一种残膜回收机防缠绕挑膜装置的制 一种秧草收获机用电力驱动行走机构

透明传感检测设备、夹层玻璃以及透明传感检测设备的制造方法与流程

2022-02-25 18:06:28 来源:中国专利 TAG:


本发明涉及透明传感检测设备、夹层玻璃以及透明传感检测设备的制造方法。


背景技术:

公知有将发光二极管(led:light emitting diode)元件使用于像素的显示装置。在专利文献1中,公开了这样的显示装置中的、能够经由该显示装置识别背面侧的透明显示装置。作为相关技术,公知有在透明基材上设置微型传感器而成的透明传感检测设备。专利文献1:日本特开2006-301650号公报本技术的发明人们针对这样的透明显示装置、透明传感检测设备发现了以下的问题点。在这样的透明显示装置中,需要利用透明树脂对形成在透明基材上的led元件、微型传感器以及与它们连接的布线进行密封。这里,例如,存在因透明树脂所含的水分等而在布线产生电化学迁移,从而接近的布线彼此短路的情况。在该情况下,至少一部分的led元件、微型传感器不能正常发挥功能,因此存在作为透明显示装置、透明传感检测设备的可靠性变差的问题。以下,将“电化学迁移(electrochemical migration)”简称为“迁移(migration)”。


技术实现要素:

本发明提供具有以下[1]的结构的透明传感检测设备。
[0001]
一种透明传感检测设备,其中,具备:透明基材;微型传感器,其配置在上述透明基材上,并具有250,000μm2以下的面积;多个布线,它们与上述微型传感器连接;以及密封层,其覆盖配置在上述透明基材上的上述微型传感器以及上述多个布线,上述密封层是固化后的吸水率为1%以下的透明树脂。在本发明的一个方式的基础上,
[0002]
根据[1]记载的透明传感检测设备,其中,上述密封层与上述多个布线的剥离粘合强度为1n/25mm以上。
[0003]
根据[1]或[2]记载的透明传感检测设备,其中,上述密封层与上述透明基材的剥离粘合强度为1n/25mm以上。
[0004]
根据[1]~[3]中任一项记载的透明传感检测设备,其中,上述透明树脂是烯烃系树脂、丙烯酸系树脂以及硅系树脂的任一种。
[0005]
根据[4]记载的透明传感检测设备,其中,上述透明树脂是环烯烃聚合物或环烯烃共聚物。
[0006]
根据[4]记载的透明传感检测设备,其中,上述透明树脂是硅酮树脂。
[0007]
根据[1]~[6]中任一项记载的透明传感检测设备,其中,配置在上述透明基材上的上述多个布线中的邻接的布线彼此的间隔为3~100μm。
[0008]
根据[1]~[7]中任一项记载的透明传感检测设备,其中,施加于上述多个布线的电压均为1.5v以上。
[0009]
根据[1]~[8]中任一项记载的透明传感检测设备,其中,上述多个布线是以铜或铝为主要成分的金属。
[0010]
根据[1]~[9]中任一项记载的透明传感检测设备,其中,上述透明传感检测设备还具备在上述透明基材上针对每个像素至少配置有一个并且分别具有10,000μm2以下的面积的发光二极管元件、和与上述发光二极管元件中的各个元件分别连接的多个显示用布线,由此具有显示功能,上述发光二极管元件以及上述多个显示用布线被上述密封层覆盖。
[0011]
根据[1]~[10]中任一项记载的透明传感检测设备,其中,该透明传感检测设备搭载于汽车的窗玻璃,上述微型传感器监视车内以及车外的至少任一方。
[0012]
一种夹层玻璃,具备一对玻璃板和设置于上述一对玻璃板之间的透明传感检测设备,其中,上述透明传感检测设备具备:透明基材;微型传感器,其配置在上述透明基材上,并具有250,000μm2以下的面积;多个布线,它们与上述微型传感器连接;以及密封层,其覆盖配置在上述透明基材上的上述微型传感器以及上述多个布线,上述密封层是固化后的吸水率为1%以下的透明树脂。
[0013]
根据[12]记载的夹层玻璃,其中,使用于汽车的窗玻璃。
[0014]
根据[13]记载的夹层玻璃,其中,上述微型传感器监视车内以及车外的至少任一方。
[0015]
一种透明传感检测设备的制造方法,其中,将具有250,000μm2以下的面积的微型传感器配置在透明基材上,形成与上述微型传感器连接的多个布线,形成覆盖配置在上述透明基材上的上述微型传感器以及上述多个布线的密封层,其中,上述密封层由固化后的吸水率为1%以下的透明树脂构成。根据本发明,能够抑制布线的迁移,从而能够提供可靠性优异的透明传感检测设备。
附图说明
图1是表示第一实施方式的透明显示装置的一个例子的示意的局部俯视图。
图2是图1中的ii-ii剖切线处的剖视图。图3是表示第一实施方式的透明显示装置的制造方法的一个例子的剖视图。图4是表示第一实施方式的透明显示装置的制造方法的一个例子的剖视图。图5是表示第一实施方式的透明显示装置的制造方法的一个例子的剖视图。图6是表示第一实施方式的透明显示装置的制造方法的一个例子的剖视图。图7是表示第一实施方式的透明显示装置的制造方法的一个例子的剖视图。图8是表示第一实施方式的透明显示装置的制造方法的一个例子的剖视图。图9是表示第一实施方式的透明显示装置的制造方法的一个例子的剖视图。图10是表示第一实施方式的透明显示装置的制造方法的一个例子的剖视图。图11是表示第二实施方式的夹层玻璃的一个例子的示意的俯视图。图12是表示第三实施方式的透明显示装置的一个例子的示意的局部俯视图。图13是表示第四实施方式的透明传感检测设备的一个例子的示意的局部俯视图。图14是传感器70的示意剖视图。图15是表示例2的透明显示装置的剖视图。
具体实施方式
以下,参照附图,对应用了本发明的具体的实施方式详细地进行说明。其中,本发明并非由以下的实施方式限定。另外,为了明确说明,以下的记载以及附图被适当简化。在本说明书中,“透明显示装置”是指在所希望的使用环境下能够识别位于显示装置的背面侧的人物、背景等的视觉信息的显示装置。此外,能够识别至少在显示装置为非显示状态,即未被通电的状态下进行判定。相同地,在本说明书中,“透明传感检测设备”是指在所希望的使用环境下能够识别位于传感检测设备的背面侧的人物、背景等的视觉信息的传感检测设备。“传感检测设备”是指利用传感器能够取得各种信息的部件。在本说明书中,“透明”是指可见光的透过率为40%以上,优选为60%以上,更加优选为70%以上。另外,也可以是指透过率为5%以上且雾度值为10以下。若透过率为5%以上,则在从室内观察白天的屋外时,能够以与室内同等程度以上的亮度观察屋外,从而能够确保充分的识别性。另外,若透过率为40%以上,则即便透明显示装置的前表面侧与背面侧的亮度为同等程度,也能够实际没有问题地识别透明显示装置的背面侧。另外,若雾度值为10以下,则能够充分地确保背景的对比度。所谓“透明”,不考虑是否带有颜色,即、可以是无色透明,也可以是有色透明。此外,透过率是指通过依据iso9050的方法测定出的值(%)。雾度值是指通过依据iso14782的方法测定出的值。(第一实施方式)<透明显示装置的结构>首先,参照图1以及图2,对第一实施方式的透明显示装置的结构进行说明。图1是表示第一实施方式的透明显示装置的一个例子的示意的局部俯视图。图2是图1中的ii-ii剖切线处的剖视图。
