一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种稳定、超强抗菌超疏血敷料及其制备方法与流程

2022-05-18 07:54:48 来源:中国专利 TAG:


1.本发明涉及医用检测器械技术领域,具体是一种稳定、超强抗菌超疏血敷料及其制备方法。


背景技术:

2.血液的一个特点是极易形成血栓。当血液接触到异物表面时,由于血液内在的止血机制,诱导凝血和血小板活化等凝结作用不可避免地会导致血液对基质的强烈粘附,使其很容易粘附在表面。患者经过创口处理手术时,医护人员使用最广泛的止血方式是医用纱布加压止血。传统的医用纱布在处理伤口时,主要通过凝聚大量的血小板和凝血因子实现止血目的,对伤口愈合几乎没有促进作用,移除时易造成二次撕裂和二次出血,而且创面残留血液清洁不彻底严重时会导致患者病情恶化,给患者和整个医疗系统带来了巨大的负担。
3.针对以上问题,目前虽已有部分解决措施,比如专利(202010462977.0)发明了一种止血效果明显并且防黏连的医用止血敷料。水分保持剂和水溶性高分子聚合物的引入使得敷料表面柔润光滑,无黏连性。但此类材料的成功实施仍然具有挑战性,因为它取决于止血和防黏连这两个往往相互抵消的属性。此外,已有相关研究表明,超疏水表面可有效减少血液与表面的接触面积,并可通过水动力作用减少血小板粘附。
4.比如专利(201811229292.0)提供了一种具有较佳超疏水性敷料,可作为急性创面和感染创面敷料。但除防止血液黏附之外,医用敷料仍有较大的改善空间。敷料还存在一个共同通病,即在久敷后易产生异味。这是由于敷料长时间与创口贴合,在高温潮湿的环境中极易滋生细菌,且氧原子、氧自由基的存在会促进烷烃类分子等挥发从而产生异味。


技术实现要素:

5.本发明的目的在于提供一种稳定、超强抗菌超疏血敷料及其制备方法,以解决上述背景技术中提出的问题。
6.为实现上述目的,本发明提供如下技术方案,一种稳定、超强抗菌超疏血敷料,所述稳定、超强抗菌超疏血敷料由氟化石墨烯纳米粒子以及纳米银粒子制成的悬浮液对纱布原层浸泡制成。
7.为实现上述目的,本发明提供如下技术方案,一种稳定、超强抗菌超疏血敷料的制备方法,其包括以下步骤:
8.s1:将石墨烯粒子(50nm,0.6g)与4-(全氟辛基)苯胺(0.9g)加入到乙醇的三口烧瓶进行物理吸附;
9.s2:对s1中物理吸附后得到的混合物在65℃搅拌回流;
10.s3:将s2搅拌后所得溶液通过pp膜过滤得到粉末状料;
11.s4:将过滤的粉末状料采用超声波清洗5min并在100ml乙醇中漂洗,然后过滤2次,得到氟化的石墨烯纳米颗粒;
12.s5:通过pdms(聚二甲基硅氧烷)分散于二氯甲烷溶液中经过20min搅拌处理混合(浓度为15%);
13.s6:将s5得到的混合溶液中加入所述氟化石墨烯纳米粒子与所述纳米银粒子并搅拌,得到所述悬浮液;
14.s7:将所述纱布原层浸入上述悬浮液中搅拌后捞出,在烘箱中干燥即得到具有优异抗菌性能与疏血性能的敷料;
15.在上述制备方法中,所述步骤(2)中混合物搅拌回流时长至少为12h。
16.在上述制备方法中,所述步骤(3)中pp膜的过滤平均孔径为0.01μm。
17.在上述制备方法中,所述步骤(6)中,所述氟化石墨烯纳米粒子与所述纳米银粒子的质量比为1:1,且搅拌时长至少为60min。
18.在上述制备方法中,所述步骤(7)中,所述纱布原层浸入所述悬浮液搅拌时长至少为2h。
19.在上述制备方法中,所述步骤(7)中,烘箱设定烘干温度为80℃,且烘干时长至少为12h。
20.与现有技术相比,本发明的有益效果是:
21.通过接枝共混方法得到抗菌超疏血涂层,而后通过浸涂工艺获得兼具稳定性、抗菌性和吸附性的超疏血敷料,聚二甲基硅氧烷和氟链构建了稳定的超疏血表面,同时石墨烯和纳米银颗粒的引入提供了粗糙度,共同作用增强了涂层的超疏血性,其次由于石墨烯和纳米银颗粒均具有抑菌效果,增强了敷料的防腐抗菌功能,同时两种粒子的协同作用提供了丰富的比表面积和活性位点,促使敷料对烷烃类分子具有极强的吸附能力,可以有效减缓久贴敷料易产生异味的问题,保证适应效果。
附图说明
22.为了更清楚地说明本发明实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
23.图1为一种稳定、超强抗菌超疏血敷料的制备方法的流程图;
24.图2为一种稳定、超强抗菌超疏血敷料制成后通过sem扫描电镜对纱布表面形貌进行分析后的结果图,其中(a)和(b)分别为10um以及500nm时的照片;
25.图3为通过平板涂布计数法对石墨烯粒子、纳米ag粒子以及石墨烯与纳米银粒子按质量比1:1混合的混合粒子的抗菌协同性能测试数据表图;
26.图4为石墨烯粒子和纳米ag粒子比例更变后血滴接触角变化数据图表;
27.图5为利用大肠杆菌通过平板涂布计数法对本发明纱布敷料与普通纱布敷料的抗菌性能对照测试表图;
28.图6为本发明敷料循环揉搓后血滴的接触角数据表图。
具体实施方式
29.为了使本发明所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结
合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
30.本实施例中:
31.请参阅图1,敷料制备时首先对石墨烯氟化处理,石墨烯粒子(50nm,0.6g)与4
‑ꢀ
(全氟辛基)苯胺(0.9g)加入到120ml乙醇的三口烧瓶,进行物理吸附,将混合物在65℃下搅拌回流12小时,然后将所得溶液通过平均孔径为0.01μm的pp膜过滤,将过滤的粉末用超声波清洗5分钟在100ml乙醇中漂洗,然后过滤2次,得到氟化的石墨烯纳米颗粒,之后取pdms分散于一定量的二氯甲烷溶液中(浓度为15%),搅拌20分钟后,加入质量比为1:1氟化石墨烯纳米粒子与纳米银粒子,搅拌60分钟后,得到悬浮液,将纱布浸入上述悬浮液中,搅拌2小时后捞出,在80℃烘箱中干燥12小时,即得到具有优异抗菌性能与疏血性能的敷料。
32.请参阅图3,在制备完成后对敷料的抗菌性进行实验,首先利用大肠杆菌通过平板涂布计数法对纱布的抗菌性能进行测试以此来探究两种粒子协同抗菌的必要性,其测试方法如下,首先取三个三角烧瓶,其中分别放置石墨烯粒子、纳米ag粒子以及石墨烯与纳米银粒子按质量比1:1混合的混合粒子,之后加入菌悬液,通过37℃振荡培养一定时间后,吸取含有大肠杆菌的样液,并经稀释后接种涂布于琼脂培养基上,在37℃培养后,做菌落计数,通过比较对照样品和待测样品活菌数的差异反映抗菌活性大小,由说明书附图3可看出,在只用单一的石墨烯粒子或者纳米ag粒子时,时间较短时,石墨烯粒子的抗菌效果明显优于纳米ag粒子,但随着时间的增加,石墨烯的抗菌效果逐渐减弱,在8天后,石墨烯粒子的抗菌效果明显减弱,总菌落数快速上升,但是在纳米粒子总量相同的前提下,将石墨烯粒子与纳米ag粒子1:1混合后,抗菌效果十分突出,其两者的协同抗菌效果是单一粒子抗菌效果的200倍以上,因此通过采用石墨烯粒子与纳米银粒子协同抗菌,以此来增加产品抗菌效果,保证其防护作用。
33.请参阅图4,在通过测试确定使用石墨烯粒子与纳米银粒子协同作用,增强抗菌效果后,通过对其比例进行探究,首先考虑到石墨烯粒子表面有较多的-oh键,从超疏血液的角度来看,表面有较多极性基团会影响材料的疏血效果,所以我们首先对石墨烯粒子通过本制备方法氟化改性,以此来实现其疏血性,再接枝成功后,我们对其与纳米ag粒子之间的用量进行探究,以血滴的接触角为衡量标准,对疏血性进行探究,可以看出当氟化石墨烯粒子的用量为50%时,即石墨烯粒子与纳米ag粒子为1:1时,此时血滴的接触角最高为167.2
°
,滑动角最小,为8.3
°
,达到超疏的状态。
34.请参阅图2,在制成敷料后利用sem扫描电镜对纱布表面形貌进行分析,如图2中(a) 处所示,可以明显看到在纱布纤维表面均匀形成了一层pdms薄膜,其可以赋予纱布优异的疏血性能,进一步的对其表面进行放大,如图2中(b)所示,可以看到氟化石墨烯颗粒与纳米银粒子在纤维表面形成粗糙结构,在pdms协同作用下,其既可以赋予纱布超疏血性能,也可以让纱布具有优异的抗菌效果,从sem可以看出,纱布已成功进行了表面改性。
35.请参阅图5,我们利用大肠杆菌通过平板涂布计数法对超疏血纱布与普通纱布的抗菌性能进行对照测试,由说明书附图图5可看出,普通纱布的总菌落数随着时间的增加,逐渐上升,而我们制备的超疏血纱布具有极强的抗菌能力,总菌落数减少1000倍,即抗菌能力稳固提高。
36.请参阅图6,通过取制备后敷料,对敷料的稳定性进行使用稳定性测试,揉搓一次
为一个循环,通过图表可以看出随着揉搓次数的增加,血滴的接触角并没有明显的变化,即敷料具有良好的使用稳定性。
37.通过接枝共混方法得到抗菌超疏血涂层,并对传统医用纱布进行改性,得到了兼具稳定性、抗菌性和吸附性的超疏血敷料,敷料极佳的超疏血性和稳定的机械性能,使其在经过多次揉搓循环测试后,依然具有优异的超疏血性能,可以有效防止血液与敷料之间的粘附性问题;此外,抗菌效果较普通纱布提升数倍,且长时间贴合创面也不会产生异味。
38.以上所述的,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献