一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

单双级压缩切换的空调系统和切换控制方法与流程

2022-03-16 16:47:06 来源:中国专利 TAG:


1.本发明涉及空调技术领域,具体而言,涉及一种单双级压缩切换的空调系统和切换控制方法。


背景技术:

2.空调在室外高温制冷或低温制热等严苛条件下运行时,压缩机高低压差扩大,压缩机的排气温度过升导致冷冻机油劣化、压缩机效率变差,因此需要在压缩机的排气端安装排气温度传感器,当压缩机排气温度超过阈值时,则采取降低压缩机频率或控制压缩机保护性停机等一般对策,然而,这样一来会使空调制冷或制热能力下降,空调无法持续运行,不能满足用户制冷或制热需求。
3.基于此,设计本发明。


技术实现要素:

4.本发明解决的问题是空调在室外高温制冷或低温制热等严苛条件下无法正常运行。
5.为解决上述问题,本发明提出了一种单双级压缩切换的空调系统,包括室内机和室外机,所述室内机具有换热器一和节流装置一,所述室外机包括:
6.中压储液器,其具有两个进/排气端口和两个进/出液端口;
7.管路一,其两端与其中一个进/排气端口和其中一个进/出液端口连通,所述管路一顺序串联有节流装置二、换热器二、压缩机一和电磁阀三;
8.管路二,其两端与另外一个进/排气端口和另外一个进/出液端口连通,所述管路二顺序串联有电磁阀二、压缩机二、所述室内机;
9.电磁阀一,其一端连通于管路一中压缩机一和换热器二之间,另一端连通于管路二中压缩机二和电磁阀二之间;
10.电磁阀四,其一端连通于管路一中压缩机一和电磁阀三之间,另一端连通于管路二中压缩机二和所述室内机之间。
11.本发明实施例的单双级压缩切换的空调系统可在室外高温制冷或低温制热等严苛条件下切换至双级压缩循环运行,以确保空调制冷或制热能力不下降,满足用户的制冷或制热需求。
12.进一步的,将管路一中压缩机一替换为四通阀一,所述四通阀一的余下两个端口连通压缩机一;
13.将管路二中压缩机二替换为四通阀二,所述四通阀二的余下两个端口连通压缩机二。
14.在管路一和管路二中设置四通阀使得空调可以在制冷模式和制热模式之间自由切换,确保本发明的单双级压缩切换的空调系统也能够应用到冷暖空调中。
15.此外,为解决上述问题,本发明还提出了一种单双级压缩切换的控制方法,其采用
前述的单双级压缩切换的空调系统执行以下步骤:
16.制冷运行时,获取压缩机一和/或压缩机二的排气压力p1;
17.若p1<p2,则关闭电磁阀二和电磁阀三,打开电磁阀一和电磁阀四,进行单级压缩循环制冷运行;
18.若p1≥p2,则关闭电磁阀一和电磁阀四,打开电磁阀二和电磁阀三,进行双级压缩循环制冷运行,p2为空调制冷运行时进行单双级压缩切换的压缩机排气压力阈值。
19.本发明实施例的单双级压缩切换的控制方法根据压缩机一和/或压缩机二的排气压力p1进行单级压缩制冷循环运行和双级压缩制冷循环运行的切换,当空调处于室外高温制冷等严苛条件下时,空调进行双级压缩制冷循环运行,以确保制冷效果不下降,充分满足用户的制冷需求,反之,则空调进行单级压缩制冷循环运行即可满足用户的制冷需求。
20.进一步的,空调双级压缩循环制冷运行时,所述压缩机一的频率hz_high和压缩机二的频率hz_low满足:
21.hz_high=hz_low
×
(ρ_low/ρ_high)
×
(h_p2

