一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种基于Scara机械臂的神经网络优化控制方法

2022-05-17 20:42:42 来源:中国专利 TAG:

一种基于scara机械臂的神经网络优化控制方法
技术领域
1.本发明涉及一种基于scara机械臂的神经网络优化控制方法,属于机械臂智能控制技术领域。


背景技术:

2.在传统的机械臂控制方法主要有pid控制、滑膜控制等,这些方法控制过程中不大考虑机械臂运行时速度和位置的稳定性和能耗大小,机械臂运行时会出现位移或者速度超调过大、抖震过强等缺点,会严重影响机械臂的产品性能。为了克服这些缺陷,本发明应用基于强化学习的神经网络逼近方法,设计机械臂的神经网络优化控制器,使给定的关于位置和速度的跟踪误差性能指标最小,消除机械臂运行过程中的超调和抖震,有效实现机械臂平稳运行和性能提升。


技术实现要素:

3.本发明的目的是设计一种基于scara机械臂的神经网络优化控制方法,具体的说首先需要对scara机械臂系统进行建模,给定位置、速度参考信号,根据跟踪误差和系统输入建立性能指标函数,一般最优的性能指标函数往往难以获得。本发明应用三层神经网络方法逼近哈密尔顿-雅克比-贝尔曼方程下的最优性能指标函数,应用一种新的自适应方法更新多层神经网络权值,直接用于sacra机械臂的优化控制器设计,保证机械臂实现预定轨迹运行的同时,实现运行过程中超调最小、能耗最低。
4.为达到上述目的,本发明是通过以下技术方案实现的:
5.一种基于scara机械臂的神经网络优化控制方法,该方法首先应用多层神经网络逼近scara机械臂系统的性能指标函数和自适应律更新隐含层神经网络权值;其次根据多层神经网络设计机械臂反馈控制;再根据稳态控制和机械臂反馈控制设计神经网络化控制器;最后根据控制器求解输入力矩,调节电机电压,
6.具体步骤如下:
7.步骤一、建立scara机械臂的数学模型,
8.对被scara机械臂模型进行分析,并按照欧拉-拉格朗日公式,根据机械臂的结构和物理定律,建立scara机械臂的数学模型。建立该模型是为了基于该模型设计神经网络优化控制器。所述数学模型如下:
[0009][0010]
其中,表示机械臂关节的角位置,n表示机械臂自由度数量,表示机械臂关节的角速度,机械臂关节的角加速度,m(q)表示机械臂的可逆惯性矩阵,表示向心力向量或者科氏力,g(q)为与重力有关的向量,为需要设计的输入力矩,注意每个自由度需要一个输入控制。
[0011]
步骤二、设计稳态控制器,
[0012]
基于机械臂系统和参考运动轨迹设计稳态控制,稳态控制的目的是使机械臂关节总体按预定轨迹运行,但是未对跟踪性能进行优化。步骤三将对跟踪性能进行优化。
[0013]
给定机械臂关节转角的参考运动轨迹qd,为了是机械臂关节总体按给定轨迹运行,设计稳态控制器为
[0014][0015]
步骤三、根据给定于跟踪误差的性能指标,应用神经网络逼近最优性能指标,设计神经优化控制器,实现跟踪的快速性、稳定性和低能耗性,
[0016]
定义跟踪误差给定关于机械臂关节位置和速度跟踪误差的性能指标为
[0017][0018]
其中为效用函数,ue为近似反馈控制,主要功能是实现累积误差最小和能耗最低。q和r分别是维数与跟组误差e和近似反馈控制ue相匹配的正定对称矩阵。最优的性能指标函数可以表示为
[0019][0020]
机械臂系统(1)的误差动态方程可以表示成一般的系统方程形式为
[0021][0022]
针对机械臂系统(5)设计近似反馈控制ue最小化性能指标函数(3)。则哈密尔顿-雅克比-贝尔曼方程可以构建为
[0023][0024]
其中一般来说难以求解,本发明用三层神经网络逼近为:
[0025][0026][0027]
其中,为神经网络权重收敛后的值,φ(z)=tanh(z)为隐层激活函数,ε(e)为逼近误差。是随机给定的[-1,1]之间隐层和输入层之间的神经网络权值,k表为隐层神经元个数,κ(e)为神经网络输入。
[0028]
本发明定义是w的近似值,为的近似值,则可得
[0029][0030][0031]
则可得近似的哈密尔顿-雅克比-贝尔曼方程
[0032][0033]
式中eh表示冗余误差。为了设计近似神经网络权值的自适应律,给定下列目标函