此外,当然,图1以及图2所示的右手系xyz正交坐标方便用于说明构成要素的位置关系。通常,z轴正方向为铅垂上方,xy平面为水平面。如图1以及图2所示,本实施方式的透明显示装置具备透明基材10、发光部20、ic芯片30、布线40及密封层50。透明显示装置中的显示区域101是由多个像素构成而显示图像的区域。此外,图像包含文字。如图1所示,显示区域101由在行方向(x轴方向)以及列方向(y轴方向)排列的多个像素构成。图1示出了显示区域101的一部分,在行方向以及列方向各示出了两个像素合计四个像素。这里,一个像素pix由点划线包围示出。另外,在图1中,省略了图2所示的透明基材10以及密封层50。另外,图1是俯视图,但为了容易理解,利用点表示发光部20以及ic芯片30。<发光部20、ic芯片30以及布线40的平面配置>首先,参照图1,对发光部20、ic(integrated circuit:集成电路)芯片30以及布线40的平面配置进行说明。如图1所示,由点划线包围起来的像素pix在行方向(x轴方向)以像素间距px且在列方向(y轴方向)以像素间距py呈矩阵状配置。这里,如图1所示,各像素pix具备发光部20以及ic芯片30。即,发光部20以及ic芯片30在行方向(x轴方向)以像素间距px且在列方向(y轴方向)以像素间距py呈矩阵状配置。此外,只要在规定的方向以规定的像素间距来配置,则像素pix即发光部20的配置形式不限于矩阵状。如图1所示,各像素pix中的发光部20包括至少一个发光二极管元件(以下,为led元件)。即,本实施方式的透明显示装置是各像素pix使用led元件的显示装置,被称为led显示器等。在图1的例子中,各发光部20包括红色系的led元件21、绿色系的led元件22以及蓝色系的led元件23。led元件21~23与构成一个像素的子像素(subpixel)对应。这样,由于各发光部20具有发出作为光的三原色的红、绿、蓝的led元件21~23,所以本实施方式的透明显示装置能够显示全色图像。此外,各发光部20也可以包括两个以上同色系的led元件。由此,能够放大图像的动态范围(dynamics range)。led元件21~23具有微小尺寸,是所谓的微型led元件。具体而言,透明基材10上的led元件21的宽度(x轴方向的长度)以及长度(y轴方向的长度)分别例如为100μm以下,优选为50μm以下,更加优选为20μm以下。led元件22、23也相同。led元件的宽度以及长度的下限根据制造上的各条件等例如为3μm以上。此外,图1中的led元件21~23的尺寸即宽度以及长度相同,但也可以相互不同。另外,各led元件21~23的透明基材10上的占有面积例如为10,000μm2以下,优选为1,000μm2以下,更加优选为100μm2以下。此外,各led元件的占有面积的下限根据制造上的各条件等例如为10μm2以上。这里,在本说明书中,led元件、布线等构成部件的占有面积是指图1中的xy平面观察时的面积。此外,图1所示的led元件21~23的形状为矩形,但不被特别地限定。例如也可以是正方形、六边形、锥构造、柱状等。这里,led元件21~23例如具有用于向识别侧高效地取出光的镜子构造。因此,led
元件21~23的透过率例如低至10%以下左右。然而,在本实施方式的透明显示装置中,如上所述,使用面积10,000μm2以下的微小尺寸的led元件21~23。因此,即便在从例如数10cm~2m左右的近距离观察透明显示装置那样的情况下,led元件21~23仍几乎无法识别。另外,显示区域101中的透过率低的区域较窄,从而背面侧的识别性优异。而且,布线40等的配置的自由度也较大。此外,“显示区域101中的透过率低的区域”例如是透过率为20%以下的区域。以下相同。另外,由于使用微小尺寸的led元件21~23,所以即便使透明显示装置弯曲,led元件也难以损伤。因此,本实施方式的透明显示装置能够安装于汽车用的窗玻璃那样的弯曲的透明板,或者封入弯曲的两片透明板之间来使用。这里,若使用具有挠性的材料作为透明基材10,则能够使本实施方式的透明显示装置弯曲。图示的led元件21~23是芯片型,但不被特别地限定。led元件21~23可以不被树脂封装,也可以整体或者一部分被封装。封装树脂也可以具备透镜功能,来提高光的利用率、向外部取出的效率。另外,在该情况下,led元件21~23也可以分别独立地被封装,也可以是三个led元件21~23一同被封装而成的三合一芯片。或者,各led元件也可以是以同一波长发光但因封装树脂所含的荧光体等而取出不同波长的光的元件。此外,在led元件21~23被封装的情况下,上述led元件的尺寸以及面积分别是被封装的状态下的尺寸以及面积。在三个led元件21~23一同被封装的情况下,各led元件的面积是整体的面积的三分之一。led元件21~23不被特别地限定,但例如是无机材料。红色系的led元件21例如是algaas、gaasp、gap等。绿色系的led元件22例如是ingan、gan、algan、gap、algainp、znse等。蓝色系的led元件23例如是ingan、gan、algan、znse等。led元件21~23的发光效率即能量转换效率例如为1%以上,优选为5%以上,更加优选为15%以上。若led元件21~23的发光效率为1%以上,则如上述那样即便是微小尺寸的led元件21~23也能够得到足够的亮度,从而作为显示装置也能够在白天利用。另外,若led元件的发光效率为15%以上,则能够抑制发热,从而向使用了树脂粘合层的夹层玻璃内部的封入变得容易。led元件21~23例如通过切断利用液相生长法、hvpe(hydride vapor phase epitaxy:氢化物气相外延)法、mocvd(metal organic chemical vapor deposition:金属有机化学气相沉积)法等生长出来的结晶而得到。所得到的led元件21~23被装配在透明基材10上。或者,也可以通过微转印法(micro transfer printing)等从半导体晶圆剥离并转印在透明基材10上来形成led元件21~23。像素间距px、py分别例如为100~3000μm,优选为180~1000μm,更加优选为250~400μm。通过使像素间距px、py在上述范围内,能够确保充分的显示能力,并且实现较高的透明性。另外,能够抑制因来自透明显示装置的背面侧的光而可能产生的衍射现象。另外,本实施方式的透明显示装置的显示区域101中的像素密度例如为10ppi以上,优选为30ppi以上,更加优选为60ppi以上。另外,一个像素pix的面积能够由px
×
py表示。一个像素的面积例如为1
