一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

星载SAR与GNSS-S一体化系统及协同探测方法与流程

2022-05-21 11:32:59 来源:中国专利 TAG:

星载sar与gnss-s一体化系统及协同探测方法
技术领域
1.本发明涉及一种星载sar与gnss-s一体化系统及协同探测方法。


背景技术:

2.大区域海面舰船目标搜索跟踪与高分辨率sar成像一直是科学研究的热点。受海上云雨雾等天气影响,光学传感器难以发挥其高分辨率成像与识别的优势。而星载sar系统则能够穿云透雾,可以全天时全天候对海观测,适合海面舰船目标的高分辨率成像与探测应用。但是,现有的星载单一体制sar雷达系统难以同时满足大范围海面舰船目标搜索探测、高分辨率成像识别、长时间目标跟踪等多任务的并发需求。而利用gnss-s进行目标探测时不需要主动发射信号,仅需接收导航卫星信号的散射信号,具有低功耗的优势,相比于大功耗sar,可以长时间工作,更适合舰船目标长时间跟踪。此外,导航卫星信号还具有全球覆盖优势,且海面任一空间均可同时接收到多颗导航卫星信号,从而具备多站联合探测优势。
3.对此,一些技术利用导航卫星信号的反射信号(gnss-r)实现海面风场探测,并完成了低轨卫星搭载试验。同时,在地基利用导航卫星信号的散射信号(gnss-s)实现星发地收双站sar成像。但是,受限于导航卫星信号的有效带宽,成像分辨率一般在10m以上,因此这类技术仍难以实现米级分辨率sar成像,不利于图像域舰船目标识别。可见,如何利用星载sar与gnss-s实现协同探测与跟踪是领域内亟待解决的问题。


技术实现要素:

4.本发明的目的在于提供一种星载sar与gnss-s一体化系统及协同探测方法。
5.为实现上述发明目的,本发明提供一种星载sar与gnss-s一体化系统及协同探测方法,系统包括:
6.l波段三频段共孔径相控阵天线,用于同时收发l波段三个子频段电磁信号;
7.雷达主机,用于收发sar信号、接收gnss-s信号和雷达时序控制;
8.在轨处理系统,用于对sar信号与gnss-s雷达信号进行相参处理、sar成像和目标检测,并对所述l波段三频段共孔径相控阵天线的波束进行在轨赋形,完成海面舰船目标搜索探测、成像识别和定位跟踪。
9.根据本发明的一个方面,所述雷达主机包括:
10.第一高灵敏度接收机,用于接收低频段gnss-s雷达信号,获得数字域基带gnss-s雷达复信号;
11.第一gnss-s雷达主控,用于控制所述第一高灵敏度接收机的接收时序与数据流;
12.第二高灵敏度接收机,用于接收高频段gnss-s雷达信号,获得数字域基带gnss-s雷达复信号;
13.第二gnss-s雷达主控,用于控制所述第二高灵敏度接收机的接收时序与数据流;
14.环形器,用于使中频段sar收发信号与天线连接;
15.sar发射机,用于产生l波段中频段sar信号;
16.sar接收机,用于接收l波段中频段sar回波信号,获得数字域基带sar复信号;
17.sar主控,用于控制sar收发时序;
18.时钟管理单元,用于提供工作时钟或本振频率。
19.根据本发明的一个方面,所述在轨处理系统包括:
20.一体化雷达信号处理器,用于进行gnss-s雷达信号的匹配滤波、相参处理、信号级舰船目标检测与定位、sar成像、图像域舰船目标检测与识别;