h_p3)/(h_p5

h_p8),式中,ρ_low是压缩机二的进气口处的换热介质密度,ρ_high是压缩机一的进气口处的换热介质密度,h_p2是压缩机二的排气口处的换热介质比焓,h_p3是中压储液器的出液端口处的换热介质比焓,h_p5是压缩机一的进气口处的换热介质比焓,h_p8是中压储液器的进液端口处的换热介质比焓。
22.在该技术方案中,所述压缩机一的频率hz_high和压缩机二的频率hz_low满足上述关系式可确保空调在室外高温制冷等严苛条件下稳定的制冷,制冷能力不下降,有效满足用户的制冷需求。
23.进一步的,所述单双级压缩切换的控制方法还包括:
24.双级压缩循环制冷运行时,控制压缩机二的进气压力恒定。
25.在该技术方案中,压缩机二的频率上升则其进气压力下降,压缩机二的频率下降则进气压力上升,因此一边检测其进气压力一边进行压缩机二的频率控制,通过控制压缩机二的进气压力恒定来确保压缩机二的频率稳定,从而使空调在室外高温制冷等严苛条件下稳定的制冷运行,制冷能力不下降,有效满足用户的制冷需求。
26.进一步的,所述单双级压缩切换的控制方法还包括:
27.单级压缩循环制冷运行时,控制压缩机一和压缩机二的进气压力恒定。
28.在该技术方案中,压缩机一和压缩机二的频率上升则其进气压力下降,压缩机一和压缩机二的频率下降则进气压力上升,因此一边检测其进气压力一边进行压缩机一和压缩机二的频率控制,通过控制压缩机一和压缩机二的进气压力恒定来确保压缩机一和压缩机二的频率稳定,从而使空调稳定的制冷运行,满足用户的制冷需求。
29.进一步的,所述单双级压缩切换的控制方法还包括:
30.双级压缩循环制冷运行时,根据压缩机一的压缩比控制节流装置二的开度。
31.在该技术方案中,节流装置二的开度减小则压缩机一的压缩比升高,节流装置二的开度增大则压缩机一的压缩比降低,因此一边检测压缩机一的压缩比一边控制节流装置二的开度,通过控制节流装置二的开度恒定来保证压缩机一的压缩比恒定,从而使空调在室外高温制冷等严苛条件下稳定的制冷运行,制冷能力不下降,有效满足用户的制冷需求。
32.进一步的,空调单级压缩循环制冷运行时,所述节流装置二的开度处于最大位置。
33.在该技术方案中,这样设计,可确保空调稳定的制冷运行,有效满足用户的制冷需求。
34.进一步的,所述单双级压缩切换的控制方法还包括:
35.根据换热器一出口的过热度控制节流装置一的开度。
36.在该技术方案中,减小节流装置一的开度则换热器一出口的过热度上升,反之则换热器一出口的过热度下降,因此一边检测换热器一出口的过热度、一边控制节流装置一的开度,通过控制节流装置一的开度恒定来使换热器一出口的过热度恒定,从而使空调稳定的制冷运行,满足用户的制冷需求。
37.此外,为解决上述问题,本发明还提出了一种单双级压缩切换的控制方法,其采用前述的单双级压缩切换的空调系统执行以下步骤:
38.制热运行时,获取压缩机一和/或压缩机二的进气压力p3;
39.若p3>p4,则关闭电磁阀二和电磁阀三,打开电磁阀一和电磁阀四,空调进行单级压缩循环制热运行;
40.若p3≤p4,则关闭电磁阀一和电磁阀四,打开电磁阀二和电磁阀三,空调进行双级压缩循环制热运行,p4为空调制热运行时进行单双级压缩切换的压缩机进气压力阈值。
41.本发明实施例的单双级压缩切换的控制方法根据压缩机一和/或压缩机二的进气压力p3进行单级压缩循环制热运行和双级压缩循环制热运行的切换,当空调处于室外低温制热等严苛条件下时,空调进行双级压缩制热循环运行,以确保制热效果不下降,充分满足用户的制热需求,反之,则空调进行单级压缩制热循环运行即可满足用户的制热需求。
42.进一步的,双级压缩循环制热运行时,所述压缩机一的频率hz_low和压缩机二的频率hz_high满足:
43.hz_low=hz_high
×
(ρ_high/ρ_low)
×
(h_p5

