一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种低能耗低压压力氧空分装置的制作方法

2022-04-30 10:26:06 来源:中国专利 TAG:


1.本发明涉及一种空分装置,特别是涉及一种低能耗低压压力氧空分装置,属于空分装置技术领域。


背景技术:

2.某些工业领域,如有色冶炼常用到有些压力200~400kpag的氧气压力的空分装置。
3.不少装置规模不是很大,若采用增压机方案,增压流量小,可选面小,用户希望动设备配置简单,不单独配置增压机,又希望增加液体产量提高装置的经济性,采用单一膨胀机气量大,能耗相对较高,为此设计一种低能耗低压压力氧空分装置来优化改进上述问题。


技术实现要素:

4.本发明的主要目的是为了提供一种低能耗低压压力氧空分装置,采取简便方法,解决了此类空分装置能耗较高,膨胀机流量较大,热端膨胀机分担部分膨胀量,且利用热端膨胀机膨胀前温度高,焓降大,制冷量的优点,增加了低温冷量,其次氧压力增压冷凝的液空温度较高,经过冷器,回收过冷器冷流体冷量,减少了去氧压力增压热源空气的液化量,减少了对精馏和换热的影响,也就是增加了制冷量,从而增加了液体产量;采用双膨胀机及优化技术,一般能耗可降低8%以上。
5.本发明的目的可以通过采用如下技术方案达到:
6.一种低能耗低压压力氧空分装置,包括主换热器、热端增压透平膨胀机、热端增压透平膨胀机增压端、冷端增压透平膨胀机、冷端增压透平膨胀机增压端、第一冷却器、氧增压器、压力塔、过冷器、低压塔和纯化空气管道,纯化空气管道连通纯化空气第一支路管道,纯化空气第一支路管道经过主换热器内与氧增压器连通,热端增压透平膨胀机连通有膨胀后低温纯化空气管道,且膨胀后低温纯化空气管道经过主换热器内与压力塔连通,冷端增压透平膨胀机通过冷端膨胀空气管道与压力塔连通,氧增压器的顶部连通有贯穿主换热器的低温压力氧气管道,氧增压器内底部连通有经过过冷器的液体空气管道,且液体空气管道的另一端连通过冷液体空气管路的进入端,过冷液体空气管路的一输出端连通压力塔,过冷液体空气管路的另一输出端连通低压塔,低压塔输出一组低压塔污氮导出管路和一组低压塔纯氮导出管路,且低压塔污氮导出管路和低压塔纯氮导出管路经过主换热器内,冷端增压透平膨胀机增压端的输出端连通有冷却未膨胀管路,且冷却未膨胀管路经过第一冷却器和主换热器与冷端增压透平膨胀机输入端连通。
7.优选的,纯化空气第一支路管道位于主换热器内侧处连通第一膨胀前低温纯化空气管道,且第一膨胀前低温纯化空气管道贯穿主换热器与热端增压透平膨胀机输入端连通,热端增压透平膨胀机上的热端增压透平膨胀机增压端输出端通过纯化空气增压管路与冷端增压透平膨胀机增压端连通,纯化空气管道连通有纯化空气第二支路管道,且纯化空气第二支路管道与热端增压透平膨胀机增压端的输入端连通。
8.优选的,纯化空气第二支路管道分别与热端增压透平膨胀机增压端和冷端增压透平膨胀机增压端的输入端连通,热端增压透平膨胀机增压端的输出端连通有第二膨胀前低温纯化空气管道,且第二膨胀前低温纯化空气管道经过第二冷却器和主换热器与热端增压透平膨胀机的输入端连通。
9.优选的,热端增压透平膨胀机增压端的输出端连通有热端增压后空气管道,且热端增压后空气管道的外侧套设有第三冷却器,热端增压后空气管道的另一端与未经过主换热器处的冷却未膨胀管路一端连通。
10.优选的,过冷液体空气管路与压力塔的连接处设有第一调节阀,过冷液体空气管路与低压塔的连接处设有第二调节阀。
11.本发明的有益技术效果:
12.本发明提供的一种低能耗低压压力氧空分装置,采取简便方法,解决了此类空分装置能耗较高,膨胀机流量较大,热端膨胀机分担部分膨胀量,且利用热端膨胀机膨胀前温度高,焓降大,制冷量的优点,增加了低温冷量,其次氧压力增压冷凝的液空温度较高,经过冷器,回收过冷器冷流体冷量,减少了去氧压力增压热源空气的液化量,减少了对精馏和换热的影响,也就是增加了制冷量,从而增加了液体产量,一般能耗可降低8%以上。
附图说明
13.图1为按照本发明的一种低能耗低压压力氧空分装置的一优选实施例1的装置整体结构图;
14.图2为按照本发明的一种低能耗低压压力氧空分装置的一优选实施例2的装置整体结构图;
15.图3为按照本发明的一种低能耗低压压力氧空分装置的一优选实施例3的装置整体结构图。
16.图中:1-主换热器,2-热端增压透平膨胀机,3-热端增压透平膨胀机增压端,4-冷端增压透平膨胀机,5-冷端增压透平膨胀机增压端,6-第一冷却器,7-氧增压器,8-压力塔,9-过冷器,10-低压塔,11-纯化空气管道,12-纯化空气第一支路管道,13-第一膨胀前低温纯化空气管道,14-膨胀后低温纯化空气管道,15-液体空气管道,16-过冷液体空气管路,17-纯化空气增压管路,18-冷却未膨胀管路,19-低压塔污氮导出管路,20-低压塔纯氮导出管路,21-冷端膨胀空气管道,22-低温压力氧气管道,23-纯化空气第二支路管道,24-第二冷却器,25-第二膨胀前低温纯化空气管道,26-热端增压后空气管道,27-第三冷却器。
具体实施方式
