一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

基于行驶轨迹挖掘新增道路方法、装置及电子设备与流程

2022-05-06 11:25:48 来源:中国专利 TAG:


1.本公开涉及智慧交通技术领域,具体涉及智能搜索、大数据和深度学习等人工智能技术领域,尤其涉及一种基于行驶轨迹挖掘新增道路方法、装置和电子设备及存储介质。


背景技术:

2.随着互联网技术普及、定位技术的发展,以及智能手机等终端设备的普及,用户可以非常便捷地通过百度地图等app获得当前所处的位置及到达目的地的导航规划、行程时间预估等信息。
3.传统的地图道路更新方法,是通过采集车进行现场采集,采集完成后,再将采集数据通过隔离加密硬盘的方式带回数据中心,之后,地图工作人员再对数据进行处理,找出新增、冗余、变化等不同的地方,并以此对地图进行制作。


技术实现要素:

4.本公开提供了一种用于基于行驶轨迹挖掘新增道路方法、装置、电子设备及存储介质。
5.根据本公开的第一方面,提供了一种基于行驶轨迹挖掘新增道路的方法,包括:获取历史行驶轨迹;将所述历史行驶轨迹与目标路网进行轨迹匹配,从所述历史行驶轨迹中确定与所述目标路网未匹配的候选轨迹片段;对所述候选轨迹片段进行聚类,获取未匹配的目标轨迹片段;基于所述目标轨迹片段,确定新增的目标道路的位置点序列。
6.根据本公开的第二方面,提供了一种基于行驶轨迹挖掘新增道路装置,包括:获取模块,用于获取历史行驶轨迹;匹配模块,用于将所述历史行驶轨迹与目标路网进行轨迹匹配,从所述历史行驶轨迹中确定与所述目标路网未匹配的候选轨迹片段;聚类模块,用于对所述候选轨迹片段进行聚类,获取未匹配的目标轨迹片段;确定模块,用于基于所述目标轨迹片段,确定新增的目标道路的位置点序列。
7.根据本公开的第三方面,提供了一种电子设备,包括:至少一个处理器;以及与所述至少一个处理器通信连接的存储器;其中,所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行上述一方面实施例所述的基于行驶轨迹挖掘新增道路方法。
8.根据本公开第四方面,提供了一种存储有计算机指令的非瞬时计算机可读存储介质,其上存储有计算机程序/指令,所述计算机指令用于使所述计算机执行上述一方面实施例所述的基于行驶轨迹挖掘新增道路方法。
9.根据本公开的第五方面,提供了一种计算机程序产品,包括计算机程序/指令,所述计算机程序/指令被处理器执行时实现上述一方面实施例所述的基于行驶轨迹挖掘新增道路方法。
10.应当理解,本部分所描述的内容并非旨在标识本公开的实施例的关键或重要特征,也不用于限制本公开的范围。本公开的其它特征将通过以下的说明书而变得容易理解。
附图说明
11.附图用于更好地理解本方案,不构成对本公开的限定。其中:
12.图1为本公开实施例提供的一基于行驶轨迹挖掘新增道路方法的流程示意图;
13.图2为本公开实施例提供的另一基于行驶轨迹挖掘新增道路方法的历史行驶轨迹和目标路网的对比图;
14.图3为本公开实施例提供的另一基于行驶轨迹挖掘新增道路方法的流程示意图;
15.图4为本公开实施例提供的另一基于行驶轨迹挖掘新增道路方法的流程示意图;
16.图5为本公开实施例提供的另一基于行驶轨迹挖掘新增道路方法的流程示意图;
17.图6为本公开实施例提供的一基于行驶轨迹挖掘新增道路装置的总体流程示意图;
18.图7为根据本公开实施例的基于行驶轨迹挖掘新增道路装置的结构示意框图;
19.图8为根据本公开实施例的基于行驶轨迹挖掘新增道路方法的电子设备的框图。
具体实施方式
