检测腔室后等待被检测,不需要人工去调整尿液样本的放置位置,检测流程简单。
290.s110、控制背景光源的光透过样本检测腔室的腔壁进入样本检测腔室;
291.样本检测腔室包括上腔壁、下腔壁和侧壁,当侧壁透明,上腔壁或下腔壁也透明时,样本通入检测腔室内部,外部背景光源可透过该侧壁、透明上腔壁或下腔壁进入样本检测腔室内,光线通过透明上腔壁或下腔壁反射出样本检测腔室,据此,可为样本检测提供光源环境。当上腔壁、下腔壁均透明时,光源提供的光线可以从上腔壁或下腔壁的一侧穿透上腔壁以及下腔壁,为样本检测提供光线环境。本步骤设置的背景光源能适应不同检测环境的需要。
292.s120、透过样本检测腔室采集尿液的显微图像信息;
293.本实施例的显微光学信息采集组件设于显微镜本体的一侧,可采集来自显微镜本体的显微图像信息。显微光学信息采集组件可将采集的尿液样本的显微图像信息保存,并将该图像信息移交至检测处进行检测,检测精确度更高。此外,为避免检测出错,也可以调用该图像信息进行二次核验。
294.s130、获取尿液样本的显微图像;
295.使用显微光学信息采集组件对尿液显微图像进行拍摄,并将拍摄后的显微图像保存并发送至控制系统中,对尿液显微图像进行分析处理。
296.s140、通过神经网络算法对尿沉渣物进行初步分类;
297.在本步骤中,不限制神经网络算法的类型,可选用卷积神经网络(cnn)、递归神经网络(rnn)以及生成对抗网络(gan)等神经网络算法中的至少一种,优选的,在本实施例中,本发明采用卷积神经网络(cnn)。尿沉渣是尿液中的有形状成分,是尿液经过离心后形成的
沉渣,也是尿液有形成分质和量的组合,尿沉渣包括细胞、管型、结晶、细菌、精子等各种有形成分,对尿液进行检测需要确定尿液中各成分的含量,因此需要对尿沉渣物进行初步分类。
298.s141、各尿沉渣物按照管型、细胞、结晶、细菌以及精子进行初步分类;
299.cnn的网络结构有卷积层、采样层和全连接层,每一层上通常布满多个独立的神经元,神经元相互连接在一起形成二维平面,这就使得cnn在识别二维形状上有着良好的表现。这种新形式的网络结构当待识别图像发生比例缩放、平移、倾斜时能够保持不变,对图像形变的适应性比较强。在监督方式上,因为需要大量的训练样本并在训练样本和测试样本间建立联系,cnn采用有监督的训练方式。
300.采用cnn对各尿沉渣物按照管型、细胞、结晶、细菌以及精子进行初步分类,其卷积和采样过程主要包括特征提取、特征映射和子采样:
301.s142、对细菌以及精子分别进行计数;
302.对细菌和精子进行统计计数,细菌的数量反映了尿路的感染情况,细菌越多,尿路感染情况越严重;精子的数量反应人体生殖系统健康状况。
303.s150、对初步分类的尿沉渣物通过图像处理识别并计算出各类尿沉渣物的形态参数和灰度统计参数;
304.在本步骤中,形态参数和灰度统计参数反应各类尿沉渣物的图像特征,通过计算各类尿沉渣物的形态参数和灰度统计参数,可以确定各类尿沉渣物的类型。
305.请参见图43,本步骤s150包括:
306.s151、对初步分类后的尿沉渣物图像进行图像去噪处理;
307.去除尿沉渣物图像的噪声等一些无关信息,增加对比度,提高图像质量,将尿沉渣物图像的前景与背景清晰的分离开来。去噪方式在此不作限定,可以为高斯低通滤波、双边滤波去噪、非局部均值去噪以及核回归用于图像去噪等,优选的,在本实施例中,选用高斯滤波器进行去噪,高斯滤波器是一种线性滤波器,能够有效的抑制噪声,平滑图像。
308.一个二维的高斯函数如下:
[0309][0310]
其中(x,y)为点坐标,在图像处理中可认为是整数;σ是标准差。要想得到一个高斯滤波器的模板,可以对高斯函数进行离散化,得到的高斯函数值作为模板的系数,然后应用于图像中进行图片处理。
[0311]
s152、对图像去噪处理后的尿沉渣物图像进行图像增强处理;
[0312]
图像增强处理可以矫正不均匀光照的对尿沉渣物图像的影响。
[0313]
灰度级图像f的顶帽变换的定义为f减去其开操作:
[0314]
t
hat
(f)=f-(f
°
b)
[0315]
灰度级图像f的底帽变换的定义为f闭操作减去f:
[0316]bhat
(f)=(f
·
b)-f
[0317]
(f
°
b)表示结果元素对目标图像的开操作,(f
·
b)表示对目标元素的闭操作。
[0318]
所以,顶帽-底帽变换则为:
[0319]
tb
hat
=f t
hat-b
hat
[0320]
s153、对图像增强处理后的尿沉渣物图像进行图像分割处理;
[0321]
本步骤采用图像边缘算法进行图像分割处理,但处理方式不限于图像边缘算法,还可以是多数的图像分割算法、图像阈值分割算法、基于区域的分割算法、形态学分水岭算法等。边缘是图像中灰度突变像素的集合,一般用微分进行检测。边缘检测算法有:roberts算子、prewitt算子、sobel算子、marr-hilderth边缘检测算法、canny边缘检测算法等,在本步骤中,选用canny边缘检测算法。