×
104μm2~9×
106μm2,优选为3
×
104~1
×
106μm2,更加优选为6
×
104~2
×
105μm2。通过使一个像素的面积为1
×
104μm2~9
×
106μm2,能够确保适当的显示能力,并且提高显示装置的透明性。一个像素的面积只要根据显示区域101的尺寸、用途、识别距离等适当地选择即可。led元件21~23的占有面积相对于一个像素的面积的比例例如为30%以下,优选为10%以下,更加优选为5%以下,进一步优选为1%以下。通过使led元件21~23的占有面积相对于一个像素的面积的比例为30%以下,透明性以及背面侧的识别性提高。在图1中,在各像素中,三个led元件21~23依次在x轴正方向排列成一列来配置,但不限定于此。例如,也可以变更三个led元件21~23的配置顺序。另外,也可以将三个led元件21~23在y轴方向排列。或者,也可以将三个led元件21~23配置在三角形的顶点。另外,如图1所示,在各发光部20具备多个led元件21~23的情况下,发光部20中的led元件21~23彼此的间隔例如为100μm以下,优选为10μm以下。另外,led元件21~23彼此也可以配置为相互接触。由此,容易将第一电源分支线41a共通化,能够提高开口率。此外,在图1的例子中,各发光部20中的多个led元件的配置顺序、配置方向等相互相同,但也可以不同。另外,在各发光部20包括发出波长不同的光的三个led元件的情况下,也可以在一部分的发光部20中,将led元件在x轴方向或者y轴方向排列配置,在其他的发光部20中,将各色的led元件配置在三角形的顶点。在图1的例子中,ic芯片30针对每个像素pix来配置,驱动发光部20。具体而言,ic芯片30经由驱动线45与led元件21~23分别连接,能够单独地驱动led元件21~23。此外,也可以以多个像素为单位来配置ic芯片30,驱动各ic芯片30所连接的多个像素。例如,若以四个像素为单位来配置一个ic芯片30,则能够将ic芯片30的个数减少为图1的例子的1/4,从而减少ic芯片30的占有面积。ic芯片30的面积例如为100,000μm2以下,优选为10,000μm2以下,更加优选为5,000μm2以下。ic芯片30的透过率虽低至20%以下左右,但通过使用上述尺寸的ic芯片30,而使显示区域101中的透过率低的区域变窄,从而背面侧的识别性提高。作为ic芯片30,例如是具备模拟区域与逻辑区域的混合ic。模拟区域例如包含电流控制电路以及变压电路等。此外,也可以使用led元件21~23与ic芯片30一同被树脂密封而成的带ic芯片的led元件。另外,代替ic芯片30,也可以使用含有薄膜晶体管(tft:thin film transistor)的电路。另外,ic芯片30并非必须。另一方面,也可以在ic芯片30搭载有微型传感器。即,本实施方式的透明显示装置也可以是透明传感检测设备。针对微型传感器的详细,在第四实施方式中进行后述。本实施方式的布线40是显示用布线,如图1所示,各具备多个电源线41、接地线42、行数据线43、列数据线44以及驱动线45。在图1的例子中,电源线41、接地线42以及列数据线44沿y轴方向延伸配置。另一方面,行数据线43沿x轴方向延伸配置。另外,在各像素pix中,电源线41以及列数据线44设置于比发光部20以及ic芯片30靠x轴负方向侧,接地线42设置于比发光部20以及ic芯片30靠x轴正方向侧。这里,电源线41设置于比列数据线44靠x轴负方向侧。另外,在各像素pix中,行数据线43设置于比发光部20以及ic芯片30靠y轴负方向侧。
另外,详细后述,但如图1所示,电源线41具备第一电源分支线41a以及第二电源分支线41b。接地线42具备接地分支线42a。行数据线43具备行数据分支线43a。列数据线44具备列数据分支线44a。上述各分支线包含于布线40中。如图1所示,沿y轴方向延伸配置的各电源线41与在y轴方向并列设置的各像素pix的发光部20以及ic芯片30连接。更详细而言,在各像素pix中,在比电源线41靠x轴正方向侧,led元件21~23依次在x轴正方向并列设置。因此,从电源线41向x轴正方向分支的第一电源分支线41a与led元件21~23的y轴正方向侧端部连接。另外,在各像素pix中,ic芯片30配置于led元件21~23的y轴负方向侧。因此,在led元件21与列数据线44之间,从第一电源分支线41a向y轴负方向分支的第二电源分支线41b呈直线状延伸配置,而与ic芯片30的y轴正方向侧端部的x轴负方向侧连接。如图1所示,沿y轴方向延伸配置的各接地线42与在y轴方向并列设置的各像素pix的ic芯片30连接。具体而言,从接地线42向x轴负方向分支的接地分支线42a呈直线状延伸配置,而与ic芯片30的x轴正方向侧端部连接。这里,接地线42经由接地分支线42a、ic芯片30以及驱动线45与led元件21~23连接。如图1所示,沿x轴方向延伸配置的各行数据线43与在x轴方向(行方向)并列设置的各像素pix的ic芯片30连接。具体而言,从行数据线43向y轴正方向分支的行数据分支线43a呈直线状延伸配置,而与ic芯片30的y轴负方向侧端部连接。这里,行数据线43经由行数据分支线43a、ic芯片30以及驱动线45与led元件21~23连接。如图1所示,沿y轴方向延伸配置的各列数据线44与在y轴方向(列方向)并列设置的各像素pix的ic芯片30连接。具体而言,从列数据线44向x轴正方向分支的列数据分支线44a呈直线状延伸配置,而与ic芯片30的x轴负方向侧端部连接。这里,列数据线44经由列数据分支线44a、ic芯片30以及驱动线45与led元件21~23连接。驱动线45在各像素pix中将led元件21~23与ic芯片30连接。具体而言,在各像素pix中,三根驱动线45沿y轴方向延伸配置,分别将led元件21~23的y轴负方向侧端部与ic芯片30的y轴正方向侧端部连接。此外,图1所示的电源线41、接地线42、行数据线43、列数据线44及它们的分支线、驱动线45的配置只是一个例子,能够适当变更。例如,电源线41以及接地线42中的至少一方也可以不沿y轴方向而沿x轴方向延伸配置。另外,也可以是调换电源线41与列数据线44而得到的结构。另外,也可以是使图1所示的结构整体上下反转而得的结构或者左右反转而得的结构等。另外,行数据线43、列数据线44及它们的分支线、驱动线45并非必须。布线40例如是铜(cu)、铝(al)、银(ag)、金(au)等金属。其中,从低电阻率、成本的观点来看,优选是以铜或铝为主要成分的金属。另外,以降低反射率为目的,布线40也可以被钛(ti)、钼(mo)、氧化铜、碳等材料包覆。另外,也可以在包覆的材料的表面形成有凹凸。图1所示的显示区域101中的布线40的宽度例如均为1~100μm,优选为3~20μm。由
