一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

基于频率梳的宽带多路介电常数测量系统的制作方法

2022-03-16 15:21:45 来源:中国专利 TAG:


1.本发明涉及智能检测技术领域,尤其涉及一种基于频率梳的宽带多路介电常数测量系统。


背景技术:

2.随着半导体制程从um到nm的不断缩小,晶体管数量越来越多,电路器件截止频率也不断升高,芯片以及其模组从而得到了快速发展,与此同时,对半导体材料的性能要求也越来约高,其中用于描述外部电场和电介质相互作用的介电常数需要格外的关注。在电路设计中,精确的材料属性对于仿真到实测整个环节都具有很重要的指导意义,介电常数细微的变化都会对器件的功能产生十分严重的影响,没有材料精确的介电常数值,就无法设计出符合技术指标的器件。
3.现阶段的相关技术中,对于介电常数的测量大多是基于矢量网络分析仪,但其昂贵的价格限制了这类传感器的应用。随着技术发展,相关技术提出了多种基于干涉结构的介电常数传感器系统,该系统主要是通过传输线法与干涉测量法相结合,将复杂的s参数测量问题转化为测量直流问题,简化了测量系统,但测量效率低,电路复杂度高,对电路的对称性要求高,随着频率的变化,宽带较大时容易失效,可靠性差。


技术实现要素:

4.针对以上相关技术的不足,本发明提出一种基于频率梳的宽带多路介电常数测量系统,其检测效率高、灵敏度和测量精度高、结构简单成本低,且可靠性好。
5.为了解决上述技术问题,本发明实施例提供了一种基于频率梳的宽带多路介电常数测量系统,包括:
6.直接数字式频率合成模块,用于产生一个单频点信号;
7.功率放大器,所述功率放大器的输出入连接至所述直接数字式频率合成模块的输出端,用于将所述单频点信号放大;
8.频率梳电路,所述频率梳电路的输入端连接至所述功率放大器的输出端,用于将放大后的所述单频点信号生成频率梳信号;
9.第一n路宽带射频开关,所述第一n路宽带射频开关的控制端连接至所述频率梳电路的输出端,其中,n为大于或等于2的正整数;
10.第二n路宽带射频开关,所述第二n路宽带射频开关的输出端与所述第一n路宽带射频开关的输出端连接形成n条通路;
11.敏感元件单元,所述敏感元件单元包括n个且尺寸不同,每条通路上串联设置一个所述敏感元件单元,用于盛放待测元件;
12.偏置电路模块,所述偏置电路模块分别与所述第一n路宽带射频开关的控制端和所述第二n路宽带射频开关的控制端连接,用于控制 n条通路之间的切换,以使频率梳信号由不同的通路并经过该通路的所述敏感元件单元后输出;以及,
13.信号处理单元,所述信号处理单元的输入端连接至所述第二n路宽带射频开关的控制端,用于接收经过不同的所述敏感元件单元后输出的频率梳信号,并对该频率梳信号进行快速傅里叶变换处理,以得到待测元件的介电常数。
14.优选的,所述频率梳电路包括隔直电容、输入匹配电路单元、低通匹配电路单元、谐调电路单元以及二极管;
15.所述隔直电容的第一端作为所述频率梳电路的输入端;
16.所述输入匹配电路单元包括扼流线圈、旁路电容和电阻;所述扼流线圈的第一端连接至所述隔直电容的第二端,所述扼流线圈的第二端经串联的所述电阻后连接至接地;所述旁路电容与所述电阻并联;
17.所述低通匹配电路单元包括第一电容和第一电感;所述第一电容的第一端连接至所述隔直电容的第二端,所述第一电容的第二端连接至接地;所述第一电感的第一端连接至所述隔直电容的第二端;
18.所述谐调电路单元包括调谐电容和储能电感;所述调谐电容的第一端连接至所述第一电感的第二端,所述调谐电容的第二端连接至接地,所述储能电感的第一端连接至所述第一电感的第二端;
19.所述二极管的正极端连接至接地,所述二极管的负极端连接至所述储能电感的第二端,并作为所述频率梳电路的输出端。
20.优选的,所述敏感元件单元包括高频介质板、贴合于所述高频介质板上的特征阻抗为50ω微带线、以及设置于所述微带线中轴线位置的用于盛放待测元件的样品容器。
21.优选的,所述样品容器为聚二甲基硅氧烷制成。
22.优选的,信号处理单元包括高速示波器和与所述高速示波器通讯连接的计算机;
23.所述高速示波器的输入端连接至所述第二n路宽带射频开关的控制端,用于接收经过不同的所述敏感元件单元后输出的频率梳信号,并转化为对应的波形图数据;
