一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种无取向硅钢析出物的检测分析方法与流程

2022-05-18 08:29:32 来源:中国专利 TAG:


1.本技术涉及材料分析测试领域,尤其涉及一种无取向硅钢析出物的检测分析方法。


背景技术:

2.杂质元素和夹杂物会使铁基体的点阵发生畸变,引起比其体积大许多倍的内应力场,使磁畴结构发生变化,磁畴壁不易移动,磁化困难。因此为了得到具有低的铁损和高的磁导率的优良软磁性能,需要使硅钢尽可能的存在少的析出物,从而能够使硅钢被作为电工钢使用,而电工钢的钢基体中的第二相质点就是析出物,析出物由硫化物、碳化物和氮化物组成,其尺寸为10nm~400nm,而该尺寸对磁性的影响体现在两方面,第一是直接影响磁畴运动,第二是间接通过对晶粒的长大的抑制作用导致最终细小的晶粒尺寸。
3.相比于对钢中夹杂物的关注,析出物尤其是维细尺寸析出物的影响和控制近年来才引起业界的广泛关注,与非金属的夹杂相比,无取向硅钢的第二相析出物尺寸细小、形态弥散,现有的无取向硅钢的成品种析出物尺寸一般小于200nm,多数在100nm以内,而对无取向硅钢中析出物的数量及尺寸的精确量化和统计一直以来阻碍析出物研究及控制优化的关键,具体原因是由于析出物检测过程中影响因素多、制样过程复杂、人为影响因素大以及样品检测结果的重复性和再现性差。因此目前如何准确表征无取向硅钢的析出物,是目前亟待解决的技术问题。


技术实现要素:

4.本技术提供了一种无取向硅钢析出物的检测分析方法,以解决现有技术中无取向硅钢无法准确表征的技术问题。
5.第一方面,本技术提供了一种无取向硅钢析出物的检测分析方法,所述方法包括:
6.得到硅钢样品;
7.将所述硅钢样品进行表面处理,得到纯净样品;
8.将所述纯净样品进行电解腐蚀、冲洗和干燥,得到待检测样品;
9.将所述待检测样品沿厚度方向设定为边缘层、次表层和中心层;
10.将所述边缘层按照多个第一设定点位进行电镜图形的采集,得到边缘层的样品电镜图样;
11.将所述次表层按照多个第二设定点位进行电镜图形的采集,得到次表层的样品电镜图样;
12.将所述中心层按照多个第三设定点位进行电镜图形的采集,得到中心层的样品电镜图样;
13.将边缘层的所述样品电镜图样、次表层的所述样品电镜图样和中心层的所述样品电镜图样分别进行析出物的统计和分析,得到准确量化的硅钢析出物。
14.可选的,所述电解腐蚀的电压为1v~3v,所述电解腐蚀的时间为60s~240s。
15.可选的,所述冲洗包括:采用有机溶剂和滴定管滴定的方式对电解腐蚀后的硅钢样品进行冲洗;
16.其中,所述滴定管的旋开度为60
°
~90
°
,所述有机溶剂的用量为20ml~50ml。
17.可选的,所述干燥包括:将冲洗后的所述硅钢样品倾斜预设角度后进行吹干干燥;
18.其中,所述预设角度为30
°
~60
°