20.以下结合附图对本公开的示范性实施例做出说明,其中包括本公开实施例的各种细节以助于理解,应当将它们认为仅仅是示范性的。因此,本领域普通技术人员应当认识到,可以对这里描述的实施例做出各种改变和修改,而不会背离本公开的范围和精神。同样,为了清楚和简明,以下的描述中省略了对公知功能和结构的描述。
21.下面参考附图描述本公开实施例的基于行驶轨迹挖掘新增道路方法、装置和电子设备。
22.智慧交通的前身是智能交通(intelligent transport system,its),its是20世纪90年代初美国提出的理念。智能交通系统将人、车、路三者综合起来考虑。在系统中,运用了信息技术、数据通信传输技术、电子传感技术、卫星导航与定位技术、电子控制技术、计算机处理技术及交通工程技术等,并将系列技术有效地集成、应用于整个交通运输管理体系中,从而使人、车、路密切配合,达到和谐统一,发挥协同效应,极大地提高了交通运输效率,保障了交通安全,改善了交通运输环境,提高了能源利用效率。智能交通系统中的"人"是指一切与交通运输系统有关的人,包括交通管理者、操作者和参与者;"车"包括各种运输方式的运载工具;"路"包括各种运输方式的道路及航线。"智能"是its区别于传统交通运输系统的最根本特征。
23.深度学习(deep learning,简称dl),是机器学习(machine learning,简称ml)领域中一个新的研究方向,它被引入机器学习使其更接近于最初的目标——人工智能。深度学习是学习样本数据的内在律和表示层次,这些学习过程中获得的信息对诸如文字,图像和声音等数据的解释有很大的帮助。它的最终目标是让机器能够像人一样具有分析学习能力,能够识别文字、图像和声音等数据。深度学习是一个复杂的机器学习算法,在语音和图像识别方面取得的效果,远远超过先前相关技术。
24.智能搜索是结合了人工智能技术的新一代搜索引擎。他除了能提供传统的快速检索、相关度排序等功能,还能提供用户角色登记、用户兴趣自动识别、内容的语义理解、智能信息化过滤和推送等功能。
25.图像处理(image processing)技术,用计算机对图像进行分析,以达到所需结果
的技术。又称影像处理。图像处理一般指数字图像处理。数字图像是指用工业相机、摄像机、扫描仪等设备经过拍摄得到的一个大的二维数组,该数组的元素称为像素,其值称为灰度值。图像处理技术一般包括图像压缩,增强和复原,匹配、描述和识别3个部分。
26.大数据(big data),或称巨量资料,指的是所涉及的资料量规模巨大到无法透过主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。对于“大数据”研究机构gartner给出了这样的定义。“大数据”是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力来适应海量、高增长率和多样化的信息资产。
27.当前技术中,传统的地图道路更新方法,是通过采集车进行现场采集,采集完成后,再将采集数据通过隔离加密硬盘的方式带回数据中心,之后,地图工作人员再对数据进行处理,找出新增、冗余、变化等不同的地方,并以此对地图进行制作。整个过程周期非常长,至少月级别以上,甚至半年级别,成本也耗费巨大,采集车在一定时间内能采集的区域也非常有限。而相比于传统方法,用户轨迹具有广覆盖、高时效、低成本的有点,通过轨迹挖掘技术,对用户轨迹进行数据挖掘,能够将道路的更新周期缩短为天级别,甚至小时级别,同时能极大降低成本,并在同一时间可对整个路网进行挖掘覆盖。
28.图1为本公开实施例提供的一种基于行驶轨迹挖掘新增道路方法的流程示意图。
29.如图1所示,该基于行驶轨迹挖掘新增道路方法,可包括:
30.s101,获取历史行驶轨迹。
31.在本公开实施例中,车辆的历史行驶轨迹获取方法可为多种。可选地,可通过车辆安装的电子地图软件(application,app)将车辆的行驶数据上传到服务器中,进一步地,服务器可以对上传的数据进行处理,确定车辆的历史行驶轨迹。
32.可选地,可以通过车辆的定位系统将行驶数据上传至道路信息数据库和/或交通管理平台,服务器可以与道路信息数据库和/或交通管理平台连接,从信息库和/或交通管理平台处获取历史行驶轨迹。
33.可选地,还可以通过车辆的定位系统将车辆的行驶数据上传到服务器中,进一步地,服务器可以对上传的数据进行处理,以获取历史行驶轨迹。
34.需要说明的是,获取历史行驶轨迹的获取周期并不固定,举例来说,可每隔一周获取一次、每隔6小时获取一次等,此处不作任何限定,具体根据实际情况进行设定。
35.s102,将历史行驶轨迹与目标路网进行轨迹匹配,从历史行驶轨迹中确定与目标路网未匹配的候选轨迹片段。
36.在本公开实施例中,目标路网为历史行驶轨迹所在区域的路网信息。该目标路网可以为省级路网、市级路网或者部分区域路网等,具体需要根据实际情况进行判定。
37.在获取到历史行驶轨迹后,可通过将历史行驶轨迹与目标路网进行轨迹匹配,可以理解的是,如果历史行驶轨迹与目标路网存在不匹配的部分,可认为车辆在新增道路上行驶,如果历史行驶轨迹与目标路网完全匹配,则可认为车辆行驶的道路不为新增道路。举例来说,如图2所示,左边为车辆的历史行驶轨迹,右边为目标路网,可以看出,车辆的历史行驶轨迹和目标路网不匹配,可认为车辆在新增道路上行驶,并获取候选轨迹片段。
38.s103,对候选轨迹片段进行聚类,获取未匹配的目标轨迹片段。
39.可以理解的是,由于点位不准、信号不好等原因,历史行驶轨迹与目标路网匹配生
成的候选匹配片段可为多个,该候选匹配片段可为连续的,也可能存在偏移。
40.将物理或抽象对象的集合分成由类似的对象组成的多个类的过程被称为聚类。由聚类所生成的簇是一组数据对象的集合,这些对象与同一个簇中的对象彼此相似,与其他簇中的对象相异。
41.在本公开实施例中,对候选轨迹片段进行聚类的方法可为多种,其中,可根据区域位置对候选轨迹片段进行聚类、根据轨迹形状朝向对候选轨迹片段进行聚类等,此处不作任何限定,具体需要根据实际情况进行设定。举例来说,聚类算法可为划分法(partitioning methods)、层次法(hierarchical methods)、基于密度的方法(density-based methods)、基于网格的方法(grid-based methods)、基于模型的方法(model-based methods)等。
42.在本公开实施例中,聚类簇中可包含多个轨迹片段。可选地,可选取多个轨迹片段中的最长片段作为目标轨迹片段。举例来说,聚类簇中包含a、b、c、d四个轨迹片段,选取四个轨迹片段中最长的轨迹片段b作为目标轨迹片段。
43.可选地,还可通过计算多个轨迹片段之间的相关度,选取相关度最大的轨迹片段作为目标轨迹片段。举例来说,聚类簇中包含a、b、c、d四个轨迹片段,选取四个轨迹片段中相关度最高的c作为目标轨迹片段。
44.s104,基于目标轨迹片段,确定新增的目标道路的位置点序列。
45.目标轨迹片段是由多个目标轨迹点组成,目标轨迹点可认为为道路的形状点。实现中,由于信号采集过程中,可能存在点位系数的情况,可通过对系数的目标轨迹点进行插值的方式,得到稠密的道路位置点。