数:
[0034][0035]
则近似神经网络权值的自适应律设计为:
[0036][0037]
式中η>0是学习增益,
[0038]
令可得近似神经网络优化反馈控制ue:
[0039][0040]
最后,可由稳态控制(2)和近似神经网络优化反馈控制(12),设计近似神经网络优化控制器u(t)为:
[0041]
u(t)=ud ueꢀꢀꢀ
(13)
[0042]
有益效果
[0043]
本发明所述的机械臂神经网络优化控制方法有如下有益效果:
[0044]
1、本发明一种基于scara机械臂的神经网络优化控制方法可实现机械臂各关节角位置和速度超调较小、抖震较低的跟踪效果;
[0045]
2、本发明一种基于scara机械臂的神经网络优化控制方法能够实现机械臂整体跟踪过程中能耗较低,时间较短。
[0046]
本发明针对scara机械臂系统,设计稳态控制实现机械臂的总体跟踪效果;应用基于强化学习的多层神经网络逼近关于跟踪误差的性能指标,设计神经网络近似反馈控制;根据稳态控制和近似反馈控制设计神经网络优化控制器,实现机械臂关节超调较小、抖震较低、能耗较小的跟踪效果。
附图说明
[0047]
图1为本发明一种基于scara机械臂的神经网络优化控制方法的机械臂神经网络优化控制系统结构图。
[0048]
图2为本发明一种基于scara机械臂的神经网络优化控制方法的scara机械臂实体模型。
[0049]
图3为本发明一种基于scara机械臂的神经网络优化控制方法的隐含层神经网络权值w的收敛效果图。
[0050]
图4为本发明一种基于scara机械臂的神经网络优化控制方法的关节一位置和速度跟踪效果图。
[0051]
图5为本发明一种基于scara机械臂的神经网络优化控制方法的关节二位置和速度跟踪效果图。
[0052]
图6为本发明一种基于scara机械臂的神经网络优化控制方法的关节一和二的跟踪误差图。
[0053]
图7为本发明一种基于scara机械臂的神经网络优化控制方法的神经网络优化控制策略。
[0054]
图8为本发明一种基于scara机械臂的神经网络优化控制方法的神经网络近似反馈控制策略。
[0055]
标号说明
[0056]
1-工控机;2-控制器;3-scara机器人;4-控制卡;5-伺服电机。
具体实施方式
[0057]
机械臂在现代工业中具有广泛的应用,比如汽车制造企业中的焊接机器人、装配机器人,工业流水线中的抓取机器人等都应用机械臂进行实现。但是这些机械臂大都使用传统的pid控制方法,机械臂运行过程中会出现超调、抖震等现象,而且未考虑运行过程中的能耗问题。本发明拟设计一种智能化的神经网络优化控制方法,实现机械臂超调较小、抖震较低、能耗最小的运行效果。
[0058]
一种基于scara机械臂的神经网络优化控制方法,该方法首先应用多层神经网络逼近scara机械臂系统的性能指标函数和自适应律更新隐含层神经网络权值;其次根据多层神经网络设计机械臂反馈控制;再根据稳态控制和机械臂反馈控制设计神经网络化控制器;最后根据控制器求解输入力矩,调节电机电压,
[0059]
具体步骤如下:
[0060]
步骤一、对被scara机械臂模型进行分析,并按照欧拉-拉格朗日公式,根据机械臂的结构和物理定律,建立scara机械臂的数学模型。建立该模型是为了基于该模型设计神经网络优化控制器。所述数学模型如下:
[0061][0062]
其中,表示机械臂关节的角位置,n表示机械臂自由度数量,表示机械臂关节的角速度,机械臂关节的角加速度,m(q)表示机械臂的可逆惯性矩阵,表示向心力向量或者科氏力,g(q)为与重力有关的向量,为需要设计的输入力矩,注意每个自由度需要一个输入控制。
[0063]
步骤二、基于机械臂系统和参考运动轨迹设计稳态控制,稳态控制的目的是使机械臂关节总体按预定轨迹运行,但是未对跟踪性能进行优化。步骤三将对跟踪性能进行优化。
[0064]
给定机械臂关节转角的参考运动轨迹qd,为了是机械臂关节总体按给定轨迹运行,设计稳态控制器为
[0065][0066]
步骤三、给定关于跟踪误差的性能指标,应用神经网络逼近最优性能指标,设计神经网络优化控制器,实现跟踪的快速性、稳定性和低能耗性。
[0067]
定义跟踪误差给定关于机械臂关节位置和速度跟踪误差的性能指标为