24.所述计算机用于接收所述波形图数据并通过快速傅里叶变换分析,以获得放置于所述敏感元件单元的所述待测元件所引起的幅度和相位变化量,从而拟合出所述待测元件的介电常数。
25.优选的,所述功率放大器的型号为adpa1105 40w gan。
26.优选的,所述第一n路宽带射频开关和所述第二n路宽带射频开关均为型号为adrf5042的非反射式sp4t开关芯片。
27.优选的,所述二级管为mp4023阶跃恢复二极管。
28.优选的,n=3。
29.优选的,所述高速示波器的输入端通过同轴电缆连接至所述第二 n路宽带射频开关的控制端。
30.与现有技术相比,本发明的基于频率梳的宽带多路介电常数测量系统中,利用两个n路宽带射频开关形成n路通路,每条通路上串联设置一个尺寸大小不同的敏感元件单元,用于盛放待测元件,通过设置频率梳电路作为信号源生成一个频率梳信号,偏置电路模控制n条通路之间的切换,以使频率梳信号由不同的通路并经过该通路的所述敏感元件单元后输出,再由信号处理单元接收经过不同的所述敏感元件单元后输出的频率梳信号,并对该频率梳信号进行快速傅里叶变换处理,利用频率梳信号宽带的特性,可以获得待测元
件所引起的s21 幅度和相位的变化量,从而拟合出介电常数。因信号源输出为频率梳信号,避免了使用扫频源,不仅结构简单成本低,且检测效率更高;通过n路宽带射频开关切换敏感元件单元,提升了整体测量系统的灵敏度,改善了测量精度,同时避免了干涉型传感器测量系统不对称造成的误差,有效提高了测量准确度;将测量s参数等复杂的问题转化为测量信号的幅频特性,简化了结构,有效降低了成本。
附图说明
31.下面结合附图详细说明本发明。通过结合以下附图所作的详细描述,本发明的上述或其他方面的内容将变得更清楚和更容易理解。附图中:
32.图1为相关技术中的干涉型介电常数传感器测量系统结构框图;
33.图2本发明实施例提供的基于频率梳的宽带多路介电常数测量系统的电路结构示意框图;
34.图3为图2中频率梳信号生成电路的电路图;
35.图4为本发明实施例提供的基于频率梳的宽带多路介电常数测量系统使用时的谐波平衡仿真频率梳信号示意图;
36.图5为本发明实施例提供的基于频率梳的宽带多路介电常数测量系统中的敏感元件电路结构图;
37.图6为本发明实施例提供的基于频率梳的宽带多路介电常数测量系统的系统仿真结果与德拜方程计算的理论值的对比图。
具体实施方式
38.下面结合附图详细说明本发明的具体实施方式。
39.在此记载的具体实施方式/实施例为本发明的特定的具体实施方式,用于说明本发明的构思,均是解释性和示例性的,不应解释为对本发明实施方式及本发明范围的限制。除在此记载的实施例外,本领域技术人员还能够基于本技术权利要求书和说明书所公开的内容采用显而易见的其它技术方案,这些技术方案包括采用对在此记载的实施例的做出任何显而易见的替换和修改的技术方案,都在本发明的保护范围之内。
40.以下各实施例的说明是参考附加的图式,用以例示本发明可用以实施的特定实施例。本发明所提到的方向用语,例如上、下、前、后、左、右、内、外、侧面等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本发明,而非用以限制本发明。
41.如图1所示,相关技术中的干涉型介电常数传感器测量系统包括宽带扫频源001、功分器002、传感器路径、参考路径、开关阵列009、无源混频器010。传感器路径和参考路径相同,传感器路径为两个隔离器(003和005)和一个用于放置待测样本的敏感元件004串联;参考路径为两个隔离器(006和008)和一个用于放置待测样本的敏感元件007串联。最后通过读取数字电压表011的直流电压值反推出介电常数。
42.当该传感器测量系统工作在空载状态时候,传感器路径连接无源混频器010的rf端口,参考路径连接无源混频器010的lo端口,输出直流电压可表示为:
43.44.其中km为无源混频器的转换增益,a
rf
、a
lo
分别表示传感器路径和参考路径的幅度值。同理,当放置待测样本时候,
[0045][0046]
其中a'
rf
表示加入待测样本后传感器路径的信号幅度,表示传感器路径和参考路径两路信号的相位差。
[0047]
通过切换开关矩阵009,使得传感器支路连接无源混频器010的 lo端口,参考支路连接无源混频器010的rf端口,可以得到输出直流电压为:
[0048][0049]
因此可得待测样本的介电常数为:
[0050]
ε'
∝vdc1
[0051][0052]
最后,通过数据拟合可以得到电压值与介电常数之间的函数关系。
[0053]
但是,相关技术中,该干涉型介电常数传感器测量系统主要是通过传输线法与干涉测量法相结合,将复杂的s参数测量问题转化为测量直流问题,简化了测量系统。但该干涉型介电常数传感器测量系统主要有以下几点不足:
[0054]
(1)测量效率较低,该系统使用的是宽带的扫频源,其本质上是把宽带问题转化为一个个单独的频点进行扫描。
[0055]
(2)电路复杂度高,测量介电常数虚部主要是通过切换无源混频器端口的连接,所以需要4个开关芯片以及相应的供电、使能、控制电路。
[0056]
(3)电路需要对称性好,理想状态下传感器支路和参考支路在空载情况下完全对称,但在实际情况下很难做到。再加上盛放待测样本的容器不可避免的存在误差,精度难以控制。
[0057]
(4)随着频率的升高,干涉型介电常数传感器测量系统的灵敏度发生变化,在低频状态下,测量所需的样本容量大,但在高频情况下,同样的样本容量可能会产生谐振点,从而使得干涉型介电常数传感器测量系统失效。
[0058]
而针对这一宽带的问题最好的解决方法是使用分段测量的方式。
[0059]
基于此,本发明实施例提供了一种基于频率梳的宽带多路介电常数测量系统。
[0060]
参图2所示,本发明实施例提供了一种基于频率梳的宽带多路介电常数测量系统100包括:直接数字式频率合成模块1,功率放大器2,频率梳电路3,第一n路宽带射频开关4,第二n路宽带射频开关5,敏感元件单元6,偏置电路模块7,信号处理单元8。
[0061]
所述直接数字式频率合成模块1(direct digital synthesizer,dds),用于产生一个单频点信号。由直接数字式频率合成模块1内部fpga 控制输出一个1ghz的信号,dds技术作为信号源技术,其具有较好的相位噪声。
[0062]
所述功率放大器2的输出入连接至所述直接数字式频率合成模块 1的输出端,用于将所述单频点信号放大。
[0063]
本实施方式中,所述功率放大器优选为型号为adpa1105 40wgan的功率放大器,
其带宽为0.9~1.6ghz,且具有较好的功率附加效率(pae),当输入信号pin=19dbm时,pae=60%。优选市面上成熟的芯片产品,降低了研发芯片的成本,同时系统可靠性提升,可以避免不必要的问题。信号通过功率放大器2放大后,输入到频率梳电路 3,生成如图4所示的多谐波的频率梳信号。
[0064]
所述频率梳电路3(comb generator)作为信号源,其输入端连接至所述功率放大器2的输出端,用于将放大后的所述单频点信号生成频率梳信号。因信号源输出为频率梳信号,避免了使用扫频源,检测效率更高。
[0065]
请同时结合图3所示,具体的,本实施方式中,所述频率梳电路 3包括隔直电容cd、输入匹配电路单元31、低通匹配电路单元32、谐调电路单元33以及二极管d1。
[0066]
所述隔直电容cd的第一端作为所述频率梳电路3的输入端。
[0067]
所述输入匹配电路单元31包括扼流线圈lc、旁路电容cb和电阻rb。所述扼流线圈lc的第一端连接至所述隔直电容cd的第二端,所述扼流线圈lc的第二端经串联的所述电阻rb后连接至接地,所述旁路电容cb与所述电阻rb并联。
[0068]
所述低通匹配电路单元32包括第一电容cm和第一电感lm;所述第一电容cm的第一端连接至所述隔直电容cd的第二端,所述第一电容容cm的第二端连接至接地。所述第一电感lm的第一端连接至所述隔直电容cd的第二端。
[0069]
所述谐调电路单元33包括调谐电容c
t
和储能电感l;所述调谐电容c
t
的第一端连接至所述第一电感lm的第二端,所述调谐电容c
t
的第二端连接至接地,所述储能电感l的第一端连接至所述第一电感 lm的第二端。
[0070]
所述二极管d1的正极端连接至接地,所述二极管d1的负极端连接至所述储能电感l的第二端,并作为所述频率梳电路3的输出端。
[0071]
利用二极管d1的非线性特点,在负载端34可以看到频域上为梳状的频谱即为频率梳信号,如图4所示。
[0072]