[0322]
a)计算图像中每个像素点的梯度强度和方向。
[0323]
在图像中,用梯度来表示灰度值的变化程度和方向。它可以通过点乘一个sobel或其它算子得到不同方向的梯度值:g
x
(m,n),gy(m,n),综合梯度通过以下公式计算梯度值和梯度方向:
[0324][0325]
其中(m,n)为点坐标,在图像处理中可认为是整数。
[0326]
b)应用非极大值(non-maximum suppression)抑制,以消除边缘检测带来的杂散响应。使边缘的宽度尽可能为1个像素点:如果一个像素点属于边缘,那么这个像素点在梯度方向上的梯度值是最大的。否则不是边缘,将灰度值设为0。
[0327][0328]
c)应用双阈值(double-threshold)检测来确定真实的和潜在的边缘。设置两个阀值(threshold),分别为maxval和minval。其中大于maxval的都被检测为边缘,而低于minval的都被检测为非边缘。对于中间的像素点,如果与确定为边缘的像素点邻接,则判定为边缘;否则为非边缘。
[0329]
d)通过抑制孤立的弱边缘最终完成边缘检测。
[0330]
s154、识别各类尿沉渣物的形状特征;
[0331]
s155、计算出各类尿沉渣物的形态参数和灰度统计参数。
[0332]
形态参数是在显微镜拍摄后的二值图的基础上计算的,主要是为了获取形态的信息作为5组特征值。形态参数包括:面积s、周长l、圆形度c、矩形度r以及轮廓拟合误差。
[0333]
a)面积s
[0334]
面积s是目标区域内的像素个数,所以与目标的边界有关。
[0335][0336][0337]
其中,p,q分别为区域水平方向与垂直方向的最大值,r为目标区域。
[0338]
b)周长l
[0339]
周长l是目标区域边界上所有像素的总和。其数学表达式为:
[0340]
[0341]
其中n表示轮廓总像素点数,ti表示按照逆时针方向跟踪细胞轮廓从第i点到下一点的链码数。
[0342]
c)圆形度c
[0343]
图像圆形度c表示目标图像形状接近于圆形的程度,是面积形状的综合测度表示参数,其数学表达式为:
[0344][0345]
c为1时,表示目标图像形状即是圆形,随着c值增大,表示目标图像形状越偏离圆形。
[0346]
d)矩形度r
[0347]
图像矩形度r是目标图像轮廓的面积对目标高度宽度乘积的偏离程度,其数学表达式为:
[0348][0349]
其中w表示目标图像外接矩形的宽,h表示目标图像外接矩形的高,当目标区域为矩形时,r=1。
[0350]
e)拟合误差:
[0351]
拟合误差是指区域轮廓上的点与拟合曲线上对应点的距离误差,拟合误差可以用区域边界与拟合曲线对应点对的平均距离表示,计算式如下式所示。
[0352][0353]
其中,n是轮廓上像素点个数,(xk,yk)表示轮廓上某一点,(uk,yk)是(xk,yk)对应拟合曲线上的点,符号‖‖用于求两点间的距离。显然,拟合误差越小,说明拟合曲线与目标边界越拟合,细胞越接近圆形或者椭圆。
[0354]
灰度统计特征主要是基于显微细胞图像灰度直方图计算的,灰度统计特征提取的特征参数有:平均值m;方差σ;三阶矩μ_3;一致性u。
[0355]
其中,l表示灰度图像的灰度级数,zi表示随机的灰度值,p(zi)表示一个区域的直方图。
[0356]
f)平均值m
[0357]
平均值m表示图像一定目标区域的平均灰度值,其数学表达式为:
[0358][0359]
g)方差σ
[0360]
方差σ表示图像一定目标区域内灰度的弥散程度,其数学表达式为:
[0361][0362]
h)三阶矩μ3[0363]
三阶矩μ3反映了图像灰度直方图的对称度,其数学表达式为:
[0364][0365]
i)一致性u
[0366]
一致性u反映了一定区域内灰度值分布的离散程度,其数学表达式为:
[0367][0368]
s160、根据各类尿沉渣物的形态参数和灰度统计参数,通过具有可解释性的机器学习算法对各类尿沉渣物进行二次分类;
[0369]
可解释性的机器学习算法包括lightgbm分类算法、逻辑回归算法、svm算法、随机森林算法、knn算法和贝叶斯算法中的一种。在本实施例中,不限制采用的分类算法的类型,优选的,采用lightgbm分类算法。
[0370]
具体的,步骤s7包括:
[0371]
s161、将目标分类,形态参数的计算,灰度统计的计算划分为训练集和测试集,采用训练集作为输入变量构建lightgbm分类模型,采用网格搜索法对lightgbm分类模型的参数进行优化,得到优化后的lightgbm分类模型。
[0372]
s162、利用测试集实现对优化后的lightgbm分类模型的训练,得到训练好的lightgbm分类模型。
[0373]
s163、通过模型输出类型细分。
[0374]
对各类尿沉渣物进行二次分类是对管型、细胞以及结晶进行细分。
