一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

土壤有机质预测方法、装置、设备及存储介质

2022-05-18 14:13:34 来源:中国专利 TAG:


1.本发明涉及土壤有机质分析领域,特别涉及是一种土壤有机质预测方法、装置、设备以及存储介质。


背景技术:

2.土壤有机质泛指土壤中以各种形式存在的含碳有机化合物,指土壤中来源于生命的物质,是土壤中除土壤矿物质以外的物质,它是土壤中最活跃的部分,是土壤肥力的基础,是衡量土壤肥力的重要指标之一,测量土壤有机质对于指导农作物的种植具有重大意义。
3.随着光谱特征的研究的快速发展,近年来,针对土壤有机质在可见光范围或近红外范围的光谱特征,构建了一系列的土壤有机质光谱预测的指数,但该指数主要是针对土壤有机质含量数据较高的土壤,由于且会受到氧化铁吸收的影响,可见光范围的土壤光谱不利于有机质含量数据光谱建模。因此,对于土壤有机质含量数据较低、铁氧化物含量相对较高的土壤,测量的可行性差,且测量的效果不够准确。


技术实现要素:

4.基于此,本发明的目的在于,提供一种土壤有机质预测方法、装置、设备以及存储介质,基于目标区域的土壤的反射光谱数据以及有机质含量数据,构建土壤有机质预测模型,能够针对有机质含量数据、高铁氧化物含量的土壤的有机质含量数据进行预测,高效、快捷。
5.第一方面,本技术实施例提供了一种土壤有机质预测方法,包括以下步骤:
6.获取目标区域的土壤的反射光谱数据以及有机质含量数据,其中,所述反射光谱数据包括若干个波长范围的反射光谱曲线;
7.从所述反射光谱数据中提取目标波长范围的反射光谱曲线,根据所述反射光谱数据以及有机质含量数据,计算所述目标波长范围的反射光谱曲线的光谱区间面积数据;
8.根据所述目标区域的土壤的有机质含量数据以及光谱区间面积数据,构建土壤有机质预测模型,对所述土壤有机质预测模型进行精度评价;
9.响应于预测指令,所述预测指令包括待预测区域的土壤的反射光谱数据,根据所述待预测区域的土壤的反射光谱数据以及土壤有机质预测模型,获取所述待预测区域的土壤的有机质含量数据。
10.第二方面,本技术实施例提供了一种荔枝园土壤有机质预测装置,包括:
11.获取模块,用于获取目标区域的土壤的反射光谱数据以及有机质含量数据,其中,所述反射光谱数据包括若干个波长范围的反射光谱曲线;
12.光谱区间面积数据计算模块,用于从所述反射光谱数据中提取目标波长范围的反射光谱曲线,根据所述反射光谱数据以及有机质含量数据,计算所述目标波长范围的反射光谱曲线的光谱区间面积数据;
13.构建模块,用于根据所述目标区域的土壤的有机质含量数据以及光谱区间面积数据,构建土壤有机质预测模型,对所述土壤有机质预测模型进行精度评价;
14.测量模块,用于响应于预测指令,所述预测指令包括待预测区域的土壤的反射光谱数据,根据所述待预测区域的土壤的反射光谱数据以及土壤有机质预测模型,获取所述待预测区域的土壤的有机质含量数据。
15.第三方面,本技术实施例提供了一种计算机设备,包括:处理器、存储器以及存储在所述存储器上并可在所述处理器上运行的计算机程序;所述计算机程序被所述处理器执行时实现如第一方面所述土壤有机质预测方法的步骤。
16.第四方面,本技术实施例提供了一种存储介质,所述存储介质存储有计算机程序,所述计算机程序被处理器执行时实现如第一方面所述的土壤有机质预测方法的步骤。
17.在本技术实施例中,提供一种土壤有机质预测方法、装置、设备以及存储介质,基于目标区域的土壤的反射光谱数据以及有机质含量数据,构建土壤有机质预测模型,能够针对有机质含量数据、高铁氧化物含量的土壤的有机质含量数据进行预测,高效、快捷。
18.为了更好地理解和实施,下面结合附图详细说明本发明。
附图说明
19.图1为本技术第一实施例提供的土壤有机质预测方法的流程示意图;
20.图2为本技术第二实施例提供的土壤有机质预测方法的流程示意图;
21.图3为本技术第一实施例提供的土壤有机质预测方法中s2的流程示意图;