于布线40的宽度为100μm以下,所以即便在从例如数10cm~2m左右的近距离观察透明显示装置那样的情况下,布线40也几乎无法识别,从而背面侧的识别性优异。另一方面,在后述的厚度的范围的情况下,若使布线40的宽度为1μm以上,则能够抑制布线40的电阻的过度上升,从而抑制电压下降、信号强度的降低。另外,也能够抑制布线40的热传导的降低。这里,如图1所示,在布线40主要沿x轴方向以及y轴方向延伸的情况下,存在因从透明显示装置的外部照射来的光而产生沿x轴方向以及y轴方向延伸的十字衍射图像,从而透明显示装置的背面侧的识别性降低的情况。通过减小各布线的宽度,能够抑制该衍射,从而进一步提高背面侧的识别性。从抑制衍射的观点来看,也可以使布线40的宽度为50μm以下,优选为10μm以下,更加优选为5μm以下。布线40的电阻率例如为1.0
×
10-6
ωm以下,优选为2.0
×
10-8
ωm以下。另外,布线40的热传导率例如为150~5,500w/(m
·
k),优选为350~450w/(m
·
k)。图1所示的显示区域101中的邻接的布线40彼此的间隔例如为3~100μm,优选为5~30μm。若存在布线40密集的区域,则存在妨碍背面侧的识别的情况。通过使邻接的布线40彼此的间隔为3μm以上,能够抑制这种识别的妨碍。另一方面,通过使邻接的布线40彼此的间隔为100μm以下,能够确保足够的显示能力。此外,在布线40彼此的间隔因布线40弯曲等而不恒定的情况下,上述邻接的布线40彼此的间隔是指其最小值。另外,电场强度越大,布线40的迁移越容易产生。这里,电场强度由“电压/邻接的布线40彼此的间隔”来定义。因此,施加于布线40的电压越大,或者邻接的布线40彼此的间隔越小,则电场强度越大,迁移越容易产生。施加于布线40的电压例如为1.5~5v。如上所述,若邻接的布线40彼此的间隔为3~100μm,则最大电场强度成为5v/3μm=1,670kv/m左右。布线40的占有面积相对于一个像素的面积的比例例如为30%以下,优选为10%以下,更加优选为5%以下,进一步优选为3%以下。布线40的透过率例如为20%以下,或者低至10%以下。然而,在一个像素中通过使布线40的占有面积的比例为30%以下,而使显示区域101中的透过率低的区域变窄,从而背面侧的识别性提高。另外,发光部20、ic芯片30以及布线40的占有面积的合计相对于一个像素的面积的比例例如为30%以下,优选为20%以下,更加优选为10%以下。<透明显示装置的剖面结构>接下来,参照图2,对本实施方式的透明显示装置的剖面结构进行说明。透明基材10是具有绝缘性的透明的材料。在图2的例子中,透明基材10具有主基板11以及粘合剂层12的双层构造。如之后详述那样,主基板11例如是透明树脂。粘合剂层12例如是环氧系、丙烯酸系、烯烃系、聚酰亚胺系、酚醛清漆系等的透明树脂粘合剂。此外,主基板11也可以是厚度例如为200μm以下,优选为100μm以下等的较薄的玻璃板。另外,粘合剂层12并非必须。作为构成主基板11的透明树脂,能够举出聚对苯二甲酸乙二醇酯(pet)、聚萘二甲酸乙二醇酯(pen)等聚酯系树脂、环烯烃聚合物(cop)、环烯烃共聚物(coc)等烯烃系树脂、
纤维素、醋酸纤维素、三醋酸纤维素(tac)等纤维素系树脂、聚酰亚胺(pi)等酰亚胺系树脂、聚乙烯(pe)、聚氯乙烯(pvc)、聚苯乙烯(ps)、聚醋酸乙烯酯(pvac)、聚乙烯醇(pva)、聚乙烯醇缩丁醛(pvb)等乙烯系树脂、聚甲基丙烯酸甲酯(pmma)、乙烯-醋酸乙烯酯共聚物树脂(eva)等丙烯酸系树脂、氨基甲酸乙酯系树脂等。在使用于上述主基板11的材料中,从提高耐热性的观点来看,优选为聚萘二甲酸乙二醇酯(pen)、聚酰亚胺(pi)。另外,在双折射率低且能够减少通过透明基材看到的图像的形变、外渗这点,优选为环烯烃聚合物(cop)、环烯烃共聚物(coc)、聚乙烯醇缩丁醛(pvb)等。既可以单一地使用上述材料,也可以混合地使用两种以上的材料。另外,也可以使不同材料的平板层叠来构成主基板11。透明基材10整体的厚度例如为3~1000μm,优选为5~200μm。透明基材10的可见光的内部透过率例如为50%以上,优选为70%以上,更加优选为90%以上。另外,透明基材10也可以具有挠性。由此,例如能够将透明显示装置安装于弯曲的透明板,或者夹于弯曲的两片透明板之间来使用。另外,也可以是在加热为100℃以上时收缩的材料。如图2所示,led元件21~23以及ic芯片30设置在透明基材10即粘合剂层12上,与配置在透明基材10上的布线40连接。在图2的例子中,布线40由形成在主基板11上的第一金属层m1以及形成在粘合剂层12上的第二金属层m2构成。布线40的厚度即第一金属层m1的厚度与第二金属层m2的厚度的合计例如为0.1~10μm,优选为0.5~5μm。第一金属层m1的厚度例如为0.5μm左右,第二金属层m2的厚度例如为3μm左右。详细而言,如图2所示,沿y轴方向延伸配置的接地线42由于电流量较多,所以具有包含第一金属层m1以及第二金属层m2的双层构造。即,在设置有接地线42的部位,粘合剂层12被除去,而在第一金属层m1上形成第二金属层m2。在图2中虽未示出,但图1所示的电源线41、行数据线43以及列数据线44也相同地具有包含第一金属层m1以及第二金属层m2的双层构造。这里,如图1所示,沿y轴方向延伸配置的电源线41、接地线42以及列数据线44与沿x轴方向延伸配置的行数据线43交叉。在图2中虽未图示,但在该交叉部中,行数据线43仅由第一金属层m1构成,电源线41、接地线42以及列数据线44仅由第二金属层m2构成。而且,在该交叉部中,在第一金属层m1与第二金属层m2之间设置有粘合剂层12,从而第一金属层m1与第二金属层m2被绝缘。相同地,在图1所示的列数据线44与第一电源分支线41a的交叉部,第一电源分支线41a仅由第一金属层m1构成,列数据线44仅由第二金属层m2构成。另外,在图2的例子中,接地分支线42a、驱动线45以及第一电源分支线41a仅由第二金属层m2构成,并形成为覆盖led元件21~23以及ic芯片30的端部。在图2中虽未示出,但第二电源分支线41b、行数据分支线43a以及列数据分支线44a也相同地仅由第二金属层m2构成。此外,如上所述,第一电源分支线41a在与列数据线44的交叉部仅由第一金属层m1构成,在除此以外的部位仅由第二金属层m2构成。另外,也可以在形成在透明基材10上的布