[0375]
管型是尿沉渣中有重要意义的成分,管型尿的出现提示有肾实质性损害,代表肾小球或肾小管存在损害。
[0376]
管型分为以下类别:
[0377]
1)透明管型;2)细胞管型;3)颗粒管型;4)蜡样管型;5)脂肪管型;6)混合管型;7)宽型管型。
[0378]
细胞分为以下类别:
[0379]
1)红细胞;2)白细胞;3)鳞状上皮细胞;4)非鳞状上皮细胞;5)吞噬细胞;6)异性细胞。
[0380]
结晶分为以下类别:
[0381]
1)草酸钙结晶;2)尿酸结晶;3)磷酸盐结晶;4)药物结晶。
[0382]
s170、然后对二次分类后的各尿沉渣物进行计数,得到计数结果;
[0383]
s180、根据各尿沉渣物的计数结果获得尿液检测结果。
[0384]
实施例17
[0385]
本实施例公开了一种基于荧光试剂的尿液成分检测方法,请参见图44和图45,包括以下步骤:
[0386]
s200、将尿液与荧光试剂注入样本检测腔室;
[0387]
本步骤中,可以先注入尿液后注入荧光试剂,或先注入荧光试剂后注入尿液,或先将尿液与荧光试剂混合,再注入所述尿液与所述荧光试剂的混合液。
[0388]
样本检测腔室位于微流控检测芯片内,在检测过程中,其位置固定不动,可直接将
尿液注入样本检测腔室,尿液进入样本检测腔室后等待被检测,不需要人工去调整尿液样本的放置位置,检测流程简单。
[0389]
在步骤s200之前还包括:
[0390]
s201、对所述尿液去泡处理。
[0391]
尿液中通常存在一定的气泡,气泡的存在会影响取样的尿液量以及检测效果,因此,需要进行去泡处理。
[0392]
在本实施例中,对尿液去泡处理主要采用沉淀去泡法,当然,去泡方法不限于此,还可以为化学去泡法、物理去泡法等去泡方式。
[0393]
s210、荧光光源发射荧光试剂激发光至所述样本检测腔室,并激发所述尿液与所述荧光试剂的混合液产生荧光;
[0394]
尿液与荧光试剂的混合液中含有能被激发而产生荧光的荧光物质,荧光光源照射在荧光物质上,混合液会发出荧光。
[0395]
步骤s210包括:
[0396]
s211、对所述荧光光源发出的光线进行滤光处理,然后激发所述尿液与所述荧光试剂的混合液产生荧光。
[0397]
在步骤s211中,滤光处理的结果是只留下能够激发荧光物质的荧光光源,避免其他光源在激发荧光物质时影响激发效果。
[0398]
s220、透过所述样本检测腔室采集经荧光光源激发后的所述混合液荧光图像。
[0399]
样本检测腔室部分透明或全透明,混合液荧光图像可穿透并散发出样本检测腔室。
[0400]
本实施例的光学信息采集组件设于样本检测腔室的一侧,可采集来自样本检测腔室的荧光图像信息。光学信息采集组件可将采集的混合液的荧光图像信息保存,并将该图像信息移交至检测处进行检测,检测精确度更高。此外,为避免检测出错,也可以调用该图像信息进行二次核验。
[0401]
在步骤s220之前还包括:
[0402]
s221、对透过所述样本检测腔室的光进行滤光处理以剩下所述混合液产生的荧光。
[0403]
步骤s221具有去噪作用,虽然荧光光源经第一次滤光后只剩下可以激发荧光物质的光源,但光源可以产生不同波段的光线,不同波段的光线都会透过样本检测腔室,但只有指定范围波段内的光线可以进行激发荧光物质,其余波段的光线会随着激发后的荧光一同从样本检测腔室中射出,对激发后的荧光有一定的干扰,为提高检测效果,需要在此步骤进行滤光处理。
[0404]
步骤s220包括:
[0405]
s222、在采集前对荧光传输路径上的环境光进行滤光处理。
[0406]
在前述的步骤s221和s222中,虽然排除了荧光光源自身的干扰,但还无法排除外部环境光对尿液检测的干扰,因此,在对荧光图像进行采集前,过滤荧光传输路径上的环境光,据此,采集到的荧光图像更精确,最终获取的尿液检测结果也更准确。
[0407]
在步骤s220之后还包括:
[0408]
s223、对检测装置进行清洁处理。
[0409]
尿液具有一定的异味,如果不进行处理,异味还会加重,影响空气环境,同时,若是不进行清洁处理,残留的尿液会影响下一次的尿液检测。检测装置涉及整个检测过程中的所有装置,主要涉及对尿液取样、尿液传输、尿液检测相关装置进行清洁,在本实施例中,具体为对尿液取样、取样微流泵、尿液传输管道以及尿液检测模组进行清洁处理。
[0410]
在步骤s220之后,本发明还包括以下步骤:
[0411]
s230、获取添加有荧光试剂的尿液样本在荧光激发后的尿液采集图像;
[0412]
s240、将所述尿液采集图像输入预设的神经网络模型;
[0413]
要对尿液样本的图像数据进行分析,需要将尿液样本在荧光激发后的尿液采集图像作为输入的原始图像,输入值预设的神经网络模型中。神经网络模型包括faster r-cnn、ssd和yolo等,在本实施例中,不限制使用的种类,优选的,本步骤选用faster r-cnn模型进行识别。
