一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种基于SCA-GRU的桥梁异常监测方法、系统、设备及存储介质与流程

2022-04-16 22:05:07 来源:中国专利 TAG:

一种基于sca-gru的桥梁异常监测方法、系统、设备及存储介质
技术领域
1.本技术涉及一种桥梁监测方法,尤其涉及一种基于sca-gru的桥梁异常监测方法、系统、设备及存储介质,属于桥梁监测技术领域。


背景技术:

2.传统桥梁的管养体系以人工定期巡检为主,当前的桥梁健康监测系统只是利用数据采集系统采集桥梁上的传感器传回的数据,并根据系统设置的阈值进行异常或正常的判断,当桥梁出现异常时,告警系统进行告警,而具体异常原因需要专家对数据进行分析甚至实地考察才能确定异常原因。传统的检测方法对异常的判断存在高度依赖技术人才,无法及时定位异常原因等问题,桥梁异常如果没有及早发现和处理容易发生安全隐患。桥梁正常与否通常通过传感器来检测,但是庞大的数据量对于传统检测方法来说存在很大挑战,而神经网络善于处理庞大的数据。
3.神经网络如今也被应用于桥梁异常检测领域。神经网络是一种可针对过去经验(信息)的重复学习,而具有分析、预测、推理、分类等能力的技术,能够仿效人类大脑去解决复杂问题。比起常规使用统计方法、模式识别、分类、线性或非线性方法而言,以神经网络为基础的系统具有更强大的功能和分析问题技巧,可以用来解决信号处理、仿真预测、分析决策等复杂的问题。神经网络技术已广泛应用于自动控制领域、处理组合优化问题、模式识别、图像处理、信号处理等领域。
4.现有技术提出一种基于改进lstm的桥梁传感器异常数据的检测方法,利用两层lstm对序列进行向量表示、逆序重构,利用贝叶斯优化算法对lstm网络进行参数优化,最终通过极大似然估计对该段序列进行异常得分估计,最终通过学习异常报警阈值实现时间序列异常检测并发现潜在异常。长短期记忆网络(long short-term memory,lstm)是循环神经网络(recurrent neural network,rnn)的一种变体,rnn是一类以序列数据为输入,在序列的演进方向进行递归且所有节点(循环单元)按链式连接的递归神经网络,rnn对具有序列特性的数据非常有效,它能挖掘数据中的时序信息以及语义信息,利用了rnn的这种能力,使深度学习模型在解决语音识别、语言模型、机器翻译以及时序分析等nlp领域的问题时有所突破。rnn将输入的信息它都存下来,对所有信息进行处理,因为它没有挑选的能力,而lstm不一样,它拥有强大的门控系统,分别是记忆门、遗忘门和输出门,会选择性的存储信息,因此它可以对输入的信息进行选择性的记录或遗忘。现有技术中改进的lstm网络结构比较复杂,会导致网络模型训练时间和异常检测时间过长,超参数参数优化的寻优可能陷入局部最优,导致桥梁异常检测效率不高。


技术实现要素:

5.在下文中给出了关于本发明的简要概述,以便提供关于本发明的某些方面的基本理解。应当理解,这个概述并不是关于本发明的穷举性概述。它并不是意图确定本发明的关
键或重要部分,也不是意图限定本发明的范围。其目的仅仅是以简化的形式给出某些概念,以此作为稍后论述的更详细描述的前序。
6.鉴于此,为解决现有技术中存在检测的准确率低的技术问题,本发明提供一种基于sca-gru的桥梁异常监测方法、系统、设备及存储介质。
7.方案一:一种基于sca-gru的桥梁异常监测方法,包括以下步骤:步骤一、收集桥梁监测数据,将数据作为样本数据集;步骤二、将步骤一所述监测数据进行归一化处理;步骤三、将步骤一所述样本数据集进行划分,将80%的数据作为三层神经网络模型的数据作为训练集,20%的数据作为测试集;步骤四、将训练集作为gru模型的输入层输入数据,输出层输出预测类型;步骤五、使用均方误差函数作为损失函数计算实际值与预测值之间的差距;步骤六、使用adam优化器优化目标函数,在每次训练迭代gru时计算损失函数的梯度,进而更新gru模型的网络权重和偏置;步骤七、判断迭代次数,当迭代次数等于d时,获得最优参数,并将最优参数应用于gru模型;当迭代次数小于d时,sca算法寻找最优超参数,将最优超参数输入gru模型中,重复步骤五至步骤六;步骤八、将步骤三所述测试集,输入优化后的gru模型中,输出预测结果。
8.优选的,步骤二所述监测数据进行归一化处理的具体方法是:其中, 表示输入数据,表示归一化后的数据,表示输入数据的最大值,表示输入数据的最小值 。
9.优选的,步骤四所述将训练集作为gru模型的输入层输入数据,输出层输出预测类型的具体方法是 :输入层输入的数据为x,,其中()为设备的各项监测数据,为异常类型,确定需要优化的gru超参数,确定迭代次数d,随机产生超参数的初始值,将超参数值应用于两层gru中,确定两层gru的输入节点个数m和n,两层gru作为隐藏层对输入数据x进行处理,gru对数据的处理,其中第二层gru的输入为第二层的输出,为第时刻gru第个节点的输出,输出层将经过两层gru处理的数据利用softmax函数进行预测,并输出预测类型() 。
10.优选的,步骤七所述当迭代次数小于d时,获得最优参数的具体方法是:将sca算法进行优化,舍弃原sca算法的和参数,减少多个参数选取的麻烦;当迭代次数小于d时,确定随机数和的值,更新超参数:
其中,第t次迭代的参数值为为第t次迭代中参数的最优值;为(0,2)之间的随机数,用于控制算法的搜索范围;为(0,)的随机数,用于控制算法的搜索方向;当迭代次数d为奇数时采用sin更新策略,当迭代次数d为偶数时采用cos更新策略。
11.方案二:一种基于sca-gru的桥梁异常监测系统,包括数据采集模块、数据传输模块、桥梁异常预测模块、数据异常报警模块和数据异常显示模块;数据采集模块、数据传输模块、桥梁异常预测模块、数据异常报警模块和数据异常显示模块依次连接;所述数据采集模块用于采集桥梁数据;所述桥梁异常预测模块用于对桥梁数据进行分析预测输出数据检测结果;所述数据传输模块用于将数据采集模块采集到的数据传输至桥梁异常预测模块;所述异常报警模块用于对异常数据进行报警;所述显示模块用于显示异常数据和异常原因。
12.方案三:一种设备,包括存储器和处理器,存储器存储有计算机程序,所述的处理器执行所述计算机程序时实现方案一所述一种基于sca-gru的桥梁异常监测方法的步骤。
13.方案四:一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现方案一所述的一种基于sca-gru的桥梁异常监测方法。
14.本发明的有益效果如下:本发明使用sca算法和gru模型对桥梁进行异常检测,可提高桥梁异常检测的效率和准确性。sca算法利用正弦和余弦函数可快速准确的进行超参数寻优,gru获得最优超参数并经过adam优化器的训练优化可提高其检测性能;gru相对简易的结构可加快训练和检测效率,其独特的门结构可选择性保留数据并挖掘数据中的时序信息,这些特性使其具备良好的检测性能;实现了实时监测桥梁状态,对桥梁进行故障排查和诊断并针对桥梁异常进行告警的效果。
附图说明
15.此处所说明的附图用来提供对本技术的进一步理解,构成本技术的一部分,本技术的示意性实施例及其说明用于解释本技术,并不构成对本技术的不当限定。在附图中:图1为本发明方法流程示意图;图2为本发明系统结构示意图。
具体实施方式
16.为了使本技术实施例中的技术方案及优点更加清楚明白,以下结合附图对本技术的示例性实施例进行进一步详细的说明,显然,所描述的实施例仅是本技术的一部分实施例,而不是所有实施例的穷举。需要说明的是,在不冲突的情况下,本技术中的实施例及实施例中的特征可以相互组合。
17.实施例1、参照图1说明本实施方式,一种基于sca-gru的桥梁异常监测方法,包括以下步骤:
步骤一、收集桥梁监测数据,将数据作为样本数据集;具体的,所述桥梁监测数据包括环境温湿度、风速风向、交通荷载、地震动、降雨量,主梁挠度、索塔偏位、支座位移、拉索索力,主梁竖向振动或主梁横向振动中的一种或几种的组合数据作为样本数据集。
18.所述监测数据由桥梁上的监测设备获取。
19.步骤二、将步骤一所述监测数据进行归一化处理,使数据处于[0,1]的范围内,从而消除奇异样本数据导致的不良影响。数据归一化处理后,还可以加快梯度下降求最优解的速度,具体方法是,进行归一化处理:其中, 表示输入数据,表示归一化后的数据,表示输入数据的最大值,表示输入数据的最小值。
[0020]
步骤三、将步骤一所述样本数据集进行划分,将80%的数据作为三层神经网络模型的数据作为训练集用于训练gru模型;20%的数据作为测试集,测试集可对sca-gru模型的性能进行验证。