19.可选的,所述电镜图形的采集包括:边缘层的所述样品电镜图样、次表层的所述样品电镜图样和中心层的所述样品电镜图样的采集张数都为10张~30张,所述电镜图形的放大倍率为2万倍~4万倍。
20.可选的,所述边缘层的区域范围为沿厚度方向的0μm~20μm的区域,所述中心层的区域范围为沿厚度方向的1/4~1/2的区域,所述次表层设于所述边缘层和所述中心层之间;
21.所述待检测样品的厚度为0.2mm~0.5mm。
22.可选的,所述表面处理包括预处理、磨抛和清洗;
23.所述磨抛包括:以轻磨轻抛模式进行磨抛;
24.所述清洗为超声波清洗;
25.其中,所述轻磨轻用以保证样品抛光后界面充分洁净无污物。
26.可选的,所述预处理包括细砂纸打磨或碱洗。
27.可选的,所述表面处理的总去除厚度≤5μm。
28.可选的,所述析出物统计的标准为析出物的尺寸>30nm。
29.本技术实施例提供的上述技术方案与现有技术相比具有如下优点:
30.本技术实施例提供的一种无取向硅钢析出物的检测分析方法,通过对前期制样过程中的工艺和参数进行控制,采用电解腐蚀、冲洗和干燥进行结合,从而控制硅钢样品的制备过程,得到待检测的硅钢样品,通过在待检测样品的厚度方向的三个预设区内选取多个点位进行电镜图形的采集,从能全面的得到每个区域内的析出物的电镜图样,再对得到的电镜图样进行统计分析,从而能准确统计无取向硅钢的析出物数量和析出物的尺寸数据,从而能准确表征无取向硅钢的析出物。
附图说明
31.此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。
32.为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
33.图1为本技术实施例提供的方法的流程示意图;
34.图2为本技术实施例提供的方法的电镜图形的合理放大倍率的示意图;
35.图3为本技术实施例提供的方法的电镜图形的过小放大倍率的示意图;
36.图4为本技术实施例提供的方法的多组预设尺寸的示意图;
37.图5为本技术实施例提供的方法的无取向硅钢析出物的分布规律统计图。
具体实施方式
38.为使本技术实施例的目的、技术方案和优点更加清楚,下面将结合本技术实施例中的附图,对本技术实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本技术的一部分实施例,而不是全部的实施例。基于本技术中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本技术保护的范围。
39.在本技术一个实施例中,如图1所示,一种无取向硅钢析出物的检测分析方法,所述方法包括:
40.s1.得到硅钢样品;
41.s2.将所述硅钢样品进行表面处理,得到纯净样品;
42.s3.将所述纯净样品进行电解腐蚀、冲洗和干燥,得到待检测样品;
43.s4.将所述待检测样品沿厚度方向设定为边缘层、次表层和中心层;
44.s5.将所述边缘层按照多个第一设定点位进行电镜图形的采集,得到边缘层的样品电镜图样;
45.s6.将所述次表层按照多个第二设定点位进行电镜图形的采集,得到次表层的样品电镜图样;
46.s7.将所述中心层按照多个第三设定点位进行电镜图形的采集,得到中心层的样品电镜图样;
47.s8.将边缘层的所述样品电镜图样、次表层的所述样品电镜图样和中心层的所述样品电镜图样分别进行析出物的统计和分析,得到准确量化的硅钢析出物,其中,所述第一设定点位为所述边缘层内的任意一点,所述第二设定点位为所述次表层内的任意一点,所述第三设定点位为所述中心层内的任意一点。
48.作为一个可选的实施方式,所述电解腐蚀的电压为1v~3v,所述电解腐蚀的时间为60s~240s。
49.本技术中,电解腐蚀的电压为1v~3v的积极效果是在该电压的范围内,既能保证样品充分电解又不会让样品过电解出现腐蚀坑;当电压的取值大于该范围的端点最大值,将导致的不利影响是电压过大,导致样品观察面出现腐蚀坑,影响对后续的测定,当电压的取值小于该范围的端点最小值,将导致的不利影响是电压过低,导致样品电解不充分,影响析出物统计准确性。
50.电解腐蚀的时间为60s~240s的积极效果是在该时间范围内,既能保证样品电解腐蚀充分,又能保证工作效率;当时间的取值大于该范围的端点最大值,将导致的不利影响是时间过短,将影响工作效率,当时间的取值小于该范围的端点最小值,将导致的不利影响是电解不充分,将影响析出物统计准确性。
51.作为一个可选的实施方式,所述冲洗包括:采用有机溶剂和滴定管滴定的方式对电解腐蚀后的硅钢样品进行冲洗;
52.其中,所述滴定管的旋开度为60
°
~90
°
,所述有机溶剂的用量为20ml~50ml,有机溶剂可以是甲醇或乙醇。
53.本技术中,滴定管的旋开度为60
°
~90
°
的积极效果是在该选开度的范围内,能有效控制有机溶剂对电解腐蚀后的硅钢样品的清洗力度,从而减少传统方法中采用人工冲洗的误差;当旋开度的取值大于该范围的端点最大值,将导致的不利影响是过多的旋开度将
导致冲洗力度过大,影响电解腐蚀后裸露的析出物的稳定,导致无法准确表征无取向硅钢的析出物,当旋开度的取值小于该范围的端点最小值,将导致的不利影响是过低的旋开度导致冲洗力度变低,无法充分冲洗并固定析出物。
54.有机溶剂的用量为20ml~50ml的积极效果是由于采用滴定的方式进行冲洗,因此可方便控制有机溶剂的用量,而控制有机溶剂的用量一方面可以控每个硅钢样品的冲洗用时和冲洗过程的压力一致,从而能控制冲洗后析出物的一致性,减少人为误差,另一方面可精确的控制有机溶剂用量,减少检测所需的成本;当用量的取值大于该范围的端点最大值,将导致的不利影响是过多有机溶剂将增加检测的成本,同时过多的有机溶解不利于滴定的进行,当用量的取值小于该范围的端点最小值,将导致的不利影响是有机溶剂不足,无法有效控制每个硅钢样品的冲洗用时和冲洗过程。
55.作为一个可选的实施方式,所述干燥包括:将冲洗后的所述硅钢样品倾斜预设角度后进行吹干干燥;
56.其中,所述预设角度为30
°
~60
°