继续结合图3,所述频率梳电路3优选使用ads仿真软件进行分析。在仿真中使用信号源30代指直接数字式频率合成模块1和功率放大器2,信号首先输入到隔直电容cd,为使激励信号可以有效地加载到二极管d1上,使用第一电容cm和第一电感lm构成低通输入匹配网络。通过并联调谐电容c
t
和串联储能电感l,实现对二极管d1快速充放电。
[0073]
本实施方式中,所述二级管d1优选为mp4023阶跃恢复二极管,利用其等效为电压控制等效非线性电容的特点,实现快速的充放电特性。在ads仿真软件中使用谐波平衡仿真的方式,可以在负载端得到的频谱如图4所示,结果输出信号中12ghz的分量,其功率大于0 dbm。
[0074]
所述第一n路宽带射频开关4的控制端连接至所述频率梳电路3 的输出端,其中,n为大于或等于2的正整数。
[0075]
所述第二n路宽带射频开关5的输出端与所述第一n路宽带射频开关4的输出端连接形成n条通路。
[0076]
本实施方式中,具体的,取n=3为例进行说明。即使用了两个三路宽带射频开关形成三条通路:通路1、通路2、通路3。
[0077]
考虑到不同频率下所需的样品体积不同,有必要对宽带问题进行分段处理。传输线法测量介电常数中,敏感元件的精度与待测元件的体积成正比,在低频时候为了达到所
需的测量灵敏度,所需的样品体积较大,但是到了高频时候,随着微带线与待测元件所造成色散效应较为显著,移相效果较为明显,所需的介质体积较小,并且较大体积的样品容易使得s21产生谐振点,使得测量系统失效。因此,使用宽带射频开关切换,通过偏置电路7控制,在n条装有不同体积待测元件的敏感元件单元6的通路之间切换。
[0078]
更优的,本实施方式中,所述第一n路宽带射频开关4和所述第二n路宽带射频开关5均优选为型号为adrf5042的非反射式sp4t 开关芯片。该开关芯片频率范围覆盖100mhz~44ghz,满足系统设计要求。
[0079]
通过开关结构切换敏感元件单元6,提升了整体基于频率梳的宽带多路介电常数测量系统100(传感器)的灵敏度,且避免了干涉型传感器不对称造成的误差,测量精度高。
[0080]
所述敏感元件单元6包括n个且尺寸不同,每条通路上串联设置一个所述敏感元件单元6,用于盛放待测元件。即本实施方式中设置三个敏感元件单元6。
[0081]
具体的,本实施方式中,请同时结合图5所示,所述敏感元件单元6包括高频介质板61、贴合于所述高频介质板61上的特征阻抗为 50ω微带线62、以及设置于所述微带线62中轴线位置的用于盛放待测元件的样品容器63。更优的,所述样品容器63为聚二甲基硅氧烷制成。
[0082]
具体为:在三条通路路径上放置不同尺寸的敏感元件单元6(高频介质板61和样品容器63),以适应不同频率下测量的要求,最大化系统的灵敏度。选择合适的高频介质板61的材料,首选通过计算得到特征阻抗为50ω的微带线62线宽。在微带线62中轴线位置放置一个由聚二甲基硅氧烷(pdms)构成的样品容器63。
[0083]
敏感元件单元6采用了传输线法的测量原理,微带线62上加载了待测元件后,因为待测元件小于空气的介电常数,改变传输线对地电场强度,等效于改变了传输线的对地电容值,因此传输线的传输特性 s21的相位产生延迟。考虑到待测元件的介电常数可能存在较大的虚部,因为介电常数的虚部是表示了介电驰豫的程度,因此s21的幅度值产生了衰减,可用公式表示:
[0084][0085]
其中,a为幅度、ω为频率、为相位,t为时间,a
rf
为对应通路上的敏感元件单元6的初始幅度,为对应通路上的敏感元件单元 6的初始相位,a
rf-δa为对应通路上的敏感元件单元6加上待测元件后的幅度,为对应通路上的敏感元件单元6加上待测元件后的相位。
[0086]
因此可以通过s21幅度和相位的变化量反推出介电常数的实部与虚部。
[0087]
本发明中,使用频率梳电路3生成频率梳信号,有别于使用干涉型传感器中的扫频源,检测效率更高。
[0088]
所述偏置电路模块7分别与所述第一n路宽带射频开关4的控制端和所述第二n路宽带射频开关5的控制端连接,用于控制n条通路之间的切换,以使频率梳信号由不同的通路并经过该通路的所述敏感元件单元后输出。
[0089]
通过偏置电路模块7,控制开关芯片(所述第一n路宽带射频开关4和所述第二n路宽带射频开关5)ls、v1、v2引脚的电压值,实现多路之间的切换,其控制电压可由表1中所示。
[0090]