22.图4为本技术第三实施例提供的土壤有机质预测方法的流程示意图;
23.图5为本技术第三实施例提供的土壤有机质预测方法中s6的流程示意图;
24.图6为本技术第一实施例提供的土壤有机质预测方法中s3的流程示意图;
25.图7为本技术第四实施例提供的荔枝园土壤有机质预测装置的结构示意图;
26.图8为本技术第五实施例提供的计算机设备的结构示意图。
具体实施方式
27.这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本技术相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本技术的一些方面相一致的装置和方法的例子。
28.在本技术使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本技术。在本技术和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
29.应当理解,尽管在本技术可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本技术范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”/“若”可以被解释成为“在
……
时”或“当
……
时”或“响应于确定”。
30.请参阅图1,图1为本技术第一实施例提供的土壤有机质预测方法的流程示意图,所述方法包括如下步骤:
31.s1:获取目标区域的土壤的反射光谱数据以及有机质含量数据,其中,所述反射光谱数据包括若干个波长范围的反射光谱曲线。
32.所述土壤有机质预测方法的执行主体为土壤有机质预测方法的预测设备(以下简称预测设备),在一个可选的实施例中,所述预测设备可以是一台计算机设备可以是服务器,或是多台计算机设备联合而成的服务器机群。
33.预测设备可以通过传感器获取目标区域的土壤的反射光谱数据以及有机质含量数据,也可以通过从数据库中下载获取。
34.在本实施例中,预测设备通过asd field spec@3,即便携式地物光谱仪,对经烘干、研磨后的目标区域的土壤进行扫描分析,获取目标区域的土壤的反射光谱数据,其中,所述反射光谱数据包括若干个波长范围的反射光谱曲线,所述波长范围为2450nm-2500nm。
35.所述反射光谱数据包括所述反射光谱曲线各个波长的反射率值以及各个波长的包络线的去除光谱值。
36.请参阅图2,图2为本技术第二实施例提供的土壤有机质预测方法的流程示意图,包括步骤s5,所述步骤s5在步骤s2之前,具体如下:
37.s5:对所述反射光谱数据进行预处理,获取预处理后的反射光谱数据,其中,所述预处理步骤包括波段去除处理以及波段平均处理。
38.铁氧化物在可见光近红外的400nm-1000nm范围内具有显著的吸收特征,有机质在这一范围内也存在吸收特征,由于荔枝园的土壤的有机质含量数据低,铁氧化物含量高,对利用荔枝园土壤的反射光谱数据进行有机质含量数据反演时,铁氧化物在上述光谱范围内的强吸收会掩盖有机质在上述光谱范围内的吸收特征,这时反演的精度就会大大降低,但有机质在近红外的1000nm-2500nm范围内也存在吸收特征。
39.因此,为了更好地对荔枝园土壤的有机质含量数据进行精准预测,在本实施例中,预测设备对获取的目标区域的土壤的反射光谱数据进行波段去除处理以及波段平均处理,获取预处理后的反射光谱数据,具体地,预测设备通过相应的滤波器去除所述目标区域的土壤的反射光谱数据中的350nm-399nm、1350nm-1450nm、1860nm-1960nm、2450nm-2500nm波长范围的反射光谱曲线,并对去除后的反射光谱数据进行波段平均处理,获取处理后的反射光谱数据,将所述处理后的反射光谱数据作为反射光谱数据,实现了更高精度的荔枝园土壤的有机质含量数据的预测,并且减小了数据的冗余,提高预测的效率。
40.s2:从所述反射光谱数据中提取目标波长范围的反射光谱曲线,根据所述反射光谱数据以及有机质含量数据,计算所述目标波长范围的反射光谱曲线的光谱区间面积数据。