h_p8)/(h_p2

h_p3),式中,ρ_low是压缩机一的进气口处的换热介质密度,ρ_high是压缩机二的进气口处的换热介质密度,h_p2是压缩机一的排气口处的换热介质比焓,h_p3是中压储液器的出液端口处的换热介质比焓,h_p5是压缩机二的进气口处的换热介质比焓,h_p8是中压储液器的进液端口处的换热介质比焓。。
44.在该技术方案中,所述压缩机二的频率hz_high和压缩机一的频率hz_low满足上述关系式可确保空调在室外低温制热等严苛条件下稳定的制热,制热能力不下降,有效满足用户的制热需求。
45.进一步的,所述单双级压缩切换的控制方法还包括:
46.双级压缩循环制热运行时,控制压缩机二的排气压力恒定。
47.在该技术方案中,压缩机二的频率上升则其排气压力上升,压缩机二的频率下降则排气压力下降,因此一边检测其排气压力一边进行压缩机二的频率控制,通过控制压缩机二的排气压力恒定来确保压缩机二的频率稳定,从而使空调在室外低温制热等严苛条件下稳定的制热运行,制热能力不下降,有效满足用户的制热需求。
48.进一步的,所述单双级压缩切换的控制方法还包括:
49.单级压缩循环运行时,控制压缩机一和压缩机二的排气压力恒定。
50.在该技术方案中,压缩机一和压缩机二的频率上升则其排气压力上升,压缩机一和压缩机二的频率下降则排气压力下降,因此一边检测其排气压力一边进行压缩机一和压
缩机二的频率控制,通过控制压缩机一和压缩机二的排气压力恒定来确保压缩机一和压缩机二的频率稳定,从而使空调稳定的制热运行,满足用户的制热需求。
51.进一步的,所述单双级压缩切换的控制方法还包括:
52.根据换热器一出口的过冷度控制节流装置一的开度。
53.在该技术方案中,节流装置一的开度减小后,室内机中冷媒循环量下降,换热器一出口的过冷度上升,反之,室内机中冷媒循环量上升,换热器一出口的过冷度下降,因此通过检测换热器一出口的过冷度进行节流装置一的开度的控制可使各室内机间的过冷度维持在相同程度,并且能够控制压缩机一的压缩比恒定,从而使空调稳定的制热运行,有效满足用户的制热需求。
54.进一步的,所述单双级压缩切换的控制方法还包括:
55.根据换热器二出口的过热度控制节流装置二的开度。
56.在该技术方案中,节流装置二的开度减小后,换热器二出口的过热度上升,反之,换热器二出口的过热度下降,因此一边检测换热器二出口的过热度,一边控制节流装置二的开度,通过控制节流装置二的开度恒定使换热器二出口的过热度恒定,从而使空调稳定的制热运行,有效满足用户的制热需求。
57.有益效果:本发明的单双级压缩切换的空调系统平时在正常室外环境下进行单级压缩循环运行即可满足用户的制冷和制热需求,当遇到室外高温制冷或低温制热等严苛条件下的室外环境时,可切换至双级压缩循环运行,避免空调降频或保护性停机,确保空调制冷或制热能力不下降,尤其在制热运行时可防止室内机indoor的出风温度过低,充分满足用户的制冷或制热需求。
附图说明
58.图1为本发明实施例的单双级压缩切换的空调系统的结构图;
59.图2a为本发明实施例的单双级压缩切换的空调系统单级压缩循环制冷运行图;
60.图2b为图2a的压焓图;