[0021]
步骤四、将训练集作为gru模型的输入层输入数据,输出层输出预测类型,具体方法是:输入层输入的数据为x,假设输入的训练集数据,其中()为设备的各项监测数据,为异常类型,确定需要优化的gru超参数,确定迭代次数d,随机产生超参数的初始值,将超参数值应用于两层gru中,确定两层gru的输入节点个数m和n,两层gru作为隐藏层对输入数据x进行处理,gru对数据的处理,其中第二层gru的输入为第二层的输出,为第时刻gru第个节点的输出,输出层将经过两层gru处理的数据利用softmax函数进行预测,并输出预测类型()。
[0022]
具体的,所述初始值生成公式为:其中,ub为该参数值的上限,lb为该参数值的下限。
[0023]
步骤五、使用均方误差函数作为损失函数计算实际值与预测值之间的差距;步骤六、使用adam优化器优化目标函数,在每次训练迭代gru时计算损失函数的梯度,进而更新gru模型的网络权重和偏置;步骤七、判断迭代次数,当迭代次数等于d时,获得最优参数,并将最优参数应用于gru模型;当迭代次数小于d时,sca算法寻找最优超参数,将最优超参数输入gru模型中,重复步骤五至步骤六;将sca算法进行优化,舍弃原sca算法的和参数,减少多个参数选取的麻烦;当迭代次数小于d时,确定随机数和的值,更新超参数:
其中,第t次迭代的参数值为为第t次迭代中参数的最优值;为(0,2)之间的随机数,用于控制算法的搜索范围;为(0,)的随机数,用于控制算法的搜索方向;当迭代次数d为奇数时采用sin更新策略,当迭代次数d为偶数时采用cos更新策略。
[0024]
步骤八、将步骤三所述测试集,输入优化后的gru模型中,输出预测结果。
[0025]
实施例2、参照图2说明本实施方式,一种基于sca-gru的桥梁异常监测系统,包括数据采集模块、数据传输模块、桥梁异常预测模块、数据异常报警模块和数据异常显示模块;数据采集模块、数据传输模块、桥梁异常预测模块、数据异常报警模块和数据异常显示模块依次连接;所述数据采集模块用于采集桥梁数据;所述桥梁异常预测模块用于对桥梁数据进行分析预测输出数据检测结果;所述数据传输模块用于将数据采集模块采集到的数据传输至桥梁异常预测模块;所述异常报警模块用于对异常数据进行报警;所述显示模块用于显示异常数据和异常原因。
[0026]
具体的,所述数据采集模块包括温度传感器、应力传感器、变形传感器或震动传感器中的一种或几种的组合。
[0027]
本发明的计算机装置可以是包括有处理器以及存储器等装置,例如包含中央处理器的单片机等。并且,处理器用于执行存储器中存储的计算机程序时实现上述的基于creo软件的可修改由关系驱动的推荐数据的推荐方法的步骤。
[0028]
所称处理器可以是中央处理单元(central processing unit,cpu),还可以是其他通用处理器、数字信号处理器 (digital signal processor,dsp)、专用集成电路(application specific integrated circuit,asic)、现成可编程门阵列 (field-programmable gate array,fpga) 或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
[0029]
所述存储器可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器可以包括高速随机存取存储器,还可以包括非易失性存储器,例如硬盘、内存、插接式硬盘,智能存储卡(smart media card, smc),安全数字(secure digital, sd)卡,闪存卡(flash card)、至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
[0030]
计算机可读存储介质实施例本发明的计算机可读存储介质可以是被计算机装置的处理器所读取的任何形式的存储介质,包括但不限于非易失性存储器、易失性存储器、铁电存储器等,计算机可读存储介质上存储有计算机程序,当计算机装置的处理器读取并执行存储器中所存储的计算机程序时,可以实现上述的基于creo软件的可修改由关系驱动的建模数据的建模方法的步骤。
[0031]
所述计算机程序包括计算机程序代码,所述计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。所述计算机可读介质可以包括:能够携带所述计算机程序代码的任何实体或装置、记录介质、u盘、移动硬盘、磁碟、光盘、计算机存储器、只读存储器(rom,read-only memory)、随机存取存储器(ram,random access memory)、电载波信号、电信信号以及软件分发介质等。需要说明的是,所述计算机可读介质包含的内容可以根据司法管辖区内立法和专利实践的要求进行适当的增减,例如在某些司法管辖区,根据立法和专利实践,计算机可读介质不包括电载波信号和电信信号。
[0032]
尽管根据有限数量的实施例描述了本发明,但是受益于上面的描述,本技术领域内的技术人员明白,在由此描述的本发明的范围内,可以设想其它实施例。此外,应当注意,本说明书中使用的语言主要是为了可读性和教导的目的而选择的,而不是为了解释或者限定本发明的主题而选择的。因此,在不偏离所附权利要求书的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。对于本发明的范围,对本发明所做的公开是说明性的,而非限制性的,本发明的范围由所附权利要求书限定。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献