21.星上协同控制与波束赋形单元,用于中频段sar天线波束赋形与分时扫描以及高低频段gnss-s天线波束赋形与指向控制。
22.根据本发明的一个方面,所述l波段三频段共孔径相控阵天线包括:
23.三频段共孔径天线辐射单元,用于进行sar信号收发与gnss-s信号接收;其中,高低频段天线均工作于垂直极化,中频段天线工作于水平极化;
24.低频段gnss-s信号射频接口,用于输出低频段gnss-s雷达信号,信号中心频率为lf1,信号有效带宽为lb1;
25.中频段sar信号射频接口,用于收发sar信号,信号中心频率为lf2,信号有效带宽为lb2;
26.高频段gnss-s信号射频接口,用于输出高频段gnss-s雷达信号,信号中心频率为lf3,信号有效带宽为lb3;
27.所述l波段三频段共孔径相控阵天线的长度为5m-15m,宽度为1m-3m;
28.三个子频段满足lf1《lf2《lf3,lb1《lb3《lb2,且lf2频段天线与lf1频段天线的隔离度大于50db,lf2频段天线与lf3频段天线的隔离度大于50db,lf1频段天线与lf3频段天线的隔离度大于30db。
29.根据本发明的一个方面,利用被动gnss-s雷达进行海面舰船目标搜索探测与目标跟踪;
30.利用主动sar对搜索得到的舰船目标进行高分辨率sar成像;
31.利用星上协同控制与波束赋形单元控制被动gnss-s雷达与主动sar的工作模式,并完成所述l波段三频段共孔径相控阵天线的波束赋形;
32.利用导航定位接收机为被动gnss-s雷达信号处理提供导航卫星参考码、多普勒偏移与码相位偏移。
33.根据本发明的一个方面,被动gnss-s雷达的工作流程包括:
34.在扫描模式下,接收l波段的低频段gnss-s信号,进行双站雷达探测,完成大范围海面舰船目标搜索探测;
35.对低频段gnss-s雷达信号进行舰船目标检测,提取舰船目标位置、雷达散射截面积(rcs);
36.在长时间凝视模式下,接收l波段的高频段gnss-s信号,进行双站雷达探测,完成舰船目标的长时间跟踪。
37.根据本发明的一个方面,主动sar的工作流程包括:
38.收发l波段的中频段sar信号,进行成像处理,完成舰船目标的高分辨率成像;
39.对sar图像进行海杂波估计、舰船目标检测与识别分类,对重点目标进行识别。
40.根据本发明的一个方面,所述星上协同控制与波束赋形单元的工作流程包括:
41.利用sar天线波束指向集生成器根据低频段gnss-s雷达搜索得到的舰船目标数量与位置,采用天线波束赋形技术生成sar天线波束指向集,对应于搜索到的多个舰船目标区域;
42.对指向不同目标区域的多个sar天线波束的扫描时序进行控制,以分时对不同舰船目标区域实现条带sar成像;
43.利用高频段gnss-s雷达天线波束指向集生成器根据sar成像识别获得的重点舰船目标数量与位置,采用天线波束赋形技术生成高频段gnss-s雷达天线波束指向集,对应于成像识别后的多个重点目标区域,以分时实现对不同重点舰船目标的长时间凝视跟踪。
44.在低频段被动gnss-s雷达搜索中:
45.lf1频段gnss-s雷达工作于扫描搜索模式,利用相控阵天线在距离向分时扫描m个波束,每个波束驻留时间为tm,m=1,2,3,