46.在本公开实施例中,首先获取历史行驶轨迹,然后将历史行驶轨迹与目标路网进行轨迹匹配,从历史行驶轨迹中确定与目标路网未匹配的候选轨迹片段,而后对候选轨迹片段进行聚类,获取未匹配的目标轨迹片段,最后基于目标轨迹片段,确定新增的目标道路的位置点序列。通过对历史行驶轨迹进行挖掘,确定是否出现新增目标道路并对地图进行更新,由此对新增道路进行更新无需人工进行道路核实,可以实时的对道路情况进行监控,提升了新增道路挖掘的时效性和准确性,降低了成本。
47.在本公开实施例中,历史行驶轨迹上传的行驶对象可为机动车辆、骑行车辆和步行等,其中,骑行车辆可包括自行车、摩托车和电动自行车等。可以理解的是,历史行驶轨迹中还包括使用者为骑行或者步行的数据,由于本方案主要是针对机动车辆的行驶道路进行挖掘更新,所以骑行或者步行的历史行驶轨迹数据参考意义不大,需要进行筛除。因此,在获取到历史行驶轨迹后,还可基于候选历史行驶轨迹,确定行驶对象的行驶速度,然后基于行驶速度,从候选历史行驶轨迹中提取属于车辆的候选历史行驶轨迹,作为历史行驶轨迹。由此,通过对历史行驶数据进行筛选,提取属于车辆的候选历史行驶轨迹,可以提高历史行驶数据的参考性,降低数据处理的成本。
48.进一步地,在获取到历史行驶轨迹后,还可从历史行驶轨迹的轨迹点中提取发生漂移的异常轨迹点,并对异常轨迹点进行剔除。需要说明的是,异常轨迹点为点位不准确、信号不好等原因上传的轨迹,异常轨迹点存在较大的误差,并不具备参考性。因此我们可通过对异常轨迹点进行剔除,提升历史行驶轨迹数据的准确性,降低数据处理的成本。
49.上述实施例中,对候选轨迹片段进行聚类,获取未匹配的目标轨迹片段,还可通过
图3进一步解释,如图所示,该方法包括:
50.s301,对候选轨迹片段按照设定层数进行聚类,以获取至少一个聚类簇,其中,聚类簇中至少包括一个未匹配的候选轨迹片段。
51.在本公开实施例中,我们可以采用层次聚类的方法来对候选轨迹片段进行聚类。在社会学领域,一般通过给定网络的拓扑结构定义网络节点间的相似性或距离,然后采用单连接层次聚类或全连接层次聚类将网络节点组成一个树状图层次结构。其中,树的叶节点表示网络节点,非叶节点一般由相似或距离接近的子节点合并而得到。我们可通过提前设定层数,然后通过层次聚类进行处理。举例来说,可设定层次数为3,当聚类到3个轨迹片段时停止。
52.s302,从聚类簇中选取长度最长的候选轨迹片段,作为聚类簇的目标轨迹片段。
53.聚类簇中长度最长的候选轨迹片段可认为是用户在新增道路上的真正行驶轨迹,可作为聚类簇的目标轨迹片段。
54.在本公开实施例中,首先对候选轨迹片段按照设定层数进行聚类,以获取至少一个聚类簇,其中,聚类簇中至少包括一个未匹配的候选轨迹片段,然后从聚类簇中选取长度最长的候选轨迹片段,作为聚类簇的目标轨迹片段。由此,通过层次聚类的方法对历史行驶轨迹进行聚合和筛选,可以准确的确定出用户在新增道路上的行驶轨迹。
55.上述实施例中,将历史行驶轨迹与目标路网进行轨迹匹配,从历史行驶轨迹中确定与目标路网未匹配的候选轨迹片段,还可通过图4进一步解释,如图所示,该方法包括:
56.s401,对历史行驶轨迹上的轨迹点与当前路网进行隐马尔可夫的路网匹配,以确定历史行驶轨迹上存在于当前路网上的第一轨迹点。
57.隐马尔可夫模型(hidden markov model,hmm)是统计模型,它用来描述一个含有隐含未知参数的马尔可夫关系过程。其中,马尔可夫关系可描述为初始状态确定的情况下,给定不变的状态转移矩阵,n次循环之后最终会达到稳态的分布。