57.本技术中,预设角度为30
°
~60
°
的积极效果是在该角度范围内,能保证冲洗后的每个硅钢样品一次性被吹干;当预设角度的取值大于该范围的端点最大值,将导致的不利影响是过大的预设角度将导致硅钢样品的部分区域需要反复吹动才能吹干,易造成人为误差,导致硅钢样品的析出物表征无法准确得到,当预设角度的取值小于该范围的端点最小值,将导致的不利影响是过小的预设角度将导致硅钢样品需要多次反复的吹动才能实现吹干干燥,将增加认为误差,导致硅钢样品的析出物表征无法准确得到。
58.作为一个可选的实施方式,边缘层的所述样品电镜图样、次表层的所述样品电镜图样和中心层的所述样品电镜图样的采集张数都为10张~30张,所述电镜图形的放大倍率为2万倍~4万倍,其中,每个样品电镜图样包括10个~30个点位,每个点位采集一张电镜图样;
59.所述电镜图形的放大倍率为2万倍~4万倍。
60.本技术中,采集张数都为10张~30张的积极效果是足够的电镜图样能得到合适的放大倍率的图样,从而多方位确定析出物的粒子轮廓;当张数的取值大于该范围的端点最大值,将导致的不利影响是过多的张数需要进行更多次的扫描电镜,将影响方法的整体耗时,同时过多的采集张数将造成浪费,当张数的取值小于该范围的端点最小值,将导致的不利影响是过少的采集张数无法有效的反映出硅钢样品析出物的形态特征,将造成分析误差。
61.电镜图形的放大倍率为2万倍~4万倍的积极效果是在该倍率范围内,能有效的观察到硅钢样品析出物的粒子轮廓,方便后续的统计进行;当放大倍率的取值大于该范围的端点最大值,将导致的不利影响是过大的放大倍率虽然使析出物轮廓过大,能有效的展示出析出物的粒子轮廓,但是在电镜图样的数量固定的前提下,将会减少电镜图样的覆盖范围,不具备普遍性,当放大倍率的取值小于该范围的端点最小值,将导致的不利影响是过低的放大倍率将导致析出物的轮廓不清晰,无法有效的展示析出物的粒子轮廓。
62.作为一个可选的实施方式,所述边缘层的区域范围为沿厚度方向的0μm~20μm的区域,所述中心层的区域范围为沿厚度方向的1/4~1/2的区域,所述次表层设于所述边缘层和所述中心层之间;
63.所述待检测样品的厚度为0.2mm~0.5mm。
64.本技术中,通过采用分区域的处理方式,分别从不同位置选取硅钢样品的电镜图样从而在厚度方向上不同位置均能得到合适的电镜图样,进而能综合体现析出物的粒子轮廓,准确分析出硅钢样品析出物的表征。
65.待检测样品的厚度为0.3mm~0.5mm的积极效果是该厚度范围内,既能根据实际的产品厚度大小进行检测,同时该厚度范围还能保证将样品分为边缘层、中心层和次表层。
66.作为一个可选的实施方式,所述表面处理包括预处理、磨抛和清洗;
67.所述磨抛包括:以轻磨轻抛模式进行磨抛;
68.所述清洗为超声波清洗,所述清洗的次数为2次~4次;
69.其中,所述轻磨轻用以保证样品抛光后界面充分洁净无污物。
70.本技术中,通过限定磨抛的方式和清洗的方式,从而保证硅钢样品进行电解腐蚀前的样品表面无涂层或表面污物的干扰,提高后续析出物表征检测的准确性。
71.作为一个可选的实施方式,所述预处理包括细砂纸打磨或碱洗。
72.本技术中,限定预处理的方式,能有效的去除表面涂层同时保证检测时硅钢样品的厚度。
73.作为一个可选的实施方式,所述表面处理的总去除厚度≤5μm。
74.本技术中,表面处理的总去除厚度≤5μm的积极效果是在该去除厚度的范围内,能有效保证硅钢样品的原始厚度,同时能有效去除表面涂层,防止表面涂层对检测过程的干扰;当去除厚度的取值大于该范围的端点最大值,将导致的不利影响是过大的去除厚度将无法保证硅钢样品的原始厚度,影响后续对析出物的观察。
75.作为一个可选的实施方式,所述析出物统计的标准为析出物的尺寸>30nm。
76.本技术中,出物统计的标准为析出物的尺寸>30nm的积极效果是合适的析出物粒子尺寸能有效的被统计软件捕获并分析,当尺寸的取值小于该范围的端点最小值,将导致的不利影响是过小的析出物尺寸标准接近统计软件的分辨能力极限,并且过小的析出物尺寸受电镜图样的质量影响较大,将增加统计误差。
77.实施例1
78.一种无取向硅钢析出物的检测分析方法,所述方法包括:
79.s1.得到硅钢样品;
80.s2.将硅钢样品进行表面处理,得到纯净样品;
81.s3.将纯净样品进行电解腐蚀、冲洗和干燥,得到待检测样品;
82.s4.将待检测样品沿厚度方向设定为边缘层、次表层和中心层;
83.s5.将边缘层按照多个第一设定点位进行电镜图形的采集,得到边缘层的样品电镜图样;
84.s6.将次表层按照多个第二设定点位进行电镜图形的采集,得到次表层的样品电镜图样;
85.s7.将中心层按照多个第三设定点位进行电镜图形的采集,得到中心层的样品电镜图样;
86.s8.将边缘层的样品电镜图样、次表层的样品电镜图样和中心层的样品电镜图样分别进行析出物的统计和分析,得到准确量化的硅钢析出物。
87.电解腐蚀的电压为3v,电解腐蚀的时间为180s。
88.冲洗包括:采用有机溶剂和滴定管滴定的方式对电解腐蚀后的硅钢样品进行冲洗;
89.其中,滴定管的旋开度为90
°
,有机溶剂的用量为30ml。
90.干燥包括:将冲洗后的硅钢样品倾斜预设角度后进行吹干干燥;
91.其中,预设角度为45
°