[0068]
[0069]
其中为效用函数,ue为近似反馈控制,主要功能是实现累积误差最小和能耗最低。q和r分别是维数与跟组误差e和近似反馈控制ue相匹配的正定对称矩阵。最优的性能指标函数可以表示为
[0070][0071]
机械臂系统(14)的误差动态方程可以表示成一般的系统方程形式为
[0072][0073]
针对机械臂系统(18)设计近似反馈控制ue最小化性能指标函数(3)。则哈密尔顿-雅克比-贝尔曼方程可以构建为
[0074][0075]
其中一般来说难以求解,本发明用三层神经网络逼近为:
[0076][0077][0078]
其中,为神经网络权重收敛后的值,φ(z)=tanh(z)为隐层激活函数,ε(e)为逼近误差。是随机给定的[-1,1]之间隐层和输入层之间的神经网络权值,k表为隐层神经元个数,κ(e)为神经网络输入。
[0079]
本发明定义是w的近似值,为的近似值,则可得
[0080][0081][0082]
则可得近似的哈密尔顿-雅克比-贝尔曼方程
[0083][0084]
式中eh表示冗余误差。为了设计近似神经网络权值的自适应律,给定下列目标函数:
[0085][0086]
则近似神经网络权值的自适应律设计为:
[0087][0088]
式中η>0是学习增益,
[0089]
令可得近似神经网络优化反馈控制ue:
[0090][0091]
最后,可由稳态控制(15)和近似神经网络优化反馈控制(25),设计近似神经网络优化控制器u(t)为:
[0092]
u(t)=ud ueꢀꢀꢀ
(26)
[0093]
本发明针对scara机械臂系统,设计稳态控制实现机械臂的总体跟踪效果;应用基于强化学习的多层神经网络逼近关于跟踪误差的性能指标,设计神经网络近似反馈控制;根据稳态控制和近似反馈控制设计神经网络优化控制器,实现机械臂关节超调较小、抖震较低、能耗较小的跟踪效果。
[0094]
scara机械臂仿真验证
[0095]
应用上述神经网络优化控制方法对scara机械臂模型进行控制验证。机械臂测试平台如图2所示,由工控机、控制卡、驱动器以及伺服机构四部分组成。采用三菱mr-j4系列伺服驱动器,设置伺服驱动器为“转矩模式”,由伺服驱动器mr-j4自主设计的控制器输出的转矩模拟量实现对scara机械臂的运动跟踪控制。
[0096]
机械臂模型(14)中,q=[q1,q2]
t
表示机械臂关节1和关节2的角位置,根据设备数据,计算可得惯性力矩据,计算可得惯性力矩向心力矩向心力矩如图2所示,机械臂没有纵向运动,所以g(q)=0。u=[u1,u2]
t
为机械臂两关节的输入力矩。关节一的位置和速度参考信号设置为q
1d
=sin(t)、关节二的位置和速度参考信号设置为q
1d
=2sin(t)、
[0097]
对机械臂模型进行仿真验证,神经网络优化控制器设计为u=ud ue,其中应用基于强化学习的三层神经网络逼近最优的性能指标,设置第一层神经网络权值值wh为[-1,1]之间的常数,第二层神经网络权重初始值学习增益η=50,关节一和关节二位置和速度的初始值设置为[1,-1,1,-1]
t
。隐含层神经网络权值收敛效果如图3所示,关节一的位置和速度跟踪效果如图4所示,关节二的位置和速度跟踪效果如图5所示。图6为关节一和二的跟踪误差。图7为神经网络优化控制,图8为神经网络近似最优反馈控制。
[0098]
本发明针对scara机械臂系统,给定参考运动轨迹,设计稳态控制。给定关于位置和速度跟踪误差的性能指标,应用基于强化学习的三层神经网络学习最优的性能指标函数,得到神经网络近似反馈控制。根据稳态控制和近似反馈控制,设计机械臂的神经网络优化控制器,有效的降低运行过程中的超调和能耗。通过验证可知,本发明具有良好的控制性能和较强的实用价值。
[0099]
以上结合附图对本发明的具体实施方式作了详细说明,但是本发明并不限于上述实施方式,在本领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化,或没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发
明的保护范围。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献