线40上配置铜、银、金制等的金属垫,在其上配置led元件21~23以及ic芯片30的至少一方。密封层50以覆盖发光部20、ic芯片30以及布线40的方式形成于透明基材10上的大致整个面。密封层50是固化后的吸水率为1%以下的透明树脂。透明树脂的固化后的吸水率更加优选为0.1%以下,进一步优选为0.01%以下。通过这种结构,能够抑制密封层50中的水分引起的布线40的迁移,从而能够提供可靠性优异的透明显示装置。此外,吸水率是指通过依据jis7209的b法的方法测定出的值(%)。构成密封层50的透明树脂例如是环烯烃聚合物(cop)、环烯烃共聚物(coc)等烯烃系树脂、聚甲基丙烯酸甲酯(pmma)、乙烯-醋酸乙烯酯共聚物树脂(eva)等丙烯酸系树脂、硅酮树脂等硅系树脂。另外,不含羟基(oh基)的透明树脂的固化后的吸水率较低,从而优选。密封层50的厚度例如为3~1000μm,优选为5~200μm。密封层50的可见光的内部透过率例如为50%以上,优选为70%以上,更加优选为90%以上。密封层50与透明基材10的剥离粘合强度优选为1n/25mm以上。密封层50与布线40的剥离粘合强度也相同。这里,剥离粘合强度是指通过依据jis k6854-1(90
°
剥离)的方法测定出的值。从提高紧贴性的观点来看,水相对于透明基材10的接触角与水相对于密封层50的接触角之差优选为30
°
以下。水相对于布线40的接触角与水相对于密封层50的接触角之差也相同。这里,水的接触角是指通过依据jis r3257的方法测定出的值。另外,也可以以通过锚效果来提高紧贴性的方式在透明基材10、布线40的表面形成凹凸。通过密封层50的紧贴性提高,能够抑制从外部侵入的水分引起的布线40的迁移。如以上说明的那样,在本实施方式的透明显示装置中,覆盖形成在透明基材10上的布线40的密封层50是固化后的吸水率为1%以下的透明树脂。因此,能够抑制密封层50中的水分引起的布线40的迁移,从而能够提供可靠性优异的透明显示装置。<透明显示装置的制造方法>接下来,参照图2~图10,对第一实施方式的透明显示装置的制造方法的一个例子进行说明。图3~图10是表示第一实施方式的透明显示装置的制造方法的一个例子的剖视图。图3~图10是与图2对应的剖视图。首先,如图3所示,在主基板11上的大致整个面成膜第一金属层m1后,通过光刻将第一金属层m1图案化,而形成下层布线。具体而言,在形成图1所示的电源线41、接地线42、行数据线43以及列数据线44等的位置,通过第一金属层m1形成下层布线。此外,在电源线41、接地线42以及列数据线44中的与行数据线43的交叉部不形成下层布线。接下来,如图4所示,在主基板11上的大致整个面成膜粘合剂层12后,在具有粘性的粘合剂层12上装配led元件21~23以及ic芯片30。接下来,如图5所示,在包含主基板11以及粘合剂层12的透明基材10上的大致整个面成膜光致抗蚀剂fr1后,通过图案化除去第一金属层m1上的光致抗蚀剂fr1。这里,图1所示的行数据线43中的与电源线41、接地线42以及列数据线44的交叉部的光致抗蚀剂fr1不被除去。接下来,如图6所示,通过干式蚀刻将除去了光致抗蚀剂fr1的部位的粘合剂层12
除去,使第一金属层m1即下层布线露出。接下来,如图7所示,将透明基材10上的光致抗蚀剂fr1全部除去。之后,在透明基材10上的大致整个面形成未图示的镀敷用种子层。接下来,如图8所示,在透明基材10上的大致整个面成膜光致抗蚀剂fr2后,通过图案化除去形成上层布线的部位的光致抗蚀剂fr2,使种子层露出。接下来,如图9所示,在除去了光致抗蚀剂fr2的部位即种子层上通过镀敷形成第二金属层m2。由此,通过第二金属层m2形成上层布线。接下来,如图10所示,除去光致抗蚀剂fr2。另外,通过蚀刻除去因光致抗蚀剂fr2的除去而露出的种子层。最后,如图2所示,通过在透明基材10上的大致整个面形成密封层50,获得透明显示装置。(第二实施方式)<具备透明显示装置的夹层玻璃的结构>接下来,参照图11,对第二实施方式的夹层玻璃的结构进行说明。图11是表示第二实施方式的夹层玻璃的一个例子的示意的俯视图。如图11所示,第二实施方式的夹层玻璃200通过将一对玻璃板粘合而成,在该一对玻璃板之间具备第一实施方式的透明显示装置100。图11所示的夹层玻璃200使用于汽车的窗玻璃中的前风挡玻璃,但不被特别地限定。如图11所示,在夹层玻璃200的周缘整体例如设置有黑色的遮蔽部201。遮蔽部201遮蔽日光,保护用于将夹层玻璃200组装于汽车的粘合剂免受紫外线的影响。另外,通过遮蔽部201而无法从外部识别该粘合剂。如图11所示,透明显示装置100除了图1所示的显示区域101之外,还具备设置于显示区域的周围的非显示区域102。这里,如在第一实施方式中已说明的那样,显示区域101是由多个像素构成而显示图像的区域,因此省略详细的说明。此外,图11是俯视图,为了容易理解,利用点表示非显示区域102以及遮蔽部201。非显示区域102是不具备像素而不显示图像的区域。在非显示区域102密集地设置有与图1所示的电源线41、接地线42、行数据线43以及列数据线44连接的厚宽的布线。非显示区域102中的布线的宽度例如为100~10,000μm,优选为100~5,000μm。布线彼此的间隔例如为3~5,000μm,优选为50~1,500μm。因此,显示区域101为透明,与此相对,非显示区域102不透明,能够从车内识别。这里,若非显示区域102能够识别,则夹层玻璃200的设计性降低。因此,在第二实施方式的夹层玻璃200中,透明显示装置100的非显示区域102的至少一部分设置于遮蔽部201。设置于遮蔽部201的非显示区域102隐藏于遮蔽部201,而无法识别。因此,相比能够识别非显示区域102的整体的情况,夹层玻璃200的设计性提高。(第三实施方式)<透明显示装置的结构>接下来,参照图12,对第三实施方式的透明显示装置的结构进行说明。图12是表示第三实施方式的透明显示装置的一个例子的示意的局部俯视图。如图12所示,本实施方式的透明显示装置除了图1所示的第一实施方式的透明显示装置的结构之外,还在显示区域101具备传感器70。
