一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

一种用于水处理的电化学管式陶瓷膜及其制备方法和应用与流程

2022-03-26 04:46:31 来源:中国专利 TAG:


1.本发明涉及水处理技术领域,具体涉及一种用于水处理的电化学管式陶瓷膜及其制备方法,适用于垃圾渗滤液的高效处理。


背景技术:

2.垃圾填埋场产生的渗滤液会导致严重的水环境污染,其具有高cod、高色度和成分复杂等特点。经生化工艺处理后的垃圾渗滤液仍然存在色度大、难降解有机物成分高和高盐分等特点。因此,生化法进一步处理难以得到较好的处理效果。电化学氧化技术是一种操作简单、处理效率高、无需外加化学药剂的水处理技术。现有电极材料对难降解有机物和氨氮的处理主要依赖于间接电子传递,即电极表面释放羟基自由基,对难降解有机物和氨氮进行氧化。然而,电化学氧化过程中释放的羟基自由基寿命较短,其在水中的浓度较低,可能出现有机物矿化率较低和库伦效率较低等问题。寻求高效的电极材料,释放高浓度的活性氧化物种,是目前垃圾渗滤液生化出水电氧化领域关注和研发的热点。
3.垃圾渗滤液生化出水中的氯离子浓度较高,其可在阳极发生析氯反应,并产生高浓度的氯自由基及次氯酸等活性物质。现有阳极材料中,铱具备较低的析氯过电位和较好的电化学稳定性,适宜在电化学氧化工艺中应用。然而,阳极析氯过程中产生的气泡可能使电极表面产生较高的欧姆降,从而降低污染物在电极表面的扩散传质。膜材料具备较为发达的孔道结构,其在过滤过程中可增强污染物与活性位点的扩散传质。因此,开发一种高效稳定的电化学阳极滤膜,是目前实现电化学氧化法水处理技术的突破点。


技术实现要素:

4.本发明针对上述问题,提供一种用于去除水中难降解有机物和氨氮的、电化学选择性高的电化学管式陶瓷膜及其制备方法和应用,解决了电氧化技术中有机物矿化率较低,电化学稳定性较差的关键技术问题。
5.本发明提供如下技术方案:一种用于水处理的电化学管式陶瓷膜及其制备方法,包括以下步骤:
6.1)钛基底管式陶瓷膜的制备:将陶瓷膜清洗烘干后,放入磁控溅射仪中,在氩气氛围中沉积钛,得到具有钛导电层的钛基底陶瓷膜;
7.2)电化学管式陶瓷膜的制备:将所述步骤1)制得的钛基底管式陶瓷膜放入磁控溅射仪中,在氩气氛围中沉积铱,在所述步骤1)得到的钛基底陶瓷膜的表面沉积得到铱活性层;将得到的管式膜洗净烘干,即为所述用于水处理的电化学管式陶瓷膜。
8.进一步地,所述步骤1)中所采用的陶瓷膜的孔径为1~5μm。
9.进一步地,所述步骤1)中所沉积的钛导电层的厚度为500~1000nm,沉积速率为2~5nm min-1

10.进一步地,所述步骤2)中所沉积的铱活性层的厚度为100~300nm,沉积速率为1~5nm min-1

11.本发明还提供采用上述制备方法制备得到的用于水处理的电化学管式陶瓷膜。
12.本发明还提供上述电化学管式陶瓷膜在垃圾渗滤液处理中的应用,包括以下步骤:
13.a.将所述电化学管式陶瓷膜直接连接阳极,采用铜网作为阴极、钛网或者不锈钢丝网;
14.b.施加电压,电化学管式陶瓷膜过滤垃圾渗滤液生化出水时进行电氧化反应,去除水中有机物和氨氮。
15.进一步地,所述步骤b的阳极施加的电流密度为5~25ma cm-2

16.进一步地,所述步骤b的垃圾渗滤液生化出水中氯离子浓度范围为500~ 2000mg l-1
,过滤的水通量为40~150l m-2
h-1

17.进一步地,所述垃圾渗滤液生化出水的cod浓度范围为200~1000mg l-1
,氨氮浓度以n计为2~20mg l-1

18.本发明的有益效果为:
19.本发明所制备的电化学管式陶瓷膜可去除垃圾渗滤液中难降解有机物和氨氮,利用铱电化学活性层的析氯反应,产生高浓度的氯自由基及活性氯成分,并氧化水中难降解有机物和氨氮。该管式陶瓷膜解决了电化学高级氧化中有机物矿化率低,电化学稳定性较差的关键技术问题。同时,本发明涉及的电化学管式膜具备良好的机械强度和过滤性能,同步去除cod和氨氮的效果显著,可适用于垃圾渗滤液生化出水的高效处理。
附图说明
20.在下文中将基于实施例并参考附图来对本发明进行更详细的描述。其中:
21.图1为本发明实施例1提供的制备方法制备得到的电化学管式陶瓷膜实物图和微观形貌图。
22.图2为本发明实施例2和实施例3中cod和氨氮的去除率示意图。
23.具体实施例方式
24.下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
25.实施例1
26.本实施例中用于垃圾渗滤液处理的电化学管式陶瓷膜的制备方法,按照以下步骤进行:
27.1、钛基底管式陶瓷膜的制备:将陶瓷膜清洗烘干后,放入磁控溅射仪中,在氩气氛围中沉积钛,钛导电层的厚度为800nm,沉积速率为4.9nm min-1
得到钛基底陶瓷膜。
28.2、电化学管式陶瓷膜的制备:将所述制得的钛基底管式陶瓷膜放入磁控溅射仪中,在氩气氛围中沉积铱,铱活性层的厚度为200nm,沉积速率为4nm min-1
;将得到的管式膜洗净烘干,即为所述用于水处理的电化学管式陶瓷膜。实物和微观形貌如图1所示。
29.实施例2
30.利用实施例1中所制备的电化学管式陶瓷膜作为阳极,铜网作为阴极,所处理对象
为垃圾渗滤液生化出水,初始cod为618mg l-1
,氨氮为8.8mg-n l-1
,氯离子浓度为1780mg l-1
,电流密度为15ma cm-2
时,cod的去除率可达59%,氨氮去除率可达65%。
31.实施例3
32.利用实施例1中所制备的电化学管式陶瓷膜作为阳极,铜网作为阴极,所处理对象为垃圾渗滤液生化出水,初始cod为618mg l-1
,氨氮为8.8mg-n l-1
,氯离子浓度为1780mg l-1
,电流密度为20ma cm-2
,通量为40~150m-2
h-1
下, cod的去除率最高可达72%,氨氮去除率最高可达89%。
33.以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。
34.此外,本领域的技术人员能够理解,尽管在此的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本发明的范围之内并且形成不同的实施例。例如,在上面的权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。公开于该背景技术部分的信息仅仅旨在加深对本发明的总体背景技术的理解,而不应当被视为承认或以任何形式暗示该信息构成已为本领域技术人员所公知的现有技术。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献