[0414]
选用faster r-cnn模型进行识别包括如下内容:
[0415]
本方法选择了相对较简单的resnet50网络替代原始网络使用的vgg16网络,因为resnet50网络使用残差块的结构,能有效防止因网络层数加深造成的梯度消失问题,加上resnet50在resnet系列网络中运算时间比较少,因此最后选择它作为网络的特征提取器。将输入网络的尺寸设置为640
×
640,子图像块尺寸不满足640的,使用0对子图边缘进行填充以调整为输入尺寸。将图像输入特征提取层后,resnet50网络采用不同数量的卷积层组合、批量归一化层、relu激活层和最大池化层组成的五个阶段进行特征提取,通过短链接实现的残差块结构用来提供对残差的学习。为了直观解释特征提取层的效果,将resnet50的五个特征层输出的特征图可视化。resnet50的网络结构及特征图的可视化效果c1~c5表示第1特征层至第5特征层,每个特征层都是通过对上层数据进行下采样处理得到的,由于输入尺寸固定为640
×
640,则c1~c5的尺寸依次为:[320,320]、[160,160]、[80,80]、[40,40]、[20,20]。
[0416]
s250、在所述神经网络模型的每一层卷积神经网络中对尿液采集图像中被遮挡的细胞图像进行加权;
[0417]
在尿液采集图像中,细胞间可能存在遮挡,被遮挡的细胞难以被神经网络模型发现,需要对尿液采集图像进行加权。
[0418]
步骤s250包括:s251、在每一层卷积神经网络中嵌入注意力机制。
[0419]
为解决细胞间存在遮挡的问题,本步骤在每一层卷积神经网络中都嵌入注意力机制,对每一层卷积神经网络中的被遮挡的细胞进行加权,以增强卷积神经网络的特征提取层的感受野,提升神经网络模型的性能。
[0420]
s260、对加权后尿液采集图像进行防止细胞遗漏识别处理:
[0421]
注意力机制包括如下内容:
[0422]
输入卷积神经网络的尿液采集图像经过卷积神经网络的特征提取层以后先进行特征提取,得到形状为h
×w×
c的特征图,其中特征图的尺寸用h
×
w表示,c为通道数。
[0423]
压缩(sequeeze):顺着空间维度来进行特征压缩,将每个二维的特征通道变成一个实数,这个实数某种程度上具有全局的感受野,并且输出的维度和输入的特征通道数相匹配。它表征着在特征通道上响应的全局分布,而且使得靠近输入的层也可以获得全局的感受野。具体操作就是对原特征图c*w*h进行全局池化层处理(global average pooling),
然后得到了一个1*1*c大小的特征图,这个特征图具有全局感受野。
[0424]
激活(excitation):输出的1x1xc特征图,再经过两个全连接神经网络,最后用一个类似于循环神经网络中门的机制,通过参数来为每个特征通道生成权重。
[0425]
特征重标定:使用excitation得到的结果作为权重,然后通过乘法逐通道加权到u的c个通道上,完成在通道维度上对原始特征的重标定,并作为下一级的输入数据。
[0426]
步骤s260还包括:s261、对不同尺寸的细胞进行特征融合处理。
[0427]
在尿液采集图像中,不仅具有细胞间存在遮挡的问题,还具有个荧光细胞大小不均的问题,过小的细胞与被遮挡的细胞都可能被遗漏,因此,需要对不同尺寸的细胞进行特征融合处理,主要是识别尿液采集图像中各细胞的边界框。
[0428]
本实施例将特征金字塔网络fpn(feature pyramid networks)融合到faster r-cnn中,增加检测器对全图信息的认知。
[0429]
1)先将尿液采集图像送入融合后的底层网络中,通过resnet50和注意力机制结构组合的网络得到五个阶段的特征图。
[0430]
2)c1~c5层即为特征提取网络得到的特征层,之后用1
×
1卷积对c4层进行降维,使得c4的特征通道数与p5的特征通道数匹配;p5经过上采样后,使得p5与c4中特征图尺寸一致,最终二者相加,得到融合层p4,其它层以此类推。
[0431]
3)然后对于得到的p2~p6层(top down网络,fpn的核心)进行rpn训练得到候选区域(region proposal),之后与原始faster r cnn的操作一样,通过3
×
3的卷积之后连接分类层和回归层。p2~p5用于预测细胞的边界框,p6用于rpn网络中。
[0432]
s270、对所述细胞的识别区域建议框进行改进。
[0433]
将经过fpn结构输出的特征图输入到rpn网络层中,以滑窗的形式根据特征图成一定数量的先验框。原faster r cnn设置宽高比为(1:2,1:1,2:1)的三种先验框,这三种比例的先验框能适应coco数据集中各种不同形状和大小的物体。为了让模型适应细胞的特点,将生成先验框的初始宽高比调整为(1:2,4:5,1:1,2:1)。并将先验框的初始尺寸设置为(16,32,64,128,256),特征图上每个点生成20种先验框,在尺寸为w