61.图3a为本发明实施例的单双级压缩切换的空调系统双级压缩循环制冷运行图;
62.图3b为图3a的压焓图;
63.图4a为本发明实施例的单双级压缩切换的空调系统单级压缩循环制热运行图;
64.图4b为图4a的压焓图;
65.图5a为本发明实施例的单双级压缩切换的空调系统双级压缩循环制热运行图;
66.图5b为图5a的压焓图。
具体实施方式
67.为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。
68.本发明提出了一种单双级压缩切换的空调系统,其包括室内机indoor和室外机outdoor,所述室内机indoor具有换热器一和节流装置一,如图1所示,所述换热器一和节流装置一均有多个,且一个换热器一串联一个节流装置一,并与另一个串联的换热器一和节流装置一并联于管路二中,所述室外机包括中压储液器mpr、管路一、管路二、电磁阀一ev1
和电磁阀四ev4,所述中压储液器具有两个进/排气端口和两个进/出液端口,所述管路一的两端与其中一个进/排气端口和其中一个进/出液端口连通,所述管路一顺序串联有节流装置二exv、换热器二hex、压缩机一comp1和电磁阀三ev3;所述管路二的两端与另外一个进/排气端口和另外一个进/出液端口连通,所述管路二顺序串联有电磁阀二ev2、压缩机二comp2、所述室内机indoor;常见的,所述节流装置一和节流装置一为节流阀或膨胀阀;所述电磁阀一ev1的一端连通于管路一中压缩机一comp1和换热器二hex之间,另一端连通于管路二中压缩机二comp2和电磁阀二ev2之间;所述电磁阀四ev4的一端连通于管路一中压缩机一comp1和电磁阀三ev3之间,另一端连通于管路二中压缩机二comp2和所述室内机indoor之间。
69.本发明的单双级压缩切换的空调系统平时在正常环境中依靠单级压缩循环运行即可满足用户的制冷或制热需求,当遇到室外高温制冷或低温制热等严苛条件下运行时,可切换至双级压缩循环运行,以确保空调制冷或制热能力不下降,避免空调出现降频和保护性停机,满足用户的制冷或制热需求,至于单双级压缩切换的空调系统的工作原理将在后续单双级压缩切换的控制方法中详细介绍。
70.上述的单双级压缩切换的空调系统仅适用于单冷或单热空调,为了使其能够适用于冷暖空调,可将管路一中压缩机一comp1替换为四通阀一fv1,将管路二中压缩机二comp2替换为四通阀二fv2,所述四通阀一fv1的余下两个端口连通压缩机一comp1,所述四通阀二fv2的余下两个端口连通压缩机二comp2,如图1所示,因为空调从制冷运行切换至制热运行时,换热介质流动方向发生改变,为了确保压缩机仍能够正常运行,可通过四通阀进行换向,以保证压缩机持续正常运行,具体的换向方法将在后续单双级压缩切换的控制方法中详细介绍。
71.在本实施例中,如图1所示,压缩机一comp1的进气口通常还需要设置气液分离器一acc1,压缩机二comp2的进气口通常还需要设置气液分离器二acc2,此外,管路二中还需要设置气体截止阀svg和液体截止阀svl,其作用以及工作原理均属于空调领域的公知常识,在此不再赘述。