92.边缘层的样品电镜图样、次表层的样品电镜图样和中心层的样品电镜图样的采集张数都为10张,电镜图形的放大倍率为3万倍。
93.边缘层的区域范围为沿厚度方向的0μm~20μm的区域,中心层的区域范围为沿厚度方向的1/4~1/2的区域,次表层设于边缘层和中心层之间;待检测样品的厚度为0.35mm。
94.表面处理包括预处理、磨抛和清洗;
95.磨抛包括:以轻磨轻抛模式进行磨抛;
96.清洗为超声波清洗,清洗的次数为3次,
97.其中,轻磨轻用以保证样品抛光后界面充分洁净无污物。
98.预处理包括细砂纸打磨或碱洗。
99.表面处理的总去除厚度为4μm。
100.析出物统计的标准为析出物的尺寸>30nm。
101.实施例2
102.将实施例2和实施例1相对比,实施例2和实施例1的区别在于:
103.电解腐蚀的电压为1v,电解腐蚀的时间为60s。
104.冲洗包括:采用有机溶剂和滴定管滴定的方式对电解腐蚀后的硅钢样品进行冲洗;
105.其中,滴定管的旋开度为60
°
,有机溶剂的用量为20ml。
106.干燥包括:将冲洗后的硅钢样品倾斜预设角度后进行吹干干燥;
107.其中,预设角度为30
°