×
h的图片上总共生成w
×h×
20个先验框。然后对先验框进行二分类,分类的方法是基于iou的阈值分类法。将与任一蔗苗的真实边框的iou大于0.8的先验框分类为前景;将与所有真实边框的iou值都小于0.2的先验框分类为背景。iou计算公式如下:
[0434][0435]
实施例18
[0436]
请参见图46,本发明实施例公开了一种尿液成分的光谱检测方法,本发明能进行的光谱检测包括傅里叶红外光谱检测、拉曼光谱检测、荧光光谱检测和紫外光谱检测中的至少一种。
[0437]
光谱检测方法包括:
[0438]
s300、将尿液注入样本检测腔室;
[0439]
样本检测腔室位于微流控检测芯片内,在检测过程中,其位置固定不动,其与显微镜本体以及显微光学信息采集组件之间的位置相对固定,可直接将尿液注入样本检测腔
室,尿液进入样本检测腔室后等待被检测,不需要人工去调整尿液样本的放置位置,检测流程简单。
[0440]
在s300步骤之前,本发明还包括:
[0441]
s301、将光谱检测试剂注入样本检测腔室。
[0442]
本步骤中,可以先注入尿液后注入光谱检测试剂,或先注入光谱检测试剂后注入尿液,或先将尿液与光谱检测试剂混合,再注入所述尿液与所述光谱检测试剂的混合液。
[0443]
在s300步骤之后,本发明还包括:
[0444]
s302、调节所述样本检测腔室中尿液的温度;
[0445]
在对尿液样本进行检测时,需要保证尿液样本处于一个相对适宜的温度环境,当尿液样本外部环境过冷或过热时,外部环境温度会影响尿液样本的温度最终会影响尿液的检测效果,因此,需调节样本检测腔室中尿液的温度。
[0446]
s310、控制背景光源的光透过所述样本检测腔室的腔壁进入所述样本检测腔室;
[0447]
样本检测腔室包括上腔壁、下腔壁和侧壁,当侧壁透明,上腔壁或下腔壁也透明时,样本通入检测腔室内部,外部背景光源可透过该侧壁、透明上腔壁或下腔壁进入样本检测腔室内,光线通过透明上腔壁或下腔壁反射出样本检测腔室,据此,可为样本检测提供光源环境。当上腔壁、下腔壁均透明时,光源提供的光线可以从上腔壁或下腔壁的一侧穿透上腔壁以及下腔壁,为样本检测提供光线环境。本步骤设置的背景光源能适应不同检测环境的需要。
[0448]
在s310步骤之前,本发明还包括:
[0449]
s311、在对所述背景光源的光进行滤光处理得到预设波段范围内的光;
[0450]
步骤s311具有去噪作用,背景光源可以产生不同波段的光线,但只有预设波段范围内的光线能透过样本检测腔室形成光谱信息,其余波段的光线对尿液样本形成光谱信息的过程具有一定的干扰,并且,其余波段的光线会随着从样本检测腔室中射出,也会影响光学信息采集组件采集尿液样本的光谱信息,为提高检测效果,需要在此步骤进行滤光处理。
[0451]
s320、透过所述样本检测腔室采集所述尿液的光谱信息。
[0452]
本实施例的光学信息采集组件设于样本检测腔室的一侧,可采集来自样本检测腔室的光谱信息。光学信息采集组件可将采集的尿液样本的光谱信息保存,并将该光谱信息移交至检测处进行检测,检测精确度更高。此外,为避免检测出错,也可以调用该光谱信息进行二次核验。
[0453]
在步骤s320之前,本发明还包括:
[0454]
s321、对透过所述样本检测腔室后的光进行滤光处理。
[0455]
在前述的步骤s311中,虽然排除了背景光源自身的干扰,但还无法排除外部环境光对尿液检测的干扰,因此,在对光谱信息进行采集前,过滤光谱信息传输路径上的环境光,据此,采集到的光谱信息更精确,最终获取的尿液检测结果也更准确。
[0456]
s330、依据所述采集的所述尿液的光谱信息进行尿液检测。
[0457]
具体的,采集到的光谱信息的强度不一,将所有的光谱信息都用于尿液检测会导致检测结果不准确,据此,需要挑选一些强度适宜的光谱信息进行检测,后述步骤便是用于挑选适宜强度的光谱信息。可以理解的是,在前述的基于荧光试剂的尿液成分检测方法中,用于采集荧光图像的荧光的强度也有大有小,强度不一的荧光也会导致检测不准确,据此,
为进一步提高荧光检测的结果,可以将本实施例的尿液成分的光谱检测方法应用于尿液的荧光检测中。与此同时,前述的基于显微图像的尿液检测方法包括控制背景光源的光透过样本检测腔室的腔壁进入样本检测腔室和透过样本检测腔室采集尿液的显微图像信息,在显微图像的采集过程中,背景光源的光强度不一,通过强度不一的光源采集尿液的显微图像可能会造成误判,据此,为进一步提高基于显微图像的尿液检测的准确性,可以将本实施例中的尿液成分的光谱检测方法应用于尿液的显微检测中。综上所述,基于显微图像的尿液检测方法、基于荧光试剂的尿液成分检测方法以及尿液成分的光谱检测方法之间具有异曲同工之妙,为进一步提高尿液检测的精确性,三者的检测方式之间可以重新组合,重新组合后的尿液检测方法均在本发明的保护范围之内,并且,本发明的检测方法不仅限于对尿液进行检测,还可以对其他人体组织和体液等进行检测,更进一步的,还可用于将该检测方法应用于自然界中的各种动植物身上。