17.为使本领域技术人员更加清楚和明确本发明的技术方案,下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
18.实施例一
19.在本实施例中,如图1所示,包括主换热器1、热端增压透平膨胀机2、热端增压透平膨胀机增压端3、冷端增压透平膨胀机4、冷端增压透平膨胀机增压端5、第一冷却器6、氧增压器7、压力塔8、过冷器9、低压塔10和纯化空气管道11,纯化空气管道11连通纯化空气第一支路管道12,纯化空气第一支路管道12经过主换热器1内与氧增压器7连通,热端增压透平
膨胀机2连通有膨胀后低温纯化空气管道14,且膨胀后低温纯化空气管道14经过主换热器1内与压力塔8连通,冷端增压透平膨胀机4通过冷端膨胀空气管道21与压力塔8连通,氧增压器7的顶部连通有贯穿主换热器1的低温压力氧气管道22,氧增压器7内底部连通有经过过冷器9的液体空气管道15,且液体空气管道15的另一端连通过冷液体空气管路16的进入端,过冷液体空气管路16的一输出端连通压力塔8,过冷液体空气管路16的另一输出端连通低压塔10,低压塔10输出一组低压塔污氮导出管路19和一组低压塔纯氮导出管路20,且低压塔污氮导出管路19和低压塔纯氮导出管路20经过主换热器1内,冷端增压透平膨胀机增压端5的输出端连通有冷却未膨胀管路18,且冷却未膨胀管路18经过第一冷却器6和主换热器1与冷端增压透平膨胀机4输入端连通,纯化空气第一支路管道12位于主换热器1内侧处连通第一膨胀前低温纯化空气管道13,且第一膨胀前低温纯化空气管道13贯穿主换热器1与热端增压透平膨胀机2输入端连通,热端增压透平膨胀机2上的热端增压透平膨胀机增压端3输出端通过纯化空气增压管路17与冷端增压透平膨胀机增压端5连通,纯化空气管道11连通有纯化空气第二支路管道23,且纯化空气第二支路管道23与热端增压透平膨胀机增压端3的输入端连通。
20.纯化空气通过纯化空气管道11部分进入至纯化空气第一支路管道12内,纯化空气第一支路管道12内的纯化空气经过主换热器1后冷却带一定温度部分进入至氧增压器7作为热源,冷凝后的液体空气通过液体空气管道15经过过冷器9部分进入至低压塔10内,另一部分进入至压力塔8内,低压塔10内的低压塔纯氮通过低压塔纯氮导出管路20经过主换热器1升温为常温输出,低压塔污氮通过低压塔污氮导出管路19经过主换热器1升温为常温输出,纯化空气部分通过纯化空气管道11进入至纯化空气第二支路管道23,通过纯化空气第二支路管道23进入至热端增压透平膨胀机增压端3,通过热端增压透平膨胀机增压端3增压后进入至纯化空气增压管路17,增压后的纯化空气再进入至冷端增压透平膨胀机增压端5再次增压后通过第一冷却器6进一步冷却后再经过主换热器1冷却,冷却后进入至冷端增压透平膨胀机4进行膨胀,通过冷端增压透平膨胀机4膨胀后进入至冷端膨胀空气管道21,通过冷端膨胀空气管道21进入至压力塔8进行精馏。
21.实施例二
22.在本实施例中,如图2所示,与实施例一相比区别在于:去除了纯化空气第一支路管道12与第一膨胀前低温纯化空气管道13连通,且第一膨胀前低温纯化空气管道13与热端增压透平膨胀机2输入端连通,去除了热端增压透平膨胀机增压端3的输出端通过纯化空气增压管路17与冷端增压透平膨胀机增压端5输入端连通;
23.调整为纯化空气第二支路管道23分别与热端增压透平膨胀机增压端3和冷端增压透平膨胀机增压端5的输入端连通,热端增压透平膨胀机增压端3的输出端连通有第二膨胀前低温纯化空气管道25,且第二膨胀前低温纯化空气管道25经过第二冷却器24和主换热器1与热端增压透平膨胀机2的输入端连通。
24.纯化空气第二支路管道23内的空气进入至热端增压透平膨胀机增压端3增压后,通过第二冷却器24和主换热器1冷却后进入至热端增压透平膨胀机2膨胀后形成膨胀纯冷空气;
25.部分纯化空气通过第二支路管道23进入至冷端增压透平膨胀机增压端5内进行冷端增压;
26.实施例三
27.在本实施例中,如图3所示,与实施例一和实施例二相比区别在于:
28.去除了热端增压透平膨胀机增压端3的输出端连通有第二膨胀前低温纯化空气管道25,且第二膨胀前低温纯化空气管道25经过第二冷却器24和主换热器1与热端增压透平膨胀机2的输入端连通,去除了热端增压透平膨胀机增压端3的输出端通过纯化空气增压管路17与冷端增压透平膨胀机增压端5输入端连通;
29.热端增压透平膨胀机增压端3的输出端连通有热端增压后空气管道26,且热端增压后空气管道26的外侧套设有第三冷却器27,热端增压后空气管道26的另一端与未经过主换热器1处的冷却未膨胀管路18一端连通。
30.热端增压透平膨胀机增压端3对纯化空气增压后经过第三冷却器27冷却后再进入至冷却未膨胀管路18内;
31.过冷液体空气管路16与压力塔8的连接处设有第一调节阀,过冷液体空气管路16与低压塔10的连接处设有第二调节阀。
32.以上,仅为本发明进一步的实施例,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明所公开的范围内,根据本发明的技术方案及其构思加以等同替换或改变,都属于本发明的保护范围。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献