72.此外,本发明还提出了一种单双级压缩切换的控制方法,其采用前述的单双级压缩切换的空调系统执行以下步骤:
73.制冷运行时,获取压缩机一comp1和/或压缩机二comp2的排气压力p1;
74.若p1<p2,则关闭电磁阀二ev2和电磁阀三ev3,打开电磁阀一ev1和电磁阀四ev4,进行单级压缩循环制冷运行,如图2a所示,图中箭头方向为换热介质的流动方向,压缩机一comp1和压缩机二comp2吸入从室内机indoor流出的换热介质,压缩后送往换热器二hex冷凝,冷凝后的液态换热介质流入中压储液器mpr存储,中压储液器mpr流出的液态换热介质再进入室内机indoor蒸发吸热;
75.图2b示出了单级压缩循环制冷运行时的压焓图,图中p1表示压缩机一comp1和压缩机二comp2的吸入从室内机indoor流出的换热介质,p2表示吸入的换热介质受压缩机一comp1和压缩机二comp2压缩,p3表示压缩后的换热介质受换热器二hex冷凝,p4表示冷凝后的液态换热介质在室内机indoor中减压、蒸发;
76.若p1≥p2,则关闭电磁阀一和电磁阀四,打开电磁阀二和电磁阀三,进行双级压缩循环制冷运行,如图3a所示,图中箭头方向为换热介质的流动方向,此时,管路一为高压循
环管路,管路二为低压循环管路,压缩机一comp1吸入换热介质,压缩后送往换热器二hex冷凝,接着经过节流装置二exv节流后灌注入中压储液器mpr,在中压储液器mpr中与低压循环管路中的气态换热介质混合进行热交换以及气液分离,最后仅将气态换热介质从中压储液器mpr中排出并吸入压缩机一comp1进行压缩,压缩机二comp2吸入从室内机indoor流出的换热介质,压缩后送往中压储液器mpr,在中压储液器mpr中与高压循环管路中的液态换热介质混合进行换热以及气液分离,然后排出液态换热介质输送到室内机indoor,在室内机indoor中经过节流装置一减压和换热器一蒸发后返回压缩机二comp2,由于压缩机一comp1吸入的是中压储液器mpr中的低温气态换热介质,因此其排气温度不会很高,不会触发空调降频保护,更不会出现保护性停机,故而在室外高温制冷等严苛条件下仍能够平稳运行,确保制冷能力不下降,有效满足用户的制冷需求;
77.图3b示出了双级压缩循环制冷运行时的压焓图,图中p1表示压缩机二comp2的吸入从室内机indoor流出的换热介质,p2表示吸入的换热介质受压缩机二comp2压缩,p3表示压缩后的换热介质被灌注到中压储液器mpr与高压循环管路中的液态换热介质混合进行换热以及气液分离,并只排出液态换热介质输送到室内机indoor,p4表示液态换热介质在室内机indoor中减压、蒸发;p5表示压缩机一comp1的吸入从中压储液器mpr流出的气态换热介质,p6表示吸入的换热介质受压缩机一comp1压缩,p7表示压缩后的换热介质受换热器二hex冷凝,p8表示冷凝后的换热介质经过节流装置二exv减压后灌注入中压储液器mpr内。
78.在本实施例中,为了保持中压储液器mpr内的换热平衡,可以根据如下所示的算式,求出高压循环管路和低压循环管路中的换热介质循环量比:
79.g_high:g_low=(h_p2