[0458]
所述s330具体包括以下步骤:
[0459]
s331、获取光谱信息的波长值,并将不同波长的光谱信息按第一预设方式排列为第一序列,所述第一序列包括第一噪声区域和第一特征峰区域;
[0460]
第一预设方式包括波长递增或波长递减的方式,噪声区域和特征峰区域都是光谱信息序列中光谱强度较高的区域且特征峰区域的最大光谱强度大于噪声区域的最大光谱强度。
[0461]
s332、获取光谱信息的强度值,并将第一序列的光谱信息按第二预设方式排列为第二序列;
[0462]
第二预设方式包括强度递增或强度递减的方式。
[0463]
s333、对所述第二序列的光谱信息进行平滑滤波处理;
[0464]
s334、按第三预设方式对经平滑滤波处理后的第二序列的光谱信息进行排序并定义为第三序列,所述第三序列包括第二噪声区域和第二特征峰区域;
[0465]
第三预设方式包括波长递增或波长递减的方式,适宜用于尿液检测的光谱信息即位于该第二特征峰区域内;
[0466]
s335、获取第三序列的所述第二特征峰区域所对应的第一数量的目标光谱信息;
[0467]
s336、依据所述第一数量的目标光谱信息进行尿液检测。
[0468]
适宜用于尿液检测的光谱信息位于特征峰区域,然而,由于噪声区域的存在,会干扰对特征峰区域的识别,因此,需要对光谱进行预处理,对光谱进行平滑滤波处理,才能在光谱信息序列中凸显特征峰区域,对光谱进行平滑滤波处理的实质使提高特征峰区域内的光谱信息的信号保真度以及提高噪声区域的信噪比。
[0469]
s333步骤具体包括:
[0470]
s3331、按照强度递减的方式在第二序列中连续获取第二预设数量的光谱信息;
[0471]
s3323、依据第二预设数量的光谱信息计算光谱噪声水平,主要包括:
[0472]
计算第二预设数量的光谱信息的平均强度值和标准差强度值,
[0473]
依据所述平均强度值和标准差强度值计算光谱噪声水平;
[0474]
s3324、依据所述光谱噪声水平计算滤波窗口宽度;
[0475]
s3325、依据所述滤波窗口宽度进行平滑滤波处理。
[0476]
具体的,在第二序列中,选择强度在前t%的光谱信息并记为噪声序列n,前t%的
光谱信息数量即第二预设数量的光谱信息,然后获取第二预设数量中每一个光谱信息的光谱强度,再计算第二预设数量中所有光谱信息的光谱强度的平均值n
mean
和标准差n
std
,光谱噪声水平计算方式、滤波窗口宽度计算方式为现有技术,在此不作赘述。
[0477]
最后,选用savitzky-golay滤波器进行平滑滤波处理,其滤波处理方式为现有技术,在此不作赘述。可以理解的是,滤波处理方式不限于此,只要能够实现平滑滤波即可。
[0478]
优选的,步骤s336包括:
[0479]
依据所述第一数量的目标光谱信息进行排位检测或模糊检测或者以排位检测为主以模糊检测为辅的精准检测;
[0480]
在本实施例中,挑选出的第一数量的目标光谱信息是在特征峰区域内获取的一定数量的光谱信息,然而,特征峰区域内的光谱信息并不一定都满足要求,因此,在第一数量的目标光谱信息中,还可能存在异常信息,本步骤就是要筛选出这些异常信息,以使尿液的检测结果更准确。
[0481]
排位检测适用于有确定的输出数据点个数的情形,其目的是筛选出第一数量的目标光谱信息中强度处于极值范围内的一定数量的光谱信息,并将这些光谱信息去除,不用于尿液检测;模糊检测适用于没有确定的输出数据点个数的情形,其目的是筛选出一些值得关注的光谱信息,并根据需要进行去除;在排位检测中,并没有对极大值与极小值之间的光谱信息进行处理,而两者之间的光谱信息依然有可能出现异常,据此,在排位检测的基础上再进行依次模糊检测,可以筛选出极值之间的值得关注的光谱信息,并根据需要进行去除,可以进一步提高尿液检测精度。
[0482]
其中,所述排位检测包括:
[0483]
依据强度从大到小的方式获取第三预设数量的光谱信息以及依据强度从小到大的方式获取第四预设数量的光谱信息,
[0484]
依据所述第三预设数量的光谱信息和所述第四预设数量的光谱信息进行尿液检测;
[0485]
较佳的,第三预设数量等于第四预设数量,极大值与极小值分布均匀,更有利于提高检测精度。
[0486]
所述模糊检测包括:
[0487]
按照第四预设方式将所述第一数量的目标光谱信息进行排序并定义为第三序列,第四预设方式包括强度递增或强度递减的方式;
[0488]
按照第五预设方式确定第三序列中的p个不同强度的强度突增异常范围以及q个不同强度的强度突降异常范围,所述p、q均为正整数,第五预设方式可以选用n-sigma检测方式,n-sigma检测方式为现有技术,在此不作赘述;
[0489]