表1 adrf5042开关芯片控制真值表
[0091]
lsv1v2rf通路频率低低低通路11-5ghz低高低通路25-9ghz低低高通路39-12ghz
[0092]
通过偏置电路模块7选择合适的频段后,信号输入到信号处理单元8,实现对测量数据的处理。
[0093]
通过第一n路宽带射频开关4和所述第二n路宽带射频开关5切换敏感元件单元6使本发明有别于其他基于传输线法测量介电常数的传感器。考虑到随着频带的加宽,同样尺寸的待测元件很难兼顾低频到高频的灵敏度,因此通过第一n路宽带射频开关4和所述第二n路宽带射频开关5将一个超宽带问题分解为一个个较窄的宽带进行处理,可以更好的提高基于频率梳的宽带多路介电常数测量系统(传感器)的检测精度。例如,使用通路1的通路处理低频段检测,可使用 3d打印的容器粘连在微带线上,到了高频可使用pdms制作微流道器件粘连在通路3的通路上。
[0094]
所述信号处理单元8的输入端连接至所述第二n路宽带射频开关 5的控制端,用于接收经过不同的所述敏感元件单元6后输出的频率梳信号,并对该频率梳信号进行快速傅里叶变换处理,以得到待测元件的介电常数。
[0095]
具体的,所述信号处理单元8包括高速示波器81和与所述高速示波器81通讯连接的计算机82。计算机82通过网口与高速示波器81 通信。
[0096]
所述高速示波器81的输入端连接至所述第二n路宽带射频开关5 的控制端,用于接收经过不同的所述敏感元件单元6后输出的频率梳信号,并转化为对应的波形图数据。即通过偏置电路模块7选择合适的频段后,信号输入到高速示波器81中,并通过网口与计算机82通信,在计算机82端实现对测量数据的处理。
[0097]
所述计算机82用于接收所述波形图数据并通过快速傅里叶变换(fft)处理分析所述波形图数据,以获得放置于所述敏感元件单元6 的所述待测元件所引起的幅度和相位变化量,从而拟合出所述待测元件的介电常数。
[0098]
更优的,所述高速示波器81的输入端通过同轴电缆连接至所述第二n路宽带射频开关5的控制端。
[0099]
信号在通过敏感元件单元6后,优选通过一段同轴电缆连接到高速示波器81中,从而减少损耗和阻抗失配。高速示波器81通过机器自带网口与计算机82中的matlab连接,在计算机82端对信号进行快速傅里叶变换后获得其幅频特性。计算机82通过fft计算出待测样品的引起的幅度和相位变化量即可反演出介电常数的实部与虚部,实现传输线法测量原理和信号处理电路的衔接工作,如图6所示,为基于频率梳的宽带多路介电常数测量系统的系统仿真结果与德拜方程计算的理论值的对比图。将测量s参数这类复杂的问题转化为测量信号的幅频特性,简化了基于频率梳的宽带多路介电常数测量系统100(传感器),有效的降低成本。
[0100]
与现有技术相比,本发明的基于频率梳的宽带多路介电常数测量系统中,利用两个n路宽带射频开关形成n路通路,每条通路上串联设置一个尺寸大小不同的敏感元件单元,用于盛放待测元件,通过设置频率梳电路作为信号源生成一个频率梳信号,偏置电路模
控制n条通路之间的切换,以使频率梳信号由不同的通路并经过该通路的所述敏感元件单元后输出,再由信号处理单元接收经过不同的所述敏感元件单元后输出的频率梳信号,并对该频率梳信号进行快速傅里叶变换处理,利用频率梳信号宽带的特性,可以获得待测元件所引起的s21 幅度和相位的变化量,从而拟合出介电常数。因信号源输出为频率梳信号,避免了使用扫频源,不仅结构简单成本低,且检测效率更高;通过n路宽带射频开关切换敏感元件单元,提升了整体测量系统的灵敏度,改善了测量精度,同时避免了干涉型传感器测量系统不对称造成的误差,有效提高了测量准确度;将测量s参数等复杂的问题转化为测量信号的幅频特性,简化了结构,有效降低了成本。
[0101]
需要说明的是,以上参照附图所描述的各个实施例仅用以说明本发明而非限制本发明的范围,本领域的普通技术人员应当理解,在不脱离本发明的精神和范围的前提下对本发明进行的修改或者等同替换,均应涵盖在本发明的范围之内。此外,除上下文另有所指外,以单数形式出现的词包括复数形式,反之亦然。另外,除非特别说明,那么任何实施例的全部或一部分可结合任何其它实施例的全部或一部分来使用。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献