,m;每个波束对应的探测幅宽为wm,m=1,2,3,

,m,总的搜索探测幅宽为
46.接收到lf1频段gnss-s信号后,经过带通滤波、低噪声放大、下变频、带通滤波、采样接收,获得数字域基带gnss-s信号;
47.利用卫星自带的导航定位接收机输出的lf1频段导航卫星信号的参考码、多普勒偏移、码相位偏移,对数字域基带gnss-s信号进行匹配滤波处理;
48.对每个搜索波束,利用驻留时间tm内的所有gnss-s信号进行相参处理;
49.对相参处理后的gnss-s信号进行海杂波能量分布模型进行估计,在预设的虚警率下,求取检测阈值对gnss-s信号进行目标检测,并估算目标出现的位置;
50.在高频段被动gnss-s雷达跟踪中:
51.lf3频段gnss-s雷达工作于长时间凝视模式,采用相控阵天线调整波束一直指向舰船目标区域,凝视时间记为t
sp

52.接收到lf3频段gnss-s信号后,经过带通滤波、低噪声放大、下变频、带通滤波、采样接收,获得数字域基带gnss-s信号;
53.利用卫星自带的导航定位接收机输出的lf3频段导航卫星信号的参考码、多普勒偏移、码相位偏移,对数字域基带gnss-s信号进行匹配滤波处理;
54.将整个凝视时间t
sp
内的所有gnss-s信号分为k个时间段,依次对每个时间段内的gnss-s信号进行相参处理与目标检测,获得目标的k个位置点,进而获得由k个位置点组成的运动轨迹;
55.在中频段主动sar成像中:
56.采用lf2频段相控阵天线,调整天线波束指向舰船目标区域,主动发射与接收lf2频段的sar信号进行sar成像处理,sar信号带宽为80mhz,成像分辨率为3-5m;
57.对成像后的目标区域sar图像进行海杂波估计与目标检测,提取出舰船目标切片进行识别处理,获得舰船目标类型。
58.协同探测方法,包括以下步骤:
59.a、对低频段gnss-s雷达扫描模式下的回波信号进行低通滤波、匹配滤波、方位向相参与目标检测;
60.b、对中频段sar条带模式下的回波信号进行低通滤波、sar成像与目标检测;
61.c、对高频段gnss-s雷达凝视跟踪模式下的回波信号进行低通滤波、匹配滤波、相参处理与目标检测,并提取目标运动轨迹。
62.根据本发明的一个方面,所述步骤(a)包括:
63.a1、滤除带外噪声与干扰;
64.a2、对低频段gnss-s雷达回波信号进行脉冲压缩处理;
65.a3、对低频段gnss-s雷达回波信号沿飞行方向上进行相参积累;
66.a4、对低频段gnss-s雷达回波信号进行信号级目标检测;
67.所述步骤(b)包括:
68.b1、滤除带外噪声与干扰;
69.b2、对中频段sar回波信号进行高分辨率成像处理,获得3-5m分辨率的sar图像;
70.b3、对sar图像进行舰船目标检测;
71.所述步骤(c)包括:
72.c1、滤除带外噪声与干扰;
73.c2、对高频段gnss-s雷达回波信号进行脉冲压缩处理;
74.c3、将整个凝视时间t
sp
内的所有高频段gnss-s雷达凝视模式下的长时间回波信号分为k个时间段,依次对每个时间段内的gnss-s信号进行相参处理;
75.c4、对k段相参处理后的回波信号进行信号级目标检测,获得目标的k个位置点;
76.c5、利用卡尔曼滤波方法将k个位置点形成目标运动轨迹。
77.根据本发明的构思,提出一种星载sar与gnss-s一体化系统及协同探测方法,系统采用一幅相控阵天线同时实现主动sar探测与被动gnss-s雷达探测。相控阵天线采用三频段共孔径天线技术,高频段与低频段均用于被动gnss-s雷达探测,中间频段用于sar探测。被动gnss-s雷达同步接收导航卫星信号的双频段散射信号进行处理,分别实现海面舰船目标搜索与跟踪。sar探测可以收发较大带宽信号,实现舰船目标高分辨率成像。通过被动gnss-s雷达接收导航卫星信号的低频段散射信号进行处理,实现大范围海面舰船目标搜索,将搜索得到的舰船目标信息传递给星上协同控制与波束赋形单元,智能调整sar天线波束指向与形状,收发宽带l波段信号进行sar成像,获得舰船目标高分辨率sar图像进行识别分类,将识别出的重点舰船目标信息传递给星上协同控制与波束赋形单元,智能调整gnss-s雷达天线波束指向与形状,接收导航卫星信号的高频段散射信号进行处理,实现对重点舰船目标的长时间跟踪。相比于现有的星载sar,本发明的系统具有大范围海面目标搜索、高分辨率成像、长时间跟踪等优势,能同时满足大范围海面舰船目标的发现即成像、成像即识别、识别即跟踪等多任务并发需求。同时,系统仅采用一幅相控阵天线即可实现多任务并行探测能力,具备低功耗、小型化、轻量化等优势。