分别在所述p个不同强度的强度突增异常范围内获取不同数量的光谱信息,其中,光谱信息的强度与依据强度获取的光谱信息的数量成反比,以及分别在所述q个不同强度的强度突降异常范围内获取不同数量的光谱信息,其中,光谱信息的强度与依据强度获取的光谱信息的数量成正比,
[0490]
根据预设条件保留或去除所述获取的光谱信息后进行尿液检测。
[0491]
优选的,本实施例设定p为3,q为3,μ为第三序列的平均光谱强度,σ为第三序列的光谱强度的标准差,采用3-sigma检测方式进行异常检测,那么,在筛选第三序列中值得关
注的光谱信息时,突增异常点范围认为有三个等级,a1,a2,a3,则突增异常点a1》μ σ,a2》μ 2σ和a3》μ 3σ,其中,a1等级涉及的光谱强度最高,根据光谱信息的强度与依据强度获取的光谱信息的数量成反比的原理,需要关注的光谱信息数量:a1<a2<a3;突增异常点范围认为有三个等级,b1,b2,b3,则突增异常点b1<μ-σ,b2<μ-2σ和b3<μ-3σ,其中,b3等级涉及的光谱强度最低,根据光谱信息的强度与依据强度获取的光谱信息的数量成正比的原理,需要关注的光谱信息数量:b1>b2>b3。
[0492]
当确定好需要关注的光谱信息数量之后,根据预设条件判断保留或去除上述确定好的光谱信息,具体的,当我们设定一定强度范围内的光谱信息为用于尿液检测的光谱信息时,若是值得关注的光谱信息位于该范围内,则将其归纳为可用于进行尿液检测的光谱信息;若是值得关注的光谱信息位于该范围外,则将其去除;若是在强度范围的边界线上,则根据实际情况进行保留或去除。据此,可以提高尿液检测精度。
[0493]
实施例19
[0494]
请参见图47至图49,本发明提供了一种尿液电化学检测方法,用于对尿液进行电化学检测,常规检测方式通常为试纸检测,将尿液滴在试纸上后,试纸与尿液发送化学反应,通过观测和分析试纸与尿液进行化学反应的颜色变化,从而得出尿液检测结果,但人工肉眼比对试剂显示结果与标准数据库会导致检测结果不准确,因此,本发明采用电化学的方式对尿液进行检测,包括:
[0495]
s400、检测电化学检测芯片是否工作正常;
[0496]
只有当所述电化学检测芯片工作正常时,才会在所述电化学检测芯片的反应部滴上尿液样本进行尿液检测,避免当电化学检测芯片工作异常时依然进行滴样,无法达到检测目的。
[0497]
电化学检测芯片包括绝缘基板和若干芯片电极,若干所述芯片电极在所述绝缘基板上形成反应部和导电部,尿液在反应部上使若干所述芯片电极导通产生若干电信号传输至导电部进行检测,通过若干所述电信号检测尿液电化学指标,不用人工通过视觉进行判断尿液的相关情况,检测出的尿液数据更精确。
[0498]
在步骤s400之前,本发明还包括:
[0499]
s401、在所述反应部的芯片电极上添加检测材料;
[0500]
在对尿液进行电化学检测时,需要在所述反应部的芯片电极上添加同一种检测材料或多种检测材料。
[0501]
当在芯片电极上添加同一种检测材料时,可检测某项电化学指标的多项电流值,通过计算多项电流值的平均值,可以得出更为精确度电化学指标数据。
[0502]
当在芯片电极上添加不同种检测材料时,可获取多项电流值以检测尿液的多项电化学指标。
[0503]
电化学指标包括尿比重、尿液ph值、尿蛋白、尿酸、尿钾、尿钠、尿钙、尿磷、尿糖、尿氯化物中的一种或多种,均可通过电信号检测分析得出。芯片电极上设置有检测材料,不同的检测材料可检测上述不同的指标,其检测原理为现有技术,在此不作赘述。尿比重和尿ph值可以直接由芯片电极本身进行检测,不需要设置检测材料。
[0504]
s410、当所述电化学检测芯片工作正常时,在所述电化学检测芯片的反应部滴上尿液样本;
[0505]
步骤s410包括:
[0506]
s411、对尿液进行取样得到尿液样本。
[0507]
当所述电化学检测芯片工作非正常时,发出报警信息。
[0508]
非正常状态包括三种:芯片本身损坏、上次使用的芯片未拔出或芯片的安装位置不准确。
[0509]
在发出报警信息后需要进行排故操作,包括:
[0510]
当故障为芯片本身损坏时,更换芯片,重新插入;
[0511]
当故障为上次使用的芯片未拔出时,更换芯片或重新插入芯片;
[0512]
当故障为芯片的安装位置不准确时,调整芯片的安装位置。
[0513]
排故操作完毕后,芯片正常工作,继续进行尿液检测。
[0514]
s420、对滴上尿液样本后的所述电化学检测芯片进行导电识别,所述导电识别是通过判断所述电化学检测芯片上是否有电流产生进行识别;
[0515]
尿液样本在反应部进行化学反应,化学反应会产生不同的电流值,通过检测电流值可进行辅助判断尿液相关数据。
[0516]
s430、当导电识别出所述电化学检测芯片上有电流产生,则获取所述电化学检测芯片上的至少一个电流值;
[0517]
一个电流值即可检测一项电化学指标,当需要检测多项电化学指标时,需要获取多项电流值。同时,当需要更精确的检测某项电化学指标时,需要获取与某项电化学指标相关的多项电流值,然后取多项电流值的平均值,得到更精确的电流值。