h_p3):(h_p5

h_p8)
ꢀꢀꢀꢀꢀꢀꢀ
(式1)
80.g_high:高压循环管路中换热介质循环量
81.g_low:低压循环管路中换热介质循环量
82.h_尾标:各点的换热介质比焓。
83.在本实施例中,p2为空调制冷运行时进行单双级压缩切换的压缩机排气压力阈值,优选的,p2=3.70mpa,本发明实施例的单双级压缩切换的控制方法根据压缩机一comp1和/或压缩机二comp2的排气压力p1进行单级压缩制冷循环运行和双级压缩制冷循环运行的切换,当空调处于室外高温制冷等严苛条件下时,空调进行双级压缩制冷循环运行,以确保制冷效果不下降,充分满足用户的制冷需求,反之,则空调进行单级压缩制冷循环运行即可满足用户的制冷需求。
84.在本实施例中,所述单双级压缩切换的控制方法还包括:
85.单级压缩循环制冷运行时,进行如下的控制:
86.1、控制压缩机一comp1和压缩机二comp2的进气压力恒定,压缩机一comp1和压缩机二comp2的频率上升则其进气压力下降,压缩机一comp1和压缩机二comp2的频率下降则进气压力上升,因此一边检测其进气压力一边进行压缩机一comp1和压缩机二comp2的频率控制,通过控制压缩机一comp1和压缩机二comp2的进气压力恒定来确保压缩机一comp1和压缩机二comp2的频率稳定,从而使空调稳定的制冷运行,满足用户的制冷需求;
87.2、控制所述节流装置二exv的开度处于最大位置,这样设计,可确保空调稳定的制冷运行,有效满足用户的制冷需求。
88.3、根据换热器一出口的过热度控制节流装置一的开度,减小节流装置一的开度则
换热器一出口的过热度上升,反之则换热器一出口的过热度下降,因此一边检测换热器一出口的过热度、一边控制节流装置一的开度,通过控制节流装置一的开度恒定来使换热器一出口的过热度恒定,从而使空调稳定的制冷运行,满足用户的制冷需求。
89.双级压缩循环制冷运行时,进行如下的控制:
90.1、控制压缩机二comp2的进气压力恒定,压缩机二comp2的频率上升则其进气压力下降,压缩机二comp2的频率下降则进气压力上升,因此一边检测其进气压力一边进行压缩机二comp2的频率控制,通过控制压缩机二comp2的进气压力恒定来确保压缩机二comp2的频率稳定,从而使空调在室外高温制冷等严苛条件下稳定的制冷运行,制冷能力不下降,有效满足用户的制冷需求。
91.2、所述压缩机一comp1的频率hz_high和压缩机二comp2的频率hz_low满足下列关系:
92.以压缩机二comp2的频率为基准,根据式(1)、式(2)、式(3)计算压缩机一的频率;
93.设定各压缩机的内容积为r,则根据循环量(式1)算出的频率如下所示:
94.hz_high=g_high/(ρ_high
×
r)
ꢀꢀꢀꢀꢀ
式(2)
95.hz_low=g_low/(ρ_low
×
r)
ꢀꢀꢀꢀꢀꢀꢀꢀ
式(3)
96.根据式(1)、式(2)、式(3)得到hz_high=hz_low
×
(ρ_low/ρ_high)
×
(h_p2