41.光谱区间面积数据为反射光谱曲线在目标波长范围内,反射光谱曲线与预设的坐标轴围成的面积数据。
42.为了避免土壤的有机质以及铁氧化物的吸收特征产生的精度不良后果,更好地对荔枝园土壤的有机质含量数据的进行预测,在本实施例中,预测设备将目标波长范围设置为2140nm-2240nm。
43.预测设备从所述反射光谱数据中提取目标波长范围的反射光谱曲线,根据所述反
射光谱数据以及有机质含量数据,计算所述目标波长范围的反射光谱曲线的光谱区间面积数据。
44.请参阅图3,图3为本技术第一实施例提供的土壤有机质预测方法中s2的流程示意图,包括步骤s201~s202,具体如下:
45.s201:根据所述反射光谱数据以及波段深度计算算法,获取所述反射光谱曲线的波段深度值。
46.所述波段深度计算算法为:
[0047][0048][0049]
bd
(λi)
=1-r

(λi)
[0050]
式中,r
λ(i)
为所述反射光谱曲线中波长λ(i)处的反射率值;λ
start
为所述反射光谱曲线中的起始位置的波长,λ
end
为所述反射光谱曲线中的终止位置的波长;r
c(λi)
为波长λ(i)的包络线的去除光谱值;bd
(λi)
为波长λ(i)的波段深度值;
[0051]
在本实施例中,预测设备获取所述反射光谱数据中各个波长的反射率值以及各个波长的包络线的去除光谱值,输入至所述波段深度计算算法,获取所述反射光谱曲线的波段深度值。
[0052]
s202:根据所述目标波长范围内的反射光谱曲线的波段深度值以及光谱面积数据计算算法,获取所述目标波长范围的反射光谱曲线的光谱区间面积数据。
[0053]
所述光谱面积数据计算算法为:
[0054][0055]
式中,ta为所述光谱区间面积数据,λ
left
为所述目标波长范围的反射光谱曲线的起始位置的波长,λ
right
为所述目标波长范围的反射光谱曲线的终止位置的波长。
[0056]
在本实施例中,预测设备根据所述目标波长范围内的反射光谱曲线的波段深度值以及光谱面积数据计算算法,获取所述目标波长范围的反射光谱曲线的光谱区间面积数据。
[0057]
请参阅图4,图4为本技术第三实施例提供的土壤有机质预测方法的流程示意图,包括步骤s6,所述步骤s6在步骤s3之前,具体如下:
[0058]
s6:对所述目标区域的土壤的有机质含量数据以及光谱区间面积数据进行关联性检测,获取检测结果,根据所述检测结果,从所述目标区域的土壤的有机质含量数据中提取样本有机质含量数据,从所述光谱区间面积数据中提取样本光谱区间面积数据。
[0059]
在本实施例中,预测设备对所述目标区域的土壤的有机质含量数据以及光谱区间面积数据进行关联性检测,获取检测结果,根据所述检测结果,从所述目标区域的土壤的有机质含量数据中提取样本有机质含量数据,从所述光谱区间面积数据中提取样本光谱区间面积数据,其中,所述有机质含量数据数的数量与所述样本光谱区间面积数据的数量一致。
[0060]
请参阅图5,图5为本技术第三实施例提供的土壤有机质预测方法中s6的流程示意图,包括步骤s601~s602,具体如下:
[0061]
s601:根据所述光谱区间面积数据、有机质含量数据以及皮尔逊相关系数算法,获取皮尔逊相关系数,作为光谱相关系数。
[0062]
所述皮尔逊相关系数算法为:
[0063][0064]
式中,ρ
x,y
为皮尔逊相关系数,x为所述光谱区间面积数据,y为所述有机质含量数据;μ
x
为所述光谱区间面积数据的均值,μy为所述有机质含量数据的均值;σ
x
所述光谱区间面积数据的标准差,σy为所述有机质含量数据的标准值;e()为期望函数;
[0065]
在本实施例中,预测设备获取所述光谱区间面积数据的均值、标准值,以及所述有机质含量数据的均值、标准值,输入至预设的皮尔逊相关系数算法中,获取与所述光谱区间面积数据、有机质含量数据相关联的皮尔逊相关系数。
[0066]
s602:根据所述皮尔逊相关系数以及线性相关系数算法,获取线性相关系数,根据所述线性相关系数以及预设的线性相关系数对照值,对所述光谱区间面积数据以及有机质含量数据进行关联性检测,获取检测结果。