[0518]
s440、当导电识别出所述电化学检测芯片上没有电流产生,在所述电化学检测芯片的反应部继续滴上尿液样本。
[0519]
在电化学检测芯片正常工作时,滴入尿液后不产生电流主要考虑没有尿液样本滴入反应部或滴入反应部的尿液样本的量不足,继续滴入尿液样本可知晓是属于哪一种故障。
[0520]
继续滴入尿液样本,导电识别出电化学检测芯片上有电流产生,故障解除,继续进行尿液检测;
[0521]
继续滴入尿液样本,导电识别出电化学检测芯片上依然没有电流产生,需要查看尿液样本是否进入到电化学检测芯片中。
[0522]
s450、将所有电流值与预设的参考电流值进行比对,输出检测结果。
[0523]
在输出检测结果时,提示移除所述电化学检测芯片。保存好电化学检测芯片以供下次使用。
[0524]
在输出检测结果后,启动清洗操作。通入清洁液,清洁电化学尿液检测装置。清洁操作可设置在提示溢出所述电化学检测芯片之前进行,可以同时对电化学检测芯片进行清洗。
[0525]
本发明不用人工通过视觉进行判断尿液的相关情况,采用数字化的方式检测出的尿液数据更精确。
[0526]
步骤s450包括:
[0527]
s451、设定一个参考电流序列a,序列a=a1,a2...an,其中n表示序列长度,为正整数;
[0528]
参考电流序列a为时间序列,随时间的变化而变化,作为未检测的电流序列,简而言之,参考电流序列a为未滴入尿液之前所记录的电流序列,记录的是电化学检测芯片上的电流,参考电流序列a用于去噪,排除因时间的变化使环境因素也变化以致最终检测出的结果不理想的情况。
[0529]
s452、设定所述电化学检测芯片上有电流产生时电流值构成的时间电流序列b,序列b=b1,b2...bm,m表示序列长度,且为正整数;
[0530]
s453、依据所述参考电流序列a以及所述m值,从电流序列模板库中筛选出标准电流序列c,序列c=c1,c2...cm;
[0531]
时间电流序列b为滴入尿液后所记录的电流序列,记录的是电化学检测芯片上的电流。
[0532]
标准电流序列c为尿液在一定时间内的标准数据,为尿液指标处于最理想的状况时所应有的数据,由实验得出,其数据与根据电化学检测芯片上的电流检测出的数据无关联,但为了检测出当前尿液指标的数据,需要与根据电化学检测芯片上的电流检测出的数据进行对比,在这个过程种,需要排除天气等环境因素的干扰,需要使时间电流序列b在与标准电流序列c进行比较时处于同样的外部环境,据此,需要依据前述的参考电流序列a以及所述m值进行取值。
[0533]
s454、根据an和cm,获取第一动态时间规整距离dtw1;
[0534]
s455、根据an和bm,获取第二动态时间规整距离dtw2;
[0535]
将第一动态时间规整距离dtw1与第二动态时间规整距离dtw2进行比较,可排除天气等环境因素对尿液电化学检测的干扰。
[0536]
参考电流序列a与时间电流序列b之间的第二动态时间规整距离dtw2计算方式如下:
[0537]
参考电流序列a=a1,a2...an,其中n表示序列长度,为正整数;
[0538]
时间电流序列b=b1,b2...bm,m表示序列长度,且为正整数;
[0539]
构造一个(n,m)的矩阵,第(i,j)单元记录两个点(ai,bj)之间的欧氏距离,d(ai,bj)=|a
i-bj|。
[0540]
如图49所示,一条弯折的路径w,由若干个彼此相连的矩阵单元构成,这条路径描述了a和b之间的一种映射。设第k个单元定义为wk=(i,j)k,则
[0541]
w=w1,w2,w3,...,wk,max(n,m)<=k<=n m-1
[0542]
这条弯折的路径满足如下的条件:
[0543]
1.边界条件:w1=(1,1),且wk=(n,m)
[0544]
2.连续性:设wk=(a,b),w
k-1
=(a

,b

),那么a-a

<=1,b-b

<=1
[0545]
3.单调性:设wk=(a,b),w
k-1
=(a

,b

),那么a-a

>=0,bb

>=0
[0546]
在满足上述条件的多条路径中,最短的,花费最少的一条路径是:
[0547][0548]
则,两个时间序列的距离为:
[0549]
r(i,j)=d(i,j) minr(i-1,j-1),r(i-1,j),r(i,j-1)
[0550]
dtw2=r(i,j)。
[0551]
参考电流序列a与标准电流序列c之间的第一动态时间规整距离dtw1计算方法同dtw1。
[0552]
s456、比较所述第一动态时间规整距离dtw1和所述第二动态时间规整距离dtw2,确定所述电化学检测芯片的检测结果。
[0553]

[0554][0555]
则认为电化学检测结果正常,反之则异常。
[0556]
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献