108.边缘层的样品电镜图样、次表层的样品电镜图样和中心层的样品电镜图样的采集张数都为20张,电镜图形的放大倍率为2万倍。
109.清洗为超声波清洗,清洗的次数为2次,
110.待检测样品的厚度为0.3mm。
111.预处理包括细砂纸打磨或碱洗。
112.表面处理的总去除厚度为5μm。
113.实施例3
114.将实施例3和实施例1相对比,实施例3和实施例1的区别在于:
115.电解腐蚀的电压为2v,电解腐蚀的时间为240s。
116.冲洗包括:采用有机溶剂和滴定管滴定的方式对电解腐蚀后的硅钢样品进行冲洗;
117.其中,滴定管的旋开度为80
°
,有机溶剂的用量为50ml。
118.干燥包括:将冲洗后的硅钢样品倾斜预设角度后进行吹干干燥;
119.其中,预设角度为60
°

120.边缘层的样品电镜图样、次表层的样品电镜图样和中心层的样品电镜图样的采集张数都为30张,电镜图形的放大倍率为4万倍。
121.清洗为超声波清洗,清洗的次数为4次,
122.其中,轻磨轻用以保证样品抛光后界面充分洁净无污物。
123.待检测样品的厚度为0.5mm。
124.预处理包括细砂纸打磨或碱洗。
125.表面处理的总去除厚度为5μm。
126.对比例1
127.将对比例1和实施例1相对比,对比例1和实施例1的区别在于:
128.不采用沿厚度方向按照多组预设尺寸进行电镜图形的采集,直接在厚度方向上由外到内的1/4厚度处集中进行电镜图形的采集。
129.对比例2
130.将对比例2和实施例1相对比,对比例2和实施例1的区别在于:
131.电解腐蚀的电压为0.5v,电解腐蚀的时间为50s。
132.冲洗包括:采用有机溶剂和滴定管滴定的方式对电解腐蚀后的硅钢样品进行冲洗;
133.其中,滴定管的旋开度为45
°
,有机溶剂的用量为10ml。
134.干燥包括:将冲洗后的硅钢样品倾斜预设角度后进行吹干干燥;
135.其中,预设角度为20
°

136.边缘层的样品电镜图样、次表层的样品电镜图样和中心层的样品电镜图样的采集张数都为5张。
137.电镜图形的放大倍率为1.5万倍。
138.清洗为超声波清洗,清洗的次数为1次。
139.对比例3
140.将对比例3和实施例1相对比,对比例3和实施例1的区别在于:
141.电解腐蚀的电压为3v,电解腐蚀的时间为250s。
142.冲洗包括:采用有机溶剂和滴定管滴定的方式对电解腐蚀后的硅钢样品进行冲洗;
143.其中,滴定管的旋开度为90
°
,有机溶剂的用量为60ml。
144.干燥包括:将冲洗后的硅钢样品倾斜预设角度后进行吹干干燥;
145.其中,预设角度为70
°