58.在本公开实施例中,隐马尔可夫模型的运算原理可为,首先将待匹配轨迹中的任一轨迹点作为当前轨迹点,在路网数据中搜索当前轨迹点的至少一条候选匹配道路,然后分别计算所述当前轨迹点到每条候选匹配道路的观测概率,分别计算所述当前轨迹点的前一个轨迹点的每条候选匹配道路到所述当前轨迹点的每条候选匹配道路的转移概率,如果所述当前轨迹点的前一个轨迹点的所有候选匹配道路到所述当前历史行驶轨迹点的所有候选匹配道路均不连通,且所述当前轨迹点为回退点,则计算所述当前轨迹点的前一个轨迹点的最优匹配道路,直至前一个轨迹点的所有候选匹配道路到所述当前历史行驶轨迹点匹配,则这个轨迹点为第一轨迹点。通过隐马尔可夫,可分析出历史行驶轨迹上的轨迹点与当前路网之间是否存在马尔可夫关系,并确定历史行驶轨迹上存在于当前路网上的第一轨迹点。其中,第一轨迹点为历史行驶轨迹中与路网存在马尔可夫关系的轨迹点。
59.s402,基于历史行驶轨迹上剩余的第二轨迹点,形成候选轨迹片段。
60.在确定第一轨迹点后,可认为历史行驶轨迹上剩余的第二轨迹点为历史行驶轨迹上的轨迹点与当前路网之间是不存在马尔可夫关系的点,这种轨迹点可认为为用户在新增目标道路上行驶的轨迹点。
61.在本公开实施例中,首先对历史行驶轨迹上的轨迹点与当前路网进行隐马尔可夫的路网匹配,以确定历史行驶轨迹上存在于当前路网上的第一轨迹点,然后基于历史行驶
轨迹上剩余的第二轨迹点,形成候选轨迹片段。由此,通过隐马尔可夫对历史行驶轨迹上的轨迹点与当前路网进行分析,可通过路网对历史行驶轨迹行筛选,形成准确的候选轨迹片段,为后续生成目标轨迹片段提供基础。
62.需要说明的是,在获取历史行驶轨迹之前,还需要确定挖掘新增道路的目标区域,然后从候选历史行驶轨迹中提取目标区域的历史行驶轨迹,最后将目标区域的路网确定为目标路网。由此,通过确定挖掘新增道路的目标区域,缩小路网搜索的区域,可以降低搜索成本。
63.进一步地,在获取到位置点序列后,基于位置点序列中位置点的坐标信息,将目标道路更新到地图上。由此,通过将目标道路更新到地图上,可以使用户有更多的出行选择,同时还可对想要在目标道路上行驶的车辆进行精确引导,大大增加用户的使用体验。
64.进一步地,基于位置点序列中位置点的坐标信息,将目标道路更新到地图上之前,还需要获取目标轨迹片段的搜索范围,获取目标路网上处于搜索范围内的轨道交通道路,响应于轨道交通道路与目标道路重合,则确定目标道路非新增道路。
65.轨道交通道路可包括地铁、铁路和轻轨等,轨道交通道路并不在路网中进行显示,且轨道交通道路的历史行驶轨迹对新增道路挖掘没有任何参考意义,因此需要将此部分的历史行驶轨迹进行筛除。可选地,可通过获取轨道交通道路的位置点序列,然后将轨道交通道路的位置点序列与目标道路的位置点序列进行比对,以确定轨道交通道路与目标道路是否重合,从而可以准确的筛除历史行驶轨迹中轨道交通道路中的部分。
66.由此,通过筛除历史行驶轨迹中轨道交通道路中的部分,可以增加历史行驶轨迹数据的准确性,降低数据处理的成本。
67.上述实施例中,将目标道路更新到地图上之后,还可通过图5进一步解释,该方法包括:
68.s501,获取目标轨迹片段对应的行驶图像数据。
69.在本公开实施例中,可通过车辆的图像采集装置采集行驶图像数据,举例来说,该图像采集装置可为车载摄像头、车载相机等,此处不作任何限定。
70.车辆在行驶至目标轨迹片段对应的道路后,可通过采集行驶图像数据,并上报给服务器进行处理。需要说明的是,行驶图像数据可包括路况信息、目标道路环境和交通标识信息等,此处不作任何限定,具体根据实际情况进行设定。
71.可选地,图像采集装置可采集车辆整个行驶过程中的行驶数据,并上报给服务器进行处理。
72.可选地,还可通过服务器下达指令控制车辆在到达目标轨迹片段后,采集目标轨迹片段的图像,并上报给服务器进行处理。
73.需要说明的是,可通过不断获取车辆上传的图像数据对电子地图进行更新。
74.s502,基于行驶图像数据,识别目标道路上的交通标志信息,并将交通标志信息标记到电子地图上的相应位置。