78.根据本发明的一个方案,l波段三频段共孔径相控阵天线能同时工作在l波段的三个子频段,利用低频段gnss-s雷达实现大范围舰船目标搜索,利用中频段sar实现舰船目标高分辨率成像,利用高频段gnss-s雷达实现舰船目标长时间跟踪,进而解决大范围海面目标搜索、高分辨率成像、长时间跟踪等多任务并发的资源严重冲突问题,满足海面舰船目标的多任务并行探测需求。
79.根据本发明的一个方案,采用一幅相控阵天线,工作在l波段的高、中、低三个子频段,同时实现主动sar探测与被动gnss-s雷达探测。被动gnss-s雷达能同时工作在低频段与
高频段两个频段,同时接收导航卫星信号的双波段散射信号,低频段gnss-s信号用于大范围舰船目标搜索,高频段gnss-s信号用于舰船目标跟踪;主动sar工作在中间频段,用于舰船目标高分辨率成像;被动gnss-s雷达与主动sar通过星上协同控制与波束赋形单元,实现大范围海面舰船目标的搜索、成像与跟踪。
80.根据本发明的一个方案,星上协同控制与波束赋形单元能够根据低频段被动gnss-s雷达搜索得到的舰船目标位置信息,对sar天线的波束进行在轨赋形,指向舰船目标区域,以实现舰船目标高分辨率成像,并根据主动sar成像与识别得到的舰船类型等信息,对高频段被动gnss-s雷达天线波束进行在轨赋形,长时间凝视重点舰船目标区域,以实现舰船目标长时间跟踪。
附图说明
81.图1示意性表示本发明的一种实施方式的一体化探测系统组成图;
82.图2表示本发明的一种实施方式的l波段相控阵天线示意图;
83.图3示意性表示本发明的一种实施方式的一体化探测系统工作流程图;
84.图4示意性表示本发明的一种实施方式的星上协同控制与波束赋形单元的工作流程图;
85.图5表示本发明的一种实施方式的一体化探测系统的探测场景示意图;
86.图6示意性表示本发明的一种实施方式的一体化探测系统信号处理流程图。
具体实施方式
87.为了更清楚地说明本发明实施方式或现有技术中的技术方案,下面将对实施方式中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是本发明的一些实施方式,对于本领域普通技术人员而言,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
88.下面结合附图和具体实施方式对本发明作详细地描述,实施方式不能在此一一赘述,但本发明的实施方式并不因此限定于以下实施方式。
89.参见图1,本发明的星载l波段sar与gnss-s一体化系统,可应用于天基分布式高分宽幅sar系统研究,用于海面舰船目标搜索跟踪与高分辨率、高分宽幅sar成像,包括:l波段三频段共孔径相控阵天线100,用于同时收发l波段三个子频段电磁信号;雷达主机200,用于收发sar信号、接收gnss-s信号和雷达时序控制等,实现sar回波信号接收与gnss-s雷达信号接收;在轨处理系统300,用于对sar信号与gnss-s雷达信号进行相参处理、sar成像和目标检测等,并对l波段三频段共孔径相控阵天线100的波束进行在轨赋形,完成海面舰船目标搜索探测、成像识别和定位跟踪。
90.本发明中,雷达主机200包括:第一高灵敏度接收机2001,用于接收低频段gnss-s雷达信号,获得数字域基带gnss-s雷达复信号;第一gnss-s雷达主控2002,用于控制第一高灵敏度接收机2001的接收时序与数据流;第二高灵敏度接收机2003,用于接收高频段gnss-s雷达信号,获得数字域基带gnss-s雷达复信号;第二gnss-s雷达主控2004,用于控制第二高灵敏度接收机2003的接收时序与数据流;环形器2005,用于使中频段sar收发信号与天线连接;sar发射机2006,用于产生l波段中频段sar信号;sar接收机2007,用于接收l波段中频
段sar回波信号,获得数字域基带sar复信号;sar主控2008,用于控制sar收发时序;时钟管理单元2009,用于为雷达主机内的各个模块提供工作时钟或本振频率。
91.本发明中,在轨处理系统300包括:一体化雷达信号处理器3001,用于进行gnss-s雷达信号的匹配滤波、相参处理、信号级舰船目标检测与定位、sar成像、图像域舰船目标检测与识别等处理;星上协同控制与波束赋形单元3002,用于控制中频段sar天线波束赋形与分时扫描以及高低频段gnss-s天线波束赋形与指向控制。