在图12所示的例子中,传感器70设置于规定的像素pix之间,与电源线41以及接地线42连接。另外,经由从传感器70向y轴方向延伸的数据输出线46输出基于传感器70的检出数据。另一方面,控制信号经由沿y轴方向延伸至传感器70为止的控制信号线47被输入传感器70,而控制传感器70。传感器70既可以为单个,也可以为多个。多个传感器70也可以以规定间隔例如在x轴方向或y轴方向进行配置。在以下的说明中,对本实施方式的透明显示装置搭载于汽车的窗玻璃中的前风挡玻璃的情况进行说明。即,本实施方式的透明显示装置也能够应用于第二实施方式的夹层玻璃。传感器70例如是用于检测车内以及车外的照度的照度传感器(例如受光元件)。例如,根据传感器70检测出的照度,对基于led元件21~23的显示区域101的亮度进行控制。例如,车外的照度相对于车内的照度越大,则基于led元件21~23的显示区域101的亮度也越大。通过这种结构,透明显示装置的识别性更加提高。另外,传感器70也可以是用于感知观察者(例如驾驶员)的视线的红外线传感器(例如受光元件)、图像传感器(例如cmos(complementary metal-oxide-semiconductor:互补式金属氧化物半导体)图像传感器)。例如,仅在传感器70感知到视线的情况下,驱动透明显示装置。例如,在将透明显示装置使用于图11所示的夹层玻璃的情况下,除非观察者将视线朝向透明显示装置,否则透明显示装置不会遮蔽观察者的视野,因此优选。或者,也可以通过作为图像传感器的传感器70检出观察者的动作,基于该动作,例如将透明显示装置开
·
关,或者切换显示画面。其他结构与第一实施方式的透明显示装置相同。(第四实施方式)<透明传感检测设备的结构>接下来,参照图13,对第四实施方式的透明传感检测设备的结构进行说明。图13是表示第四实施方式的透明传感检测设备的一个例子的示意的局部俯视图。如图13所示,本实施方式的透明传感检测设备在图1所示的第一实施方式的透明显示装置的结构的基础上,在各像素pix具有取代发光部20以及ic芯片30而具备传感器70的结构。即,图13所示的透明传感检测设备不具备发光部20,不具有显示功能。传感器70不被特别地限定,但在图13所示的透明传感检测设备中,是cmos图像传感器。即,图13所示的透明传感检测设备具备由在行方向(x轴方向)以及列方向(y轴方向)排列的多个像素pix构成的摄像区域301,具有摄像功能。图13示出了摄像区域301的一部分,在行方向以及列方向各有两个像素,共计四个像素。这里,一个像素pix由单点划线包围示出。另外,在图13中,与图1相同,省略了透明基材10以及密封层50。另外,图13是俯视图,为了容易理解,利用点表示传感器70。在图13所示的例子中,传感器70逐个设置于各像素pix,配置于沿y轴方向延伸的电源线41与接地线42之间,与两者连接。另外,经由从传感器70向y轴方向延伸的数据输出线46输出基于传感器70的检出数据。另一方面,控制信号经由沿y轴方向延伸至传感器70为止的控制信号线47被输入传感器70,而控制传感器70。控制信号例如是同步信号、复位信号等。此外,电源线41也可以与未图示的电池连接。
这里,图14是传感器70的示意剖视图。图14所示的传感器70是背面照射型cmos图像传感器。此外,作为图像传感器的传感器70也不被特别限定,也可以是表面照射型cmos图像传感器、ccd(charge-coupled device:电荷耦合器件)图像传感器。如图14所示,各传感器70具备布线层、半导体基板、彩色过滤器cf1~cf3、微透镜ml1~ml3。这里,在布线层的内部形成有内部布线iw。另外,在半导体基板的内部形成有光电二极管pd1~pd3。在布线层上形成有半导体基板(例如硅酮基板)。形成在布线层的内部的内部布线iw将布线40(电源线41、接地线42、数据输出线46以及控制信号线47)与光电二极管pd1~pd3连接。若对光电二极管pd1~pd3照射光,则从光电二极管pd1~pd3输出电流。从光电二极管pd1~pd3输出的电流分别被未图示的放大电路放大,经由内部布线iw以及数据输出线46被输出。彩色过滤器cf1~cf3分别形成在形成于半导体基板的内部的光电二极管pd1~pd3上。彩色过滤器cf1~cf3例如分别是红色过滤器、绿色过滤器、蓝色过滤器。微透镜ml1~ml3分别载置在彩色过滤器cf1~cf3上。由作为凸透镜的微透镜ml1~ml3聚集的光分别经由彩色过滤器cf1~cf3向光电二极管pd1~pd3入射。本实施方式的传感器70是具有透明基材10上的占有面积为250,000μm2以下的微小尺寸的微型传感器。换言之,在本说明书中,微型传感器是具有俯视时的面积为250,000μm2以下的微小尺寸的传感器。传感器70的占有面积例如优选为25,000μm2以下,更加优选为2,500μm2以下。此外,传感器70的占有面积的下限根据制造上的各条件等例如为10μm2以上。此外,图13所示的传感器70的形状为矩形,但不被特别限定。本实施方式的透明传感检测设备也能够应用于第二实施方式的夹层玻璃。在本实施方式的透明传感检测设备被搭载于车辆(例如汽车)的窗玻璃中的前风挡玻璃的情况下,通过传感器70例如能够取得车内以及车外的至少任一方的图像。即,本实施方式的透明传感检测设备具有作为行车记录仪的功能。此外,第四实施方式的透明传感检测设备中的传感器70也可以为单个。另外,第四实施方式的透明传感检测设备中的传感器70也不限于图像传感器,也可以是在第三实施方式中例示出的照度传感器、红外线传感器等。另外,传感器70也可以是雷达传感器、激光雷达(lidar)传感器等。通过搭载有使用了这些传感器70的透明传感检测设备的车辆用窗玻璃,例如能够监视车内、车外。即,第四实施方式的传感器70只要是具有透明基材10上的占有面积为250,000μm2以下的微小尺寸的微型传感器,则不被特别限定。例如,传感器70也可以是温度传感器、紫外线传感器、电波传感器、压力传感器、声音传感器、速度/加速度传感器等。其他结构与第一实施方式的透明显示装置相同。实施例以下,示出本发明的实施例,但本发明并不解释为限定于以下的实施例。针对例1、例2的透明显示装置,在温度65℃、湿度85%的高温高湿下进行连续通电试验,调查了试验前后的亮度的变化。例1、例2均是本发明的实施例。首先,参照图2~图10,对例1的透明显示装置的制造方法进行说明。<例1>