75.在本公开实施例中,首先获取目标轨迹片段对应的行驶图像数据,然后基于行驶图像数据,识别目标道路上的交通标志信息,并将交通标志信息标记到电子地图上的相应位置。在地图更新后,通过对过路车辆进行数据采集,对目标道路信息进行实时完善,可以增加用户出行的安全性,提升用户的使用体验。
76.图6为本公开实施例一种基于行驶轨迹挖掘新增道路的方法的总体流程示意图,如图所示,首先,获取多个候选历史行驶轨迹,从候选历史行驶轨迹中,筛选出属于车辆的候选历史行驶轨迹,作为挖掘新增道路的历史行驶轨迹。由于点位不准、信号不好等原因,轨迹点在部分位置上会发生漂移,因此为了保证挖掘新增道路的准确性,需要从历史行驶轨迹的轨迹点中提取发生漂移的异常轨迹点,并对异常轨迹点进行剔除。进一步地,确定挖掘新增道路的目标区域,确定目标区域的路网确定为目标路网。
77.需要说明的是,为了降低数据处理量,可先确定区域,再从该区域的候选历史轨迹中筛选出属于车辆的历史行驶轨迹。
78.再之后将历史行驶轨迹与目标路网进行匹配,如果二者完全匹配,则结束本方法,如果二者不匹配,则对历史行驶轨迹进行层次聚类,并对聚类结果进行筛选,然后去除掉与轨道交通道路匹配的轨迹,最后生成新增的目标道路的位置点序列,并通过服务器进行处理,对地图进行更新,并推送给用户。
79.与上述几种实施例提供的基于行驶轨迹挖掘新增道路方法相对应,本公开的一个实施例还提供了一种基于行驶轨迹挖掘新增道路装置,由于本公开实施例提供的基于行驶轨迹挖掘新增道路装置与上述几种实施例提供的基于行驶轨迹挖掘新增道路方法相对应,因此上述基于行驶轨迹挖掘新增道路方法的实施方式也适用于本公开实施例提供的基于行驶轨迹挖掘新增道路装置,在下述实施例中不再详细描述。
80.图7为本公开实施例提供的一种基于行驶轨迹挖掘新增道路装置的结构示意图。如图所示,该基于行驶轨迹挖掘新增道路装置700包括:获取模块710、获取模块720、聚类模块730和确定模块740。
81.其中,获取模块710,用于获取历史行驶轨迹。
82.获取模块720,用于将历史行驶轨迹与目标路网进行轨迹匹配,从历史行驶轨迹中确定与目标路网未匹配的候选轨迹片段。
83.聚类模块730,用于对候选轨迹片段进行聚类,获取未匹配的目标轨迹片段。
84.确定模块740,用于基于目标轨迹片段,确定新增的目标道路的位置点序列。
85.在本公开的一个实施例中,聚类模块730,还用于:对候选轨迹片段按照设定层数进行聚类,以获取至少一个聚类簇,其中,聚类簇中至少包括一个未匹配的候选轨迹片段;从聚类簇中选取长度最长的候选轨迹片段,作为聚类簇的目标轨迹片段。
86.在本公开的一个实施例中,获取模块720,还用于:对历史行驶轨迹上的轨迹点与当前路网进行隐马尔可夫的路网匹配,以确定历史行驶轨迹上存在于当前路网上的第一轨迹点;基于历史行驶轨迹上剩余的第二轨迹点,形成候选轨迹片段。
87.在本公开的一个实施例中,获取模块710,还用于:确定挖掘新增道路的目标区域;从候选历史行驶轨迹中提取目标区域的历史行驶轨迹;将目标区域的路网确定为目标路网。
88.在本公开的一个实施例中,获取模块710,还用于:基于候选历史行驶轨迹,确定行驶对象的行驶速度;基于行驶速度,从候选历史行驶轨迹中提取属于车辆的候选历史行驶轨迹,作为历史行驶轨迹。
89.在本公开的一个实施例中,确定模块740,还用于:从历史行驶轨迹的轨迹点中提取发生漂移的异常轨迹点,并对异常轨迹点进行剔除。
90.在本公开的一个实施例中,确定模块740,还用于:基于位置点序列中位置点的坐标信息,将目标道路更新到地图上。