92.参见图2,本发明的l波段三频段共孔径相控阵天线100包括:三频段共孔径天线辐射单元5001,用于同时进行sar信号收发与gnss-s信号接收;其中,高低频段天线均工作于垂直极化,中频段天线工作于水平极化;低频段gnss-s信号射频接口5002,用于输出低频段gnss-s雷达信号,信号中心频率为lf1,信号有效带宽为lb1;中频段sar信号射频接口5003,用于收发sar信号,信号中心频率为lf2,信号有效带宽为lb2;高频段gnss-s信号射频接口5004,用于输出高频段gnss-s雷达信号,信号中心频率为lf3,信号有效带宽为lb3。l波段三频段共孔径相控阵天线100的长度s1为5m-15m,宽度s2为1m-3m。
93.由此,本发明的相控阵天线采用三频段共孔径天线技术,实现l波段三个子频段天线一体化,三个子频段即为lf1、lf2与lf3,对应的工作带宽即为lb1、lb2与lb3,且满足lf1《lf2《lf3,lb1《lb3《lb2。其中,高频段lf3天线与低频段lf1天线均工作于垂直极化,中频段lf2天线工作于水平极化;较低频段lf1分配给被动gnss-s雷达用于大范围海面舰船目标搜索;中间频段lf2分配给主动sar用于舰船目标高分辨率成像;较高频段lf3分配给被动gnss-s雷达用于舰船目标跟踪。并且,lf2频段天线与lf1频段天线的隔离度大于50db,lf2频段天线与lf3频段天线的隔离度大于50db,lf1频段天线与lf3频段天线的隔离度大于30db,以降低主动sar对被动gnss-s雷达的干扰。
94.参见图3,本发明利用被动gnss-s雷达10进行大范围海面舰船目标搜索探测与长时间目标跟踪;利用主动sar30对搜索得到的舰船目标进行高分辨率sar成像;利用星上协同控制与波束赋形单元3002控制被动gnss-s雷达与主动sar的工作模式,并完成l波段三频段共孔径相控阵天线100的波束赋形;利用导航定位接收机40为被动gnss-s雷达信号处理提供导航卫星参考码、多普勒偏移与码相位偏移等信息。
95.本发明中,被动gnss-s雷达10的工作流程包括:gnss-s被动雷达大范围搜索目标101,即在扫描模式下,接收l波段的低频段gnss-s信号,进行双站雷达探测,完成大范围海面舰船目标搜索探测;目标检测与信息提取102,即,对低频段gnss-s雷达信号进行舰船目标检测,提取舰船目标位置、rcs等信息;gnss-s被动雷达长时间跟踪目标103,即在长时间凝视模式下,接收l波段的高频段gnss-s信号,进行双站雷达探测,完成舰船目标的长时间跟踪。
96.本发明中,主动sar30的工作流程包括:目标区域sar成像301,即,收发l波段的中频段sar信号,进行成像处理,完成舰船目标的高分辨率成像;目标检测与识别302,即,对sar图像进行海杂波估计、舰船目标检测与识别分类,对重点目标进行识别。
97.参见图4,星上协同控制与波束赋形单元3002的工作流程包括:利用sar天线波束指向集生成器9001根据低频段gnss-s雷达搜索得到的舰船目标数量与位置等信息,采用天线波束赋形技术生成sar天线波束指向集,对应于搜索到的多个舰船目标区域;sar天线波束时序控制9002,即对指向不同目标区域的多个sar天线波束的扫描时序进行控制,以分时
对不同舰船目标区域实现条带sar成像;利用高频段gnss-s雷达天线波束指向集生成器9003根据sar成像识别获得的重点舰船目标数量与位置等信息,采用天线波束赋形技术生成高频段gnss-s雷达天线波束指向集,对应于成像识别后的多个重点目标区域,以分时实现对不同重点舰船目标的长时间凝视跟踪。
98.在本实施方式中,采用20m
×
2m的l波段相控阵天线,三个子频带的中心频率分别为1.191ghz、1.255ghz、1.575ghz,有效信号带宽分别为2mhz、80mhz与20mhz,卫星轨道高度为500km,低频段gnss-s雷达天线扫描4个波束,实现300km大范围目标搜索,中频段sar成像分辨率为3m-5m,高频率gnss-s雷达天线波束凝视一个海面重点目标区域,实现约1分钟的长时间跟踪。
99.参见图5,星载sar与gnss-s一体化系统的轨道高度为h,采用一幅l波段三频段相控阵天线实现大范围目标搜索、高分辨率成像与长时间跟踪。
100.低频段(lf1频段)被动gnss-s雷达天线波束由近及远扫描,实现大幅宽搜索探测(即工作于扫描搜索模式),利用相控阵天线在距离向分时扫描的波束个数为m,第m个波束的驻留时间为tm,m=1,2,3,