以下,对例1的透明显示装置的制造方法进行说明。如图3所示,将厚度0.7mm的玻璃板(agc公司制an-100)作为主基板11来使用,在主基板11上的大致整个面依次成膜包含厚度0.04μm的ti膜、厚度0.60μm的cu膜以及厚度0.10μm的ti膜的三层构造的第一金属层m1。之后,通过光刻将第一金属层m1图案化,形成下层布线。接下来,如图4所示,在主基板11上的大致整个面成膜作为环氧树脂(dowdupont公司制intervia8023)的粘合剂层12之后,在具有粘性的粘合剂层12上装配了led元件21~23以及ic芯片30。接下来,如图5所示,在包含主基板11以及粘合剂层12的透明基材10上的大致整个面成膜光致抗蚀剂fr1之后,通过图案化除去了第一金属层m1、ic芯片30上的光致抗蚀剂fr1。接下来,如图6所示,通过干式蚀刻将除去了光致抗蚀剂fr1的部位的粘合剂层12除去,从而使第一金属层m1即下层布线露出。接下来,如图7所示,将透明基材10上的光致抗蚀剂fr1全部除去。之后,在透明基材10上的大致整个面形成包含厚度0.1μm的w-10ti合金膜以及厚度0.15μm的cu膜的镀敷用种子层。接下来,如图8所示,在透明基材10上的大致整个面成膜光致抗蚀剂fr2之后,通过图案化除去形成上层布线的部位的光致抗蚀剂fr2,从而使种子层露出。接下来,如图9所示,在除去了光致抗蚀剂fr2的部位即种子层上通过镀敷形成包含cu的厚度3.0μm的第二金属层m2,作为上层布线。接下来,如图10所示,除去光致抗蚀剂fr2。另外,通过蚀刻除去了因光致抗蚀剂fr2的除去而露出的种子层。最后,如图2所示,在透明基材10上的大致整个面通过灌封涂覆硅酮弹性体(东丽
·
道康宁株式会社制sylgard184),形成了密封层50。之后,在常温下保持48小时,使密封层50进行固化。这样,制造了例1的透明显示装置。例1的透明显示装置中的密封层50的吸水率为0.06%。在例1的透明显示装置中,上述连续通电试验前的亮度为181cd/m2,与此相对,试验后的亮度为115cd/m2,亮度降低停留在36%,光束维持率为初始值的50%以上。推断出密封层50的吸水率较低,能够抑制迁移。<例2>接下来,参照图15,对例2的透明显示装置的制造方法进行说明。图15是表示例2的透明显示装置的剖视图。图15是与图2对应的剖视图。如图15所示,在例2的透明显示装置中,在密封层50上设置有玻璃板60。即,通过密封层50使玻璃制的主基板11和玻璃板60成为夹层玻璃。在例2的透明显示装置中,作为密封层50,使用了环烯烃聚合物(cop)薄膜(日本瑞翁公司制zeonor薄膜zf14)。图3~图10所示的工序,即比形成图15所示的密封层50的工序靠前的工序与例1相同,因此省略说明。接下来,如图15所示,为了形成密封层50,通过厚度0.762mm的cop薄膜覆盖了透明基材10上的大致整个面,另外,通过厚度1.8mm的玻璃板60(agc公司制浮法玻璃)覆盖了cop
薄膜。即,通过透明基材10与玻璃板60夹持密封层50用的cop薄膜。接着,减压至5pa以下,保持减压的状态不变,在作为cop薄膜的玻璃化转变温度tg附近的100℃下,加热1个小时,使cop薄膜暂时压接于透明基材10以及玻璃板60。另外,在高压釜装置内,在10个大气压、130℃下,加热20分钟,制造了例2的透明显示装置。此外,图15所示的例2的透明显示装置是在被一对玻璃板(透明基材10以及玻璃板60)夹持的夹层玻璃设置有透明显示装置的结构,且是第二实施方式的夹层玻璃的变形例。即,透明基材10也可以构成一对玻璃板的一方。另外,图11所示的第二实施方式的夹层玻璃的剖面结构是在图15中的透明基材10的外侧(附图下侧)进一步设置其他玻璃板的结构。例2的透明显示装置中的密封层50的吸水率不足0.01%。在例2的透明显示装置中,上述连续通电试验前的亮度为121cd/m2,与此相对,试验后的亮度为118cd/m2,亮度降低仅为2.5%。即,光束维持率为初始值的95%以上,结果极其良好。推断出密封层50的吸水率极低,能够显著抑制迁移。此外,本发明不限于上述实施方式,能够在不脱离主旨的范围内适当变更。例如,透明显示装置也可以具有触摸面板功能。本技术主张以在2019年7月16日申请的日本技术特愿2019-130927以及在2019年10月4日申请的日本技术特愿2019-183533为基础的优先权,并在此引用其全部公开内容。附图标记说明10

透明基材;11

主基板;12

粘合剂层;20

发光部;21~23

led元件;30

ic芯片;40

布线;41

电源线;41a

第一电源分支线;41b

第二电源分支线;42

接地线;42a

接地分支线;43

行数据线;43a

行数据分支线;44

列数据线;44a

列数据分支线;45

驱动线;46

数据输出线;47

控制信号线;50

密封层;60

玻璃板;70

传感器;100

透明显示装置;101

显示区域;102

非显示区域;200

夹层玻璃(窗玻璃);201

遮蔽部;cf1~cf3

彩色过滤器;fr1、fr2

光致抗蚀剂;iw

内部布线;m1

第一金属层;m2

第二金属层;ml1~ml3

微透镜;pd1~pd3

光电二极管;pix

像素。
再多了解一些

本文用于企业家、创业者技术爱好者查询,结果仅供参考。

发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表

相关文献