91.在本公开的一个实施例中,确定模块740,还用于:获取目标轨迹片段对应的行驶图像数据;基于行驶图像数据,识别目标道路上的交通标志信息,并将交通标志信息标记到电子地图上的相应位置。
92.在本公开的一个实施例中,确定模块740,还用于:获取目标轨迹片段的搜索范围;获取目标路网上处于搜索范围内的轨道交通道路;响应于轨道交通道路与目标道路重合,则确定目标道路非新增道路。
93.在本公开的一个实施例中,确定模块740,还用于:获取轨道交通道路的位置点序列;将轨道交通道路的位置点序列与目标道路的位置点序列进行比对,以确定轨道交通道路与目标道路是否重合。
94.本公开的技术方案中,所涉及的用户个人信息的获取,存储和应用等,均符合相关法律法规的规定,且不违背公序良俗。
95.根据本公开的实施例,本公开还提供了一种电子设备、一种可读存储介质和一种计算机程序产品。
96.图8示出了可以用来实施本公开的实施例的示例电子设备800的示意性框图。电子设备旨在表示各种形式的数字计算机,诸如,膝上型计算机、台式计算机、工作台、个人数字助理、服务器、刀片式服务器、大型计算机、和其它适合的计算机。电子设备还可以表示各种形式的移动装置,诸如,个人数字处理、蜂窝电话、智能电话、可穿戴设备和其它类似的计算装置。本文所示的部件、它们的连接和关系、以及它们的功能仅仅作为示例,并且不意在限制本文中描述的和/或者要求的本公开的实现。
97.如图8所示,设备800包括计算单元801,其可以根据存储在只读存储器(rom)802中的计算机程序/指令或者从存储单元806载到随机访问存储器(ram)803中的计算机程序/指令,来执行各种适当的动作和处理。在ram 803中,还可存储设备800操作所需的各种程序和数据。计算单元801、rom 802以及ram 803通过总线804彼此相连。输入/输出(i/o)接口805也连接至总线804。
98.设备800中的多个部件连接至i/o接口805,包括:输入单元806如键盘、鼠标等;输出单元807,例如各种类型的显示器、扬声器等;存储单元808,例如磁盘、光盘等;以及通信单元809,例如网卡、调制解调器、无线通信收发机等。通信单元809允许设备800通过诸如因特网的计算机网络和/或各种电信网络与其他设备交换信息/数据。
99.计算单元801可以是各种具有处理和计算能力的通用和/或专用处理组件。计算单元801的一些示例包括但不限于中央处理单元(cpu)、图形处理单元(gpu)、各种专用的人工智能(ai)计算芯片、各种运行机器学习模型算法的计算单元、数字信号处理器(dsp)、以及任何适当的处理器、控制器、微控制器等。计算单元801执行上文所描述的各个方法和处理,例如基于行驶轨迹挖掘新增道路方法。例如,在一些实施例中,基于行驶轨迹挖掘新增道路方法可被实现为计算机软件程序,其被有形地包含于机器可读介质,例如存储单元806些实施例中,计算机程序/指令的部分或者全部可以经由rom 802和/或通信单元809而被载入和/或安装到设备800上。当计算机程序/指令加载到ram 803并由计算单元801执行时,可以执行上文描述的基于行驶轨迹挖掘新增道路方法的一个或多个步骤。备选地,在其他实施
例中,计算单元801可以通过其他任何适当的方式(例如,借助于固件)而被配置为执行基于行驶轨迹挖掘新增道路方法。
100.本文中以上描述的系统和技术的各种实施方式可以在数字电子电路系统、集成电路系统、场可编程门阵列(fpga)、专用集成电路(asic)、专用标准产品(assp)、芯片上系统的系统(soc)、负载可编程逻辑设备(cpld)、计算机硬件、固件、软件、和/或它们的组合中实现。这些各种实施方式可以包括:实施在一个或者多个计算机程序/指令中,该一个或者多个计算机程序/指令可在包括至少一个可编程处理器的可编程系统上执行和/或解释,该可编程处理器可以是专用或者通用可编程处理器,可以从存储系统、至少一个输入装置、和至少一个输出装置接收数据和指令,并且将数据和指令传输至该存储系统、该至少一个输入装置、和该至少一个输出装置。