146.边缘层的样品电镜图样、次表层的样品电镜图样和中心层的样品电镜图样的采集张数都为40张。
147.电镜图形的放大倍率为4.5万倍。
148.其中,轻磨轻用以保证样品抛光后界面充分洁净无污物。
149.预处理包括细砂纸打磨或碱洗。
150.表面处理的总去除厚度为6μm。
151.相关实验:
152.收集实施例1-3和对比例1-4所得的的硅钢析出物的表征数据,分析硅钢析出物的
表征数据的偏差,结果如表1所示,
153.相关实验的测试方法:
154.硅钢析出物的表征数据方差:
155.每个样品测量两次,f=|n1-n2|/{(ni n2)/2},
156.其中:f-两次量测统计结果的波动;
157.n1-第一次测量统计结果;
158.n2-第一次测量统计结果;
159.表征数据方差
160.其中:n-每组样品中的样品个数;
161.f-一组样品的平均波动。
162.表1
163.类别表征数据方差是否可多次再现性实施例10.21%是实施例20.31%是实施例30.33%是对比例10.60%否对比例20.46%是对比例30.50%是
164.表1具体分析:
165.表征数据方差是指经过各检测分析方法得到的硅钢样品的表征数据的偏离程度,表征数据方差越小,说明检测分析方法的准确性越高。
166.是否可多次再现性是指各检测分析方法的数据在统计学的偏差度的基础上是否能够重现。
167.从实施例1-3的数据可知:
168.采用本技术的检测分析方法,所得到的硅钢样品的表征数据方差≤0.33%,并且都可以多次再现。
169.本技术的检测分析方法,不同样品之间能进行横向对比,并且同一样品在不同时间和不同人员检测结果都存在可重复实现和可再现性。
170.从对比例1-4的数据可知:
171.若不采用分层进行电镜图形的采集,或者在本技术所要求的范围之外进行检测,其表征数据方差较大,同时不采用分层进行电镜图形的采集还不具有再现性。
172.本技术实施例中的一个或多个技术方案,至少还具有如下技术效果或优点:
173.(1)本技术实施例所提供的方法,区别于传统无取向硅钢样品的检测分析方法,通过沿厚度方向不同位置进行电镜图样的检测,从而能准确统计无取向硅钢的析出物数量和析出物的尺寸数据,从而能准确表征无取向硅钢的析出物。
174.(2)本技术实施例所提供的方法,明确了制样过程中关键控制点的参数控制范围、采图过程中的具体采图位置及数量以及统计过程析出物尺寸的合理统计范围,运用此方法
可以精准统计无取向硅钢析出物数量,能够真实反映不同样品析出物水平及析出物在样品中不同厚度位置的分布规律,且统汁结果的重复性和再现性较高,统汁结果具有代表性。
175.(3)本技术实施例提供的方法,冲洗方法实现了冲洗参数的可控,令制样参数固定统一成为可能,参数能够固定统一,减少了人为误差,从而使同一样品在不同时间和不同人员的检测结果具有可重复性和可再现性。
176.(4)本技术实施例提供的方法,电镜图样的倍率设置合理,让无取向析出物的检测统计更利学合理。
177.(5)本技术实施例提供的方法,电镜图样的检测位置和各位置的电镜图样的数量做了明确规定,减少了统计的不确定性,提高了统计结果的重复性和再现性
178.附图解释:
179.图2为本技术实施例提供的方法的电镜图形的合理放大倍率的示意图;
180.图3为本技术实施例提供的方法的电镜图形的过小放大倍率的示意图;
181.由图2和图3可知,当电镜图形的放大倍率过小时,析出物形状及尺寸较难分辨,统计数据不准确,因此合适的放大倍率能准确的代表析出物的表征情况。
182.图4为本技术实施例提供的方法的多组预设尺寸的示意图,由图4可知,由于不同厚度位置,析出物的数量分布规律明显不同,若在随意位置进行电镜图形的采集,最终析出物的表征数据的统计结果波动性较大,因此合理的位置设置能覆盖更多的析出物的采样位置,并且统计的数据更具有代表性,结果更稳定。
183.图5为本技术实施例提供的方法的无取向硅钢析出物的分布规律统计图,由图5可知,当粒子尺寸≤30mm时,受统计软件的分辨能力的影响,电镜图样的质量影响较大,统计误差较大。
184.需要说明的是,在本文中,诸如“第一”和“第二”等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个
……”
限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
185.以上所述仅是本发明的具体实施方式,使本领域技术人员能够理解或实现本发明。对这些实施例的多种修改对本领域的技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所申请的原理和新颖特点相一致的最宽的范围。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献