[0067]
所述线性相关系数用于对所述光谱区间面积数据、有机质含量数据的相关联程度进行显著性检验。
[0068]
所述线性相关系数算法为:
[0069][0070]
式中,t为所述线性相关系数,n为所述光谱区间面积数据的数量以及所述有机质含量数据的数量;
[0071]
预测设备将所述皮尔逊相关系数输入至预设的线性相关系数算法中,获取线性相关系数,根据预设的分布概率分布表,获取所述线性相关系数相对应的概率p0,根据预设的线性相关系数对照值p与进行对比,当p0≤p,获取检验成功结果,从所述光谱区间面积数据中提取样本光谱区间面积数据,从所述有机质含量数据中提取样本有机质含量数据,从而实现对所述光谱区间面积数据以及有机质含量数据进行关联性检测,一般地,所述线性相关系数对照值p取0.05。
[0072]
s3:根据所述目标区域的土壤的有机质含量数据以及光谱区间面积数据,构建土壤有机质预测模型,对所述土壤有机质预测模型进行精度评价。
[0073]
所述土壤有机质预测模型为:
[0074]
a=-0.08 0.33b
[0075]
式中,a为所述土壤有机质预测模型的输出向量,b为所述土壤有机质预测模型的输入向量。
[0076]
在本实施例中,预测设备以所述有机质含量数据作为所述土壤有机质预测模型的输出向量,以所述光谱面积数据作为所述土壤有机质预测模型的输入向量,进行线性回归,构建土壤有机质预测模型,对所述土壤有机质预测模型进行精度评价。
[0077]
请参阅图6,图6为本技术第一实施例提供的土壤有机质预测方法中s3的流程示意图,包括步骤s301~s302,具体如下:
[0078]
s301:将所述光谱区间面积数据输入至所述土壤有机质预测模型,获取所述土壤
有机质预测模型输出的有机质含量预测数据,根据所述有机质含量预测数据、样本有机质含量数据以及评价参数算法,获取所述土壤有机质预测模型的评价参数,其中,所述评价参数包括确定系数、均方根误差以及残差预测偏差。
[0079]
所述评价参数算法为:
[0080][0081][0082][0083]
式中,r2为所述确定系数,rmse为所述均方根误差,rpd为所述残差预测偏差,yi为所述样本有机质含量数据,为所述有机质含量预测数据,为所述样本有机质含量数据的均值,m为所述样本有机质含量数据的数量;sd为所述样本有机质含量数据的标准差。
[0084]
在本实施例中,预测设备将所述样本有机质含量数据、所述样本有机质含量数据的均值、所述样本有机质含量数据的标准差以及所述有机质含量预测数据输入至预设的评价参数算法,获取所述土壤有机质预测模型的确定系数、均方根误差以及残差预测偏差。
[0085]
s302:根据预设的确定系数对照值、均方根误差对照值以及残差预测偏差对照值,与所述土壤有机质预测模型的相应的评价参数进行对比,获取对比结果,根据所述对比结果,将所述土壤有机质预测模型作为用于预测的土壤有机质预测模型。
[0086]
所述对比结果包括确定系数对比成功结果、均方根误差对比成功结果以及残差预测偏差对比成功结果。
[0087]
预测设备根据预设的确定系数对照值,与所述土壤有机质预测模型的确定系数进行对比,一般地,所述确定系数对照值为0.80,当所述土壤有机质预测模型的确定系数大于预设的确定系数对照值,获取确定系数对比成功结果;
[0088]
在一个可选的实施例中,预测设备将验证集输入至所述土壤有机质预测模型中,获取有机质含量验证数据,其中,所述验证集包括在实验室中测得的土壤的反射光谱数据以及有机质含量数据。
[0089]
根据所述验证集、有机质含量验证数据以及评价参数算法,获取所述验证集对应的均方根误差,作为均方根误差对照值,将所述均方根误差对照值与所述土壤有机质预测模型的均方根误差进行对比,当所述土壤有机质预测模型的均方根误差大于所述均方根误差对照值,获取均方根误差对比成功结果;
[0090]
当同时获取对比成功结果、均方根误差对比成功结果以及残差预测偏差对比成功结果,将所述土壤有机质预测模型作为用于预测的土壤有机质预测模型。
[0091]