101.用于实施本公开的方法的程序代码可以采用一个或多个编程语言的任何组合来编写。这些程序代码可以提供给通用计算机、专用计算机或其他可编程数据处理装置的处理器或控制器,使得程序代码当由处理器或控制器执行时使流程图和/或框图中所规定的功能/操作被实施。程序代码可以完全在机器上执行、部分地在机器上执行,作为独立软件包部分地在机器上执行且部分地在远程机器上执行或完全在远程机器或服务器上执行。
102.在本公开的上下文中,机器可读介质可以是有形的介质,其可以包含或存储以供指令执行系统、装置或设备使用或与指令执行系统、装置或设备结合地使用的程序。机器可读介质可以是机器可读信号介质或机器可读储存介质。机器可读介质可以包括但不限于电子的、磁性的、光学的、电磁的、红外的、或半导体系统、装置或设备,或者上述内容的任何合适组合。机器可读存储介质的更具体示例会包括基于一个或多个线的电气连接、便携式计算机盘、硬盘、随机存取存储器(ram)、只读存储器(rom)、可擦除可编程只读存储器(eprom或快闪存储器)、光纤、便捷式紧凑盘只读存储器(cd-rom)、光学储存设备、磁储存设备、或上述内容的任何合适组合。
103.为了提供与用户的交互,可以在计算机上实施此处描述的系统和技术,该计算机具有:用于向用户显示信息的显示装置(例如,crt(阴极射线管)或者lcd(液晶显示器)监视器);以及键盘和指向装置(例如,鼠标或者轨迹球),用户可以通过该键盘和该指向装置来将输入提供给计算机。其它种类的装置还可以用于提供与用户的交互;例如,提供给用户的反馈可以是任何形式的传感反馈(例如,视觉反馈、听觉反馈、或者触觉反馈);并且可以用任何形式(包括声输入、语音输入或者、触觉输入)来接收来自用户的输入。
104.可以将此处描述的系统和技术实施在包括后台部件的计算系统(例如,作为数据服务器)、或者包括中间件部件的计算系统(例如,应用服务器)、或者包括前端部件的计算系统(例如,具有图形用户界面或者网络浏览器的用户计算机,用户可以通过该图形用户界面或者该网络浏览器来与此处描述的系统和技术的实施方式交互)、或者包括这种后台部件、中间件部件、或者前端部件的任何组合的计算系统中。可以通过任何形式或者介质的数字数据通信(例如,通信网络)来将系统的部件相互连接。通信网络的示例包括:局域网(lan)、广域网(wan)、互联网和区块链网络。
105.计算机系统可以包括客户端和服务器。客户端和服务器一般远离彼此并且通常通过通信网络进行交互。通过在相应的计算机上运行并且彼此具有客户端-服务器关系的计算机程序/指令来产生客户端和服务器的关系。服务器可以是云服务器,也可以为分布式系
统的服务器,或者是结合了区块链的服务器。
106.应该理解,可以使用上面所示的各种形式的流程,重新排序、增加或删除步骤。例如,公开中记载的各步骤可以并行地执行也可以顺序地执行也可以不同的次序执行,只要能够实现本公开公开的技术方案所期望的结果,本文在此不进行限制。
107.上述具体实施方式,并不构成对本公开保护范围的限制。本领域技术人员应该明白的是,根据设计要求和其他因素,可以进行各种修改、组合、子组合和替代。任何在本公开的精神和原则之内所作的修改、等同替换和改进等,均应包含在本公开保护范围之内。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献