,m,一般为秒级,第m个波束对应的探测幅宽为wm,则总的搜索探测幅宽为接收到lf1频段gnss-s信号后,经过带通滤波、低噪声放大、下变频、带通滤波、采样接收等处理,获得数字域基带gnss-s信号;利用卫星自带的导航定位接收机输出的lf1频段导航卫星信号的参考码、多普勒偏移、码相位偏移等信息,对数字域基带gnss-s信号进行匹配滤波处理,提升gnss-s信号信噪比;对每个搜索波束,利用驻留时间tm内的所有gnss-s信号进行相参处理,以进一步提升gnss-s信号信噪比;对相参处理后的gnss-s信号进行海杂波能量分布模型进行估计,在预设的虚警率下,求取检测阈值对gnss-s信号进行目标检测,并估算目标出现的位置。
101.在空间位置上,中频段(lf2频段)主动sar天线波束紧跟低频段天线波束之后,工作于条带模式,对搜索得到的舰船目标区域进行高分辨率sar成像,以识别确认重点舰船目标。采用相控阵天线,调整天线波束指向舰船目标区域,主动发射与接收lf2频段的sar信号进行sar成像处理,sar信号带宽一般为80mhz,成像分辨率一般为3-5m;对成像后的目标区域sar图像进行海杂波估计与目标检测,提取出舰船目标切片进行识别处理,获得舰船目标类型。
102.高频段(lf3频段)被动gnss-s雷达天线波束一般为后斜视,工作于长时间凝视模式或聚束模式,实现对重点舰船目标的长时间跟踪。采用相控阵天线调整波束一直指向舰船目标区域,凝视时间记为t
sp
,一般为分钟级。接收到lf3频段gnss-s信号后,经过带通滤波、低噪声放大、下变频、带通滤波、采样接收等处理,获得数字域基带gnss-s信号;利用卫星自带的导航定位接收机输出的lf3频段导航卫星信号的参考码、多普勒偏移、码相位偏移等信息,对数字域基带gnss-s信号进行匹配滤波处理,以提升gnss-s信号信噪比;将整个凝视时间t
sp
内的所有gnss-s信号分为k个时间段,依次对每个时间段内的gnss-s信号进行相参处理与目标检测,进而获得目标的k个位置点,以获得由k个位置点组成的运动轨迹。
103.参见图6,本发明的舰船目标协同探测方法,属于高分宽幅sar成像方法,首先进行低频段gnss-s雷达信号处理600,即对低频段gnss-s雷达扫描模式下的回波信号进行低通滤波、匹配滤波、方位向相参与目标检测等处理;然后进行中频段sar信号处理700,即对中
频段sar条带模式下的回波信号进行低通滤波、sar成像与目标检测等处理;最后进行高频段gnss-s雷达信号处理800,即对高频段gnss-s雷达凝视跟踪模式下的回波信号进行低通滤波、匹配滤波、相参处理与目标检测等处理,并提取目标运动轨迹。
104.本发明中,低频段gnss-s雷达信号处理包括:低通滤波6001,滤除带外噪声与干扰;匹配滤波6002,对低频段gnss-s雷达回波信号进行脉冲压缩处理,以提高信噪比;方位向信号相参处理6003,对低频段gnss-s雷达回波信号沿飞行方向上进行相参积累,以进一步提升信噪比;目标检测6004,即对低频段gnss-s雷达回波信号进行信号级目标检测。中频段sar信号处理包括:低通滤波7001,滤除带外噪声与干扰;sar成像7002,对中频段sar回波信号进行高分辨率成像处理,获得3-5m分辨率的sar图像;目标检测7003,即对sar图像进行舰船目标检测。高频段gnss-s雷达信号处理包括:低通滤波8001,滤除带外噪声与干扰;匹配滤波8002,对高频段gnss-s雷达回波信号进行脉冲压缩处理,以提高信噪比;方位向信号分段相参处理8003,即对高频段gnss-s雷达凝视模式下的长时间回波信号进行分段处理。具体为,将整个凝视时间t
sp
内的所有高频段gnss-s雷达凝视模式下的长时间回波信号分为k个时间段,依次对每个时间段内的gnss-s信号进行相参处理,以进一步提升信噪比;目标检测8004,即对k段相参处理后的回波信号进行信号级目标检测,获得目标的k个位置点;目标轨迹提取8005,即利用卡尔曼滤波方法将k个位置点形成目标运动轨迹。
105.综上所述,本发明的星载l波段sar与gnss-s一体化探测系统具有大范围海面目标搜索、高分辨率成像、长时间跟踪等多任务并行探测能力,能同时满足大范围海面舰船目标的发现即成像、成像即识别、识别即跟踪等多任务并发需求。同时,系统仅采用一幅相控阵天线即可实现多任务并行探测能力,具备低功耗、小型化、轻量化等优势,具有较高的应用价值和广阔的市场应用前景。
106.以上所述仅为本发明的一个实施方式而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包括在本发明的保护范围之内。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献