h_p3)/(h_p5

h_p8),式中,ρ_low是压缩机二comp2的进气口处的换热介质密度,ρ_high是压缩机一comp1的进气口处的换热介质密度,h_p2是压缩机二comp2的排气口处的换热介质比焓,h_p3是中压储液器mpr的出液端口处的换热介质比焓,h_p5是压缩机一comp1的进气口处的换热介质比焓,h_p8是中压储液器mpr的进液端口处的换热介质比焓,所述压缩机一的频率hz_high和压缩机二的频率hz_low满足上述关系式可确保空调在室外高温制冷等严苛条件下稳定的制冷,制冷能力不下降,有效满足用户的制冷需求。
97.3、根据压缩机一comp1的压缩比控制节流装置二exv的开度,节流装置二exv的开度减小则压缩机一comp1的压缩比升高,节流装置二exv的开度增大则压缩机一comp1的压缩比降低,因此一边检测压缩机一comp1的压缩比一边控制节流装置二exv的开度,通过控制节流装置二exv的开度恒定来保证压缩机一comp1的压缩比恒定,从而使空调在室外高温制冷等严苛条件下稳定的制冷运行,制冷能力不下降,有效满足用户的制冷需求。
98.4、根据换热器一出口的过热度控制节流装置一的开度,减小节流装置一的开度则换热器一出口的过热度上升,反之则换热器一出口的过热度下降,因此一边检测换热器一出口的过热度、一边控制节流装置一的开度,通过控制节流装置一的开度恒定来使换热器一出口的过热度恒定,从而使空调稳定的制冷运行,满足用户的制冷需求。
99.在本实施例中,中压储液器mpr位于中压或者高压侧,因此其内存储的冷媒密度高于低压侧,故而中压储液器mpr的尺寸相较于既往的储液器,具有体型更小的优点。
100.制热运行时,获取压缩机一comp1和/或压缩机二comp2的进气压力p3;
101.若p3>p4,则关闭电磁阀二ev2和电磁阀三ev3,打开电磁阀一ev1和电磁阀四ev4,空调进行单级压缩循环制热运行,如图4a所示,图中箭头方向为换热介质的流动方向,压缩机一comp1和压缩机二comp2吸入从换热器二hex蒸发流出的气态换热介质,压缩后送往室内机indoor冷凝,冷凝后的液态换热介质流入中压储液器mpr存储,中压储液器mpr流出的液态换热介质再进入换热器二hex蒸发吸热;
102.图4b示出了单级压缩循环制热运行时的压焓图,图中p1表示压缩机一comp1和压缩机二comp2的吸入从换热器二hex蒸发流出的换热介质,p2表示吸入的换热介质受压缩机一comp1和压缩机二comp2压缩,p3表示压缩后的换热介质受室内机indoor冷凝,冷凝后的液态换热介质流入中压储液器mpr存储,p4表示中压储液器mpr流出的液态换热介质经过节流装置二减压后进入换热器二hex蒸发吸热;
103.若p3≤p4,则关闭电磁阀一ev1和电磁阀四ev4,打开电磁阀二ev2和电磁阀三ev3,空调进行双级压缩循环制热运行,如图5a所示,图中箭头方向为换热介质的流动方向,此时,管路一为低压循环管路,管路二为高压循环管路,压缩机二comp2吸入换热介质,压缩后送往室内机indoor冷凝,接着经过节流装置一节流后灌注入中压储液器mpr,在中压储液器mpr中与低压循环管路中的气态换热介质混合进行热交换以及气液分离,最后仅将气态换热介质从中压储液器mpr中排出并吸入压缩机二comp2进行压缩,压缩机一comp1吸入从换热器二hex蒸发流出的气态换热介质,压缩后送往中压储液器mpr,在中压储液器mpr中与高压循环管路中的液态换热介质混合进行换热以及气液分离,然后排出液态换热介质经过节流装置二exv减压和换热器二hex蒸发后返回压缩机一comp1,由于压缩机二comp2吸入的是中压储液器mpr中的低温气态换热介质,因此其排气温度不会很高,不会触发空调降频保护,更不会出现保护性停机,故而在室外低温制热等严苛条件下仍能够平稳运行,确保制热能力不下降,而且防止了室内机indoor的出风温度过低,有效满足用户的制热需求。
104.图5b示出了双级压缩循环制热运行时的压焓图,图中p1表示压缩机一comp1的吸入从换热器二hex蒸发流出的气态换热介质,p2表示吸入的换热介质受压缩机一comp1压缩,p3表示压缩后的换热介质被灌注到中压储液器mpr与高压循环管路中的液态换热介质混合进行换热以及气液分离,p4表示中压储液器mpr排出液态换热介质经过节流装置二exv减压后进入换热器二hex内蒸发;p5表示压缩机二comp2的吸入从中压储液器mpr流出的气态换热介质,p6表示吸入的换热介质受压缩机二comp2压缩,p7表示压缩后的换热介质被送往室内机indoor冷凝,p8表示冷凝后的换热介质经过节流装置一减压后灌注入中压储液器mpr内。
105.在本实施例中,为了保持中压储液器mpr内的换热平衡,可以根据如下所示的算式,求出高压循环管路和低压循环管路中的换热介质循环量比:
106.g_high:g_low=(h_p2