s4:响应于预测指令,所述预测指令包括待预测区域的土壤的反射光谱数据,根据所述待预测区域的土壤的反射光谱数据以及土壤有机质预测模型,获取所述待预测区域的土壤的有机质含量数据。
[0092]
所述预测指令是用户发出,由预测设备接收的。
[0093]
预测设备获取用户发送的预测指令,将所述待预测区域的土壤的反射光谱数据输入至所述土壤有机质预测模型,获取所述待预测区域的土壤的有机质含量数据。
[0094]
请参考图7,图7为本技术第四实施例提供的荔枝园土壤有机质预测装置的结构示意图,该装置可以通过软件、硬件或两者的结合实现荔枝园土壤有机质预测装置的全部或一部分,该装置7包括:
[0095]
获取模块71,用于获取目标区域的土壤的反射光谱数据以及有机质含量数据,其中,所述反射光谱数据包括若干个波长范围的反射光谱曲线;
[0096]
光谱区间面积数据计算模块72,用于从所述反射光谱数据中提取目标波长范围的反射光谱曲线,根据所述反射光谱数据以及有机质含量数据,计算所述目标波长范围的反射光谱曲线的光谱区间面积数据;
[0097]
构建模块73,用于根据所述目标区域的土壤的有机质含量数据以及光谱区间面积数据,构建土壤有机质预测模型,对所述土壤有机质预测模型进行精度评价;
[0098]
测量模块74,用于响应于测量指令,所述测量指令包括待预测区域的土壤的反射光谱数据,根据所述待预测区域的土壤的反射光谱数据以及土壤有机质预测模型,获取所述待预测区域的土壤的有机质含量数据。
[0099]
在本技术实施例中,通过获取模块,获取目标区域的土壤的反射光谱数据以及有机质含量数据,其中,所述反射光谱数据包括若干个波长范围的反射光谱曲线;通过光谱区间面积数据计算模块,从所述反射光谱数据中提取目标波长范围的反射光谱曲线,根据所述反射光谱数据以及有机质含量数据,计算所述目标波长范围的反射光谱曲线的光谱区间面积数据;通过构建模块,根据所述目标区域的土壤的有机质含量数据以及光谱区间面积数据,构建土壤有机质预测模型,对所述土壤有机质预测模型进行精度评价;通过测量模块,响应于测量指令,所述测量指令包括待预测区域的土壤的反射光谱数据,根据所述待预测区域的土壤的反射光谱数据以及土壤有机质预测模型,获取所述待预测区域的土壤的有机质含量数据。基于目标区域的土壤的反射光谱数据以及有机质含量数据,构建土壤有机质预测模型,能够针对有机质含量数据、高铁氧化物含量的土壤的有机质含量数据进行预测,高效、快捷。
[0100]
请参考图8,图8为本技术第五实施例提供的计算机设备的结构示意图,计算机设备8包括:处理器81、存储器82以及存储在存储器82上并可在处理器81上运行的计算机程序83;计算机设备可以存储有多条指令,指令适用于由处理器81加载并执行上述图1至图6所示实施例的方法步骤,具体执行过程可以参见图1至图6所示实施例的具体说明,在此不进行赘述。
[0101]
其中,处理器81可以包括一个或多个处理核心。处理器81利用各种接口和线路连接服务器内的各个部分,通过运行或执行存储在存储器82内的指令、程序、代码集或指令集,以及调用存储器82内的数据,执行荔枝园土壤有机质预测装置6的各种功能和处理数据,可选的,处理器81可以采用数字信号处理(digital signal processing,dsp)、现场可编程门阵列(field-programmable gate array,fpga)、可编程逻辑阵列(programble logic array,pla)中的至少一个硬件形式来实现。处理器81可集成中央处理器81(central processing unit,cpu)、图像处理器81(graphics processing unit,gpu)和调制解调器等中的一个或几种的组合。其中,cpu主要处理操作系统、用户界面和应用程序等;gpu用于负责触摸显示屏所需要显示的内容的渲染和绘制;调制解调器用于处理无线通信。可以理解的是,上述调制解调器也可以不集成到处理器81中,单独通过一块芯片进行实现。
[0102]