h_p3):(h_p5

h_p8)
ꢀꢀꢀꢀꢀꢀꢀꢀ
(式4)
107.g_high:高压循环管路中换热介质循环量
108.g_low:低压循环管路中换热介质循环量
109.h_尾标:各点的换热介质比焓。
110.在本实施例中,p4为空调制热运行时进行单双级压缩切换的压缩机进气压力阈值,优选的,p4=0.6mpa,发明实施例的单双级压缩切换的控制方法根据压缩机一comp1和/或压缩机二comp2的进气压力p3进行单级压缩循环制热运行和双级压缩循环制热运行的切换,当空调处于室外低温制热等严苛条件下时,空调进行双级压缩制热循环运行,以确保制热效果不下降,防止室内机indoor的出风温度过低,充分满足用户的制热需求,反之,则空调进行单级压缩制热循环运行即可满足用户的制热需求。
111.在本实施例中,所述单双级压缩切换的控制方法还包括:
112.单级压缩循环制热运行时,进行如下的控制:
113.1、控制压缩机一comp1和压缩机二comp2的排气压力恒定,压缩机一comp1和压缩机二comp2的频率上升则其排气压力上升,压缩机一comp1和压缩机二comp2的频率下降则排气压力下降,因此一边检测其排气压力一边进行压缩机一comp1和压缩机二comp2的频率控制,通过控制压缩机一comp1和压缩机二comp2的排气压力恒定来确保压缩机一comp1和压缩机二comp2的频率稳定,从而使空调稳定的制热运行,满足用户的制热需求。
114.2、根据换热器一出口的过冷度控制节流装置一的开度,节流装置一的开度减小后,室内机中冷媒循环量下降,换热器一出口的过冷度上升,反之,室内机中冷媒循环量上升,换热器一出口的过冷度下降,因此通过检测换热器一出口的过冷度进行节流装置一的开度的控制可使各室内机间的过冷度维持在相同程度,并且能够控制压缩机一comp1的压缩比恒定,从而使空调稳定的制热运行,有效满足用户的制热需求。
115.3、根据换热器二出口的过热度控制节流装置二exv的开度,节流装置二exv的开度减小后,换热器二出口的过热度上升,反之,换热器二出口的过热度下降,因此一边检测换热器二出口的过热度,一边控制节流装置二exv的开度,通过控制节流装置二exv的开度恒定使换热器二出口的过热度恒定,从而使空调稳定的制热运行,有效满足用户的制热需求。
116.双级压缩循环制热运行时,进行如下的控制:
117.1、控制压缩机二comp2的排气压力恒定,压缩机二comp2的频率上升则其排气压力上升,压缩机二comp2的频率下降则排气压力下降,因此一边检测其排气压力一边进行压缩机二comp2的频率控制,通过控制压缩机二comp2的排气压力恒定来确保压缩机二comp2的频率稳定,从而使空调在室外低温制热等严苛条件下稳定的制热运行,制热能力不下降,有效满足用户的制热需求。
118.2、所述压缩机一comp1的频率hz_low和压缩机二comp2的频率hz_high满足下列关系:
119.以压缩机二comp2的频率为基准,根据式(4)、式(5)、式(6)计算压缩机一的频率;
120.设定各压缩机的内容积为r,则根据循环量(式4)算出的频率如下所示:
121.hz_high=g_high/(ρ_high
×
r)
ꢀꢀꢀꢀꢀ
式(5)
122.hz_low=g_low/(ρ_low
×
r)
ꢀꢀꢀꢀꢀꢀꢀ
式(6)
123.根据式(4)、式(5)、式(6)得到hz_low=hz_high
×
(ρ_high/ρ_low)
×
(h_p5

h_p8)/(h_p2

h_p3),式中,ρ_low是压缩机一comp1的进气口处的换热介质密度,ρ_high是压缩机二comp2的进气口处的换热介质密度,h_p2是压缩机一comp1的排气口处的换热介质比焓,h_p3是中压储液器mpr的出液端口处的换热介质比焓,h_p5是压缩机二comp2的进气口处的换热介质比焓,h_p8是中压储液器mpr的进液端口处的换热介质比焓,所述压缩机二comp2的频率hz_high和压缩机一comp1的频率hz_low满足上述关系式可确保空调在室外低温制热等严苛条件下稳定的制热,制热能力不下降,有效满足用户的制热需求。
124.3、根据换热器一出口的过冷度控制节流装置一的开度,节流装置一的开度减小后,室内机中冷媒循环量下降,换热器一出口的过冷度上升,反之,室内机中冷媒循环量上升,换热器一出口的过冷度下降,因此通过检测换热器一出口的过冷度进行节流装置一的开度的控制可使各室内机间的过冷度维持在相同程度,并且能够控制压缩机一comp1的压缩比恒定,从而使空调稳定的制热运行,有效满足用户的制热需求。
125.4、根据换热器二出口的过热度控制节流装置二exv的开度,节流装置二exv的开度
减小后,换热器二出口的过热度上升,反之,换热器二出口的过热度下降,因此一边检测换热器二出口的过热度,一边控制节流装置二exv的开度,通过控制节流装置二exv的开度恒定使换热器二出口的过热度恒定,从而使空调稳定的制热运行,有效满足用户的制热需求。
126.虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献