其中,存储器82可以包括随机存储器82(random access memory,ram),也可以包括只读存储器82(read-only memory)。可选的,该存储器82包括非瞬时性计算机可读介质(non-transitory computer-readable storage medium)。存储器82可用于存储指令、程序、代码、代码集或指令集。存储器82可包括存储程序区和存储数据区,其中,存储程序区可存储用于实现操作系统的指令、用于至少一个功能的指令(比如触控指令等)、用于实现上述各个方法实施例的指令等;存储数据区可存储上面各个方法实施例中涉及到的数据等。存储器82可选的还可以是至少一个位于远离前述处理器81的存储装置。
[0103]
本技术实施例还提供了一种存储介质,所述存储介质可以存储有多条指令,所述指令适用于由处理器加载并执行上述图1至图6所示实施例的方法步骤,具体执行过程可以参见图1至图6所示实施例的具体说明,在此不进行赘述。
[0104]
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,仅以上述各功能单元、模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能单元、模块完成,即将所述装置的内部结构划分成不同的功能单元或模块,以完成以上描述的全部或者部分功能。实施例中的各功能单元、模块可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中,上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。另外,各功能单元、模块的具体名称也只是为了便于相互区分,并不用于限制本技术的保护范围。上述系统中单元、模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
[0105]
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述或记载的部分,可以参见其它实施例的相关描述。
[0106]
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束算法。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
[0107]
在本发明所提供的实施例中,应该理解到,所揭露的装置/终端设备和方法,可以通过其它的方式实现。例如,以上所描述的装置/终端设备实施例仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通讯连接可以是通过一些接口,装置或单元的间接耦合或通讯连接,可以是电性,机械或其它的形式。
[0108]
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
[0109]
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
[0110]
所述集成的模块/单元如果以软件功能单元的形式实现并作为独立的产品销售或
使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实现上述实施例方法中的全部或部分流程,也可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一计算机可读存储介质中,该计算机程序在被处理器执行时,可实现上述各个方法实施例的步骤。其中,所述计算机程序包括计算机程序代码,所述计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。
[0111]
本发明并不局限于上述实施方式,如果对本发明的各种改动或变形不脱离本发明的精神和范围,倘若这些改动和变形属于本发明的权利要求和等同技术范围之内,则本发明也意图包